JPS6227501A - Production of sintered soft magnetic parts - Google Patents

Production of sintered soft magnetic parts

Info

Publication number
JPS6227501A
JPS6227501A JP60168060A JP16806085A JPS6227501A JP S6227501 A JPS6227501 A JP S6227501A JP 60168060 A JP60168060 A JP 60168060A JP 16806085 A JP16806085 A JP 16806085A JP S6227501 A JPS6227501 A JP S6227501A
Authority
JP
Japan
Prior art keywords
powder
silicon
iron
soft magnetic
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60168060A
Other languages
Japanese (ja)
Inventor
Shuji Matsumoto
修二 松本
Kunpei Kobayashi
薫平 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60168060A priority Critical patent/JPS6227501A/en
Publication of JPS6227501A publication Critical patent/JPS6227501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce sintered soft magnetic parts of iron-silicon having a high density and excellent magnetic characteristics by press-molding a powder mixture obtd. by adding a halide to iron-silicon raw material powder then sintering the molding. CONSTITUTION:The halide is added and mixed to and with the iron-silicon raw material powder at 0.1-1.5wt% and the resultant powder mixture is pressurized under about 5-7tons/cm<2> molding pressure, by which the powder mixture is molded to the prescribed shape having the high density. The molding is sintered in an inert or reducing atmosphere. NH4F, NH4Cl, FeCl2 and FeF2 are suitable as the above-mentioned halide. The powder mixture prepd. by mixing iron powder and silicon alloy powder contg. about 10-40% silicon to make the compsn. contg. about 1-10% silicon is suitable as the above- mentioned raw material powder. The activation sintering is executed by the reducing power of the above-mentioned halide in the stage of the above- mentioned sintering, by which the sintered body having the high density is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高密度化を図った焼結軟磁性部品の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a sintered soft magnetic component with high density.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に鉄−けい素合金からなる軟磁性部品は広く用いら
れておシ、最近ではこの軟磁性部品を粉末冶金法により
焼結晶として製造することが検討されている。このよう
に軟磁性部品を粉末冶金法により製造する場合には、良
好な磁気特性すなわち高い磁束密度を得るために密度が
大きいことが必要である。
In general, soft magnetic parts made of iron-silicon alloys are widely used, and recently it has been considered to manufacture these soft magnetic parts as sintered crystals by powder metallurgy. When producing soft magnetic parts by powder metallurgy, it is necessary to have a high density in order to obtain good magnetic properties, that is, high magnetic flux density.

しかして、このように粉末冶金法で焼結軟磁性部品を製
造する方法において、その軟磁性部品の密度を高めるた
めには、圧粉体を加圧成形する時に成形圧を大きくする
、圧粉体を焼結する時に焼結温度を高くする、あるいは
焼結時間を長くするということが行なわれている。
However, in this method of manufacturing sintered soft magnetic parts using the powder metallurgy method, in order to increase the density of the soft magnetic parts, it is necessary to increase the compacting pressure when compacting the powder compact. When sintering a body, the sintering temperature is increased or the sintering time is lengthened.

しかしながら、成形圧を大きくする方法は、ドツトプリ
ンタ用へラドヨークコアのように複雑な形状の部品の圧
粉体を加圧成形する場合に、成形圧を大きくすることが
難しく、また焼結時に焼結温度を高くする。あるいは焼
結時間を長くすると、焼結体の寸法精度が低下するとい
う夫々問題がある。従って、従来はこのような制限のた
めによフ高密度の焼結軟磁性部品を製造することが困難
であった。
However, the method of increasing the molding pressure is difficult when pressure molding a powder compact of a part with a complicated shape, such as a dot yoke core for a dot printer, and it is difficult to increase the molding pressure. make it higher. Alternatively, if the sintering time is increased, there is a problem in that the dimensional accuracy of the sintered body decreases. Therefore, in the past, it has been difficult to manufacture high-density sintered soft magnetic parts due to such limitations.

これに対して最近では、例えばドツトプリンタ用へラド
ヨークコアにおいては、磁気特性を高めるために空孔率
が少なく高密度を有するものが要求されるようになって
おり、このため高密度焼結軟磁性部品の製造技術の開発
が必要となっている。
In contrast, recently, for example, hard yoke cores for dot printers are required to have low porosity and high density in order to improve magnetic properties, and for this reason, high-density sintered soft magnetic parts are required. There is a need to develop manufacturing technology for this.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に基づいてなされたもので、母合金法
によシ高密度の鉄−けい素系の焼結軟磁性部品を得るこ
とができる焼結軟磁性部品の製造方法を提供するもので
ある。
The present invention has been made based on the above-mentioned circumstances, and provides a method for manufacturing sintered soft magnetic parts that can obtain high-density iron-silicon based sintered soft magnetic parts by a master alloy method. It is.

〔発明の概要〕[Summary of the invention]

本発明の焼結軟磁性部品の製造方法は、鉄−けい素系の
原料粉末にハロゲン化物を添加して混合し、この混合粉
末を加圧成形した後に焼結して焼結体を得ることを特徴
とするものである。
The method for producing a sintered soft magnetic component of the present invention includes adding a halide to iron-silicon raw material powder, mixing it, press-molding this mixed powder, and then sintering it to obtain a sintered body. It is characterized by:

すなわち、本発明は、焼結時に、鉄−けい素系原料粉末
に添加したハロゲン化物の還元力を利用して活性化焼結
を行ない、高密度の焼結体を得ようとするものである。
That is, the present invention attempts to obtain a high-density sintered body by performing activation sintering using the reducing power of a halide added to iron-silicon raw material powder during sintering. .

以下本発明に係わる焼結軟磁性部品の製造方法について
説明する。
The method for manufacturing a sintered soft magnetic component according to the present invention will be explained below.

まず、鉄−けい素系の原料粉末に、ハロゲン化物を添加
して混合し混合粉末とする。
First, a halide is added to iron-silicon raw material powder and mixed to form a mixed powder.

原料粉末としては鉄粉と、鉄−けい素置金粉とを混合す
るものを用いることが好ましい。この方法は母合金法と
呼ばれるもので、鉄−けい素置金粉末のみを用いる合金
法に比して、粉末が軟らかく、粉末を加圧成形する時の
成形密度が大きいので、優れた磁気特性を有する軟磁性
部品を粉末冶金法で製造する上で有利である。
As the raw material powder, it is preferable to use a mixture of iron powder and iron-silicon metal powder. This method is called the master alloy method, and compared to the alloy method that uses only iron-silicon gold powder, the powder is softer and the compaction density is higher when the powder is pressure-molded, so it has excellent magnetic properties. This is advantageous in producing soft magnetic parts with powder metallurgy.

原料粉末の組成は、重量比でけい素1〜10%。The composition of the raw material powder is 1 to 10% silicon by weight.

好ましくは2〜8%と、残部実質的に鉄からなるものと
する。原料粉末における鉄−けい素置金粉の組成は、合
金粉全体においてけい素の含有割合を10〜40q6と
する。これは圧粉体を焼結する時に、低い焼結温度で焼
結を行なうことができるからである。鉄粉と、鉄−けい
素置金粉との混合割合は、原料粉末全体におけるけい素
の含有量が所定の割合となるように設定する。
Preferably, the content is 2 to 8%, with the remainder consisting essentially of iron. The composition of the iron-silicon gold powder in the raw material powder is such that the content of silicon in the entire alloy powder is 10 to 40q6. This is because the green compact can be sintered at a low sintering temperature. The mixing ratio of the iron powder and the iron-silicon-containing gold powder is set so that the silicon content in the entire raw material powder becomes a predetermined ratio.

原料粉末に添加するハロゲン化物の割合は、重量比で混
合粉末全体における0、 1〜1.5%の範囲とする。
The proportion of halide added to the raw material powder is in the range of 0.1 to 1.5% by weight based on the entire mixed powder.

この理由は0.1%以上であれば粒子表面を充分に活性
化することができるのであフ、1.5チ以内であれば、
ハロゲン化物が焼結体内に残存して耐食性を劣化させる
ことがない。
The reason for this is that if it is 0.1% or more, the particle surface can be sufficiently activated, but if it is less than 1.5%,
Halides do not remain in the sintered body and deteriorate corrosion resistance.

ハロゲン化物としては、NH4F * FeF2 、 
FeCl2 *NH4CLなど粒子表面を活性化する効
果を奏するものを用いる。
Examples of halides include NH4F*FeF2,
A substance having the effect of activating the particle surface, such as FeCl2 *NH4CL, is used.

そして、前記鉄粉と、鉄−けい素置金粉からなる原料粉
末に、ハロゲン化物を添加して混合粉末を得る。
Then, a halide is added to the raw material powder consisting of the iron powder and the iron-silicon metal powder to obtain a mixed powder.

次に、前記混合粉末を加圧して所定の形状をなす圧粉体
に成形する。この時の成形圧は約5〜7トン/口2であ
る。
Next, the mixed powder is pressurized to form a compact into a predetermined shape. The molding pressure at this time is approximately 5 to 7 tons/port2.

その後に、前記圧粉体を不活性又は還元雰囲気、例えば
真空雰囲気中にて加熱して焼結を行ない、焼結体つまり
焼結軟磁性部品全形成する。
Thereafter, the green compact is heated and sintered in an inert or reducing atmosphere, for example, a vacuum atmosphere, thereby forming a sintered body, that is, a sintered soft magnetic component as a whole.

この焼結知おいて、圧粉体の鉄−けい素系原料粉末に添
加されたハロゲン化物例えばNH4CLが、焼結雰囲気
の例えば(Fe−0)と結びついて還元反応を起し、F
・C22を生成する。このハロゲン化物の還元反応によ
り粉末粒子の表面が活性になると同時に、生成されるF
@C12が融液となって圧粉体の空隙内に浸入し、空隙
内を球状にする。このようにハロゲン化物の還元反応に
より活性化焼結化が行なわれて圧粉体の焼結が促進され
、その焼結密度が高くなる。この結果、通常の焼結温度
および焼結時間による焼結において、これよフ大なる焼
結温度および焼結時間により焼結を行なった場合と同様
の高い焼結密度tもった焼結体すなわち焼結軟磁性部品
を得ることができる。
In this sintering method, a halide, such as NH4CL, added to the iron-silicon raw material powder of the green compact combines with, for example, (Fe-0) in the sintering atmosphere to cause a reduction reaction, and F
- Generate C22. This reduction reaction of the halide activates the surface of the powder particles and at the same time generates F.
@C12 becomes a melt and penetrates into the voids of the green compact, making the voids spherical. In this way, activated sintering is performed by the reduction reaction of the halide, promoting sintering of the green compact and increasing its sintered density. As a result, when sintered at the normal sintering temperature and time, the sintered body has the same high sintered density t as when sintering is performed at a higher sintering temperature and time. A sintered soft magnetic component can be obtained.

従って、本発明の製造方法によれば、焼結工程において
焼結温度を高くする、あるいは焼結時間全長くするとい
う方法によることなく焼結体の焼結密度を高めることが
できるために、寸法精度を悪化させることなく高密度の
焼結軟磁性部品全製造することができる。また、焼結軟
磁性部品の密度を高めるために、圧粉体の加圧成形時の
成形圧をあげる必要がないので、形状が複雑で且つ高密
度の焼結軟磁性部品を製造することができる。このため
、粉末冶金法によって高密度で磁気特性に優れた焼結軟
磁性部品を製造することができる。
Therefore, according to the manufacturing method of the present invention, the sintered density of the sintered body can be increased without increasing the sintering temperature or lengthening the total sintering time in the sintering process. All high-density sintered soft magnetic parts can be manufactured without deteriorating accuracy. In addition, in order to increase the density of sintered soft magnetic parts, there is no need to increase the molding pressure during pressure molding of the green compact, so it is possible to manufacture sintered soft magnetic parts with complex shapes and high density. can. Therefore, a sintered soft magnetic component with high density and excellent magnetic properties can be manufactured by powder metallurgy.

本発明の製造方法は、焼結軟磁性部品を製造する場合に
広く適用できるが、特に空孔率7%以下の高密度を要求
される部品および複雑形状の部品、例えば第1図および
第2図で示すドツトプリンタ用へラドヨークコア1を製
造する場合に適している◇ 〔発明の実施例〕 以下本発明をセ讐噂畢イ実施例について説明する。
The manufacturing method of the present invention can be widely applied to manufacturing sintered soft magnetic parts, but is particularly suitable for parts that require high density with a porosity of 7% or less and parts with complex shapes, such as those shown in FIGS. 1 and 2. ◇ [Embodiments of the Invention] The present invention will be described below with reference to detailed embodiments, which are suitable for manufacturing the yoke core 1 for dot printers shown in the figure.

重量比でアトマイズ鉄粉80〜87%、鉄−17チけい
素置金粉13〜20チからなる原料粉末に、ハロゲン化
物としてNI(4CtO,5%、潤滑剤1%を添加して
混合する。この混合粉末を成形圧約6トン/α2で加圧
し、成形密度6.859/c!n3の圧粉体を成形する
。この成形体を、温度約1200℃X時間2時間、真空
雰囲気(t o−3Torr以下)の条件で焼結し焼結
体を形成する。
To a raw material powder consisting of 80 to 87% by weight of atomized iron powder and 13 to 20% of iron-17 silicon gold powder, NI (4CtO, 5% as a halide) and 1% of a lubricant are added and mixed. This mixed powder is pressed at a compacting pressure of about 6 tons/α2 to form a compact with a compact density of 6.859/c!n3.This compact is placed in a vacuum atmosphere (t o -3 Torr or less) to form a sintered body.

この焼結体の空孔率を測定した結果約4%であった0 また、鉄粉80〜87%と、鉄−けい素置金粉13〜2
0%からなる原料粉末のみを、前記NI(4Ctを添加
せずに使用し、前記と同一条件で焼結体を形成した。こ
の焼結体の空孔率は約7.5チであった。
The porosity of this sintered body was measured and was found to be approximately 4%.In addition, iron powder was 80 to 87%, iron-silicon gold powder was 13 to 2%.
A sintered body was formed under the same conditions as above using only the raw material powder consisting of 0% NI (4Ct) without adding it. The porosity of this sintered body was about 7.5 cm. .

従って、本発明の方法によれば空孔率が少ない焼結体(
焼結軟磁性部品)を得ることができる。
Therefore, according to the method of the present invention, a sintered body (
sintered soft magnetic parts).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の焼結軟磁性部品の製造方法
によれば、原料粉末に添加したハロゲン化物の還元力を
利用して活性化焼結を行なうことにより、焼結体の密度
を高めることができる。従って、高密度で磁気特性に優
れた鉄−けい素系の焼結軟磁性部品を得ることができる
As explained above, according to the method for manufacturing sintered soft magnetic parts of the present invention, the density of the sintered body is increased by performing activation sintering using the reducing power of the halide added to the raw material powder. be able to. Therefore, an iron-silicon based sintered soft magnetic component with high density and excellent magnetic properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の製造方法により製造する
焼結軟磁性部品を示す正面図および断面図である。 1・・・ヘッドヨークコア。 出願人代理人  弁理士 鈴 江 武 彦第1図   
   第2図
FIGS. 1 and 2 are a front view and a sectional view showing a sintered soft magnetic component manufactured by the manufacturing method of the present invention. 1...Head yoke core. Applicant's agent Patent attorney Takehiko Suzue Figure 1
Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)鉄−けい素系の原料粉末にハロゲン化物を添加し
て混合し、この混合粉末を加圧、焼結して焼結体を形成
することを特徴とする焼結軟磁性部品の製造方法。
(1) Manufacture of sintered soft magnetic parts characterized by adding a halide to iron-silicon raw material powder and mixing it, pressurizing and sintering the mixed powder to form a sintered body. Method.
(2)混合粉末におけるハロゲン化物の割合は重量比で
0.1〜1.5%である特許請求の範囲第1項に記載の
焼結軟磁性部品の製造方法。
(2) The method for manufacturing a sintered soft magnetic component according to claim 1, wherein the proportion of halide in the mixed powder is 0.1 to 1.5% by weight.
(3)ハロゲン化物はNH_4F、NH_4Cl、Fe
Cl_2、FeF_2である特許請求の範囲第1項また
は第2項に記載の焼結軟磁性部品の製造方法。
(3) Halides are NH_4F, NH_4Cl, Fe
The method for manufacturing a sintered soft magnetic component according to claim 1 or 2, wherein Cl_2 and FeF_2 are used.
(4)原料粉末は、鉄粉と、鉄−けい素合金粉とからな
るものである特許請求の範囲第1項ないし第3項のいず
れかに記載の焼結軟磁性部品の製造方法。
(4) The method for manufacturing a sintered soft magnetic component according to any one of claims 1 to 3, wherein the raw material powder is composed of iron powder and iron-silicon alloy powder.
JP60168060A 1985-07-30 1985-07-30 Production of sintered soft magnetic parts Pending JPS6227501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60168060A JPS6227501A (en) 1985-07-30 1985-07-30 Production of sintered soft magnetic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60168060A JPS6227501A (en) 1985-07-30 1985-07-30 Production of sintered soft magnetic parts

Publications (1)

Publication Number Publication Date
JPS6227501A true JPS6227501A (en) 1987-02-05

Family

ID=15861081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60168060A Pending JPS6227501A (en) 1985-07-30 1985-07-30 Production of sintered soft magnetic parts

Country Status (1)

Country Link
JP (1) JPS6227501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136307A (en) * 1987-11-24 1989-05-29 Daido Steel Co Ltd Powdered magnetic alloy for sintering
US20110094338A1 (en) * 2009-10-22 2011-04-28 Korea Institute Of Science And Technology METHOD FOR MANUFACTURING Fe-Si ALLOY POWDERS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136307A (en) * 1987-11-24 1989-05-29 Daido Steel Co Ltd Powdered magnetic alloy for sintering
US20110094338A1 (en) * 2009-10-22 2011-04-28 Korea Institute Of Science And Technology METHOD FOR MANUFACTURING Fe-Si ALLOY POWDERS
US8617290B2 (en) * 2009-10-22 2013-12-31 Korea Institute Of Science And Technology Method for manufacturing Fe—Si alloy powders

Similar Documents

Publication Publication Date Title
EP0409647B1 (en) Manufacturing process for sintered Fe-P alloy product having soft magnetic characteristics
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JPH02164008A (en) Manufacture of soft magnetic sintered body of fe-si alloy
JPS6227501A (en) Production of sintered soft magnetic parts
JPH06204021A (en) Composite magnetic material and its manufacture
JPS6227545A (en) Manufacture of sintered soft-magnetic parts
US4585480A (en) Material for the powder metallurgical manufacture of soft magnetic components
JP3147521B2 (en) Manufacturing method of anisotropic magnet
JPS61127848A (en) Manufacture of sintered alnico magnet
JP2599284B2 (en) Manufacturing method of soft sintered magnetic material
JPH04285141A (en) Manufacture of ferrous sintered body
JPS5895658A (en) Manufacture of silicon nitride sintered body
JPS6346962B2 (en)
JP2004156102A (en) Production method for high-density high-resistance composite soft magnetic sintered material
JPH10147832A (en) Manufacture of &#39;permalloy(r)&#39; sintered compact
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same
JPS6248748B2 (en)
JPS59182945A (en) Production of fe-cr-co permanent magnet alloy
JP2000319746A (en) Production of hard-to-work alloy member
JPS63250406A (en) Molded product for electromagnetic use
JPH0621325B2 (en) Iron-silicon sintered material with low residual magnetic flux density and its manufacturing method
JPS6092409A (en) Manufacture of fe-cr-co alloy powder
JPH01168845A (en) Iron-iron oxide sintered compact and its production
JPS60204859A (en) Manufacture of iron-base sintered body
JPS6254041A (en) Manufacture of sintered iron-cobalt alloy