JPS62274676A - Manufacture of infrared ray detecting element - Google Patents

Manufacture of infrared ray detecting element

Info

Publication number
JPS62274676A
JPS62274676A JP61119521A JP11952186A JPS62274676A JP S62274676 A JPS62274676 A JP S62274676A JP 61119521 A JP61119521 A JP 61119521A JP 11952186 A JP11952186 A JP 11952186A JP S62274676 A JPS62274676 A JP S62274676A
Authority
JP
Japan
Prior art keywords
wafer
groove
hgcdte
etched
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61119521A
Other languages
Japanese (ja)
Inventor
Ryoji Okata
大方 亮二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61119521A priority Critical patent/JPS62274676A/en
Publication of JPS62274676A publication Critical patent/JPS62274676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To manufacture the title infrared ray detecting elements with excellent reproducibility by a method wherein a groove sectioning element forming regions is etched in one surface of HgCd Te wafer and after bonding the groove as a bonding surface side onto an insulating substrate, the HgCdTe wafer is thinned until at least the bonding agent fixed in the groove is exposed. CONSTITUTION:One surface of an HgCdTe wafer 1 is photoengraved to section element forming regions while a groove 4 is etched to form element parts 5 to be infrared ray detecting elements. Next, the surface of the HgCdTe wafer 1 with the groove 4 engraved as a bonding surface is bonded onto an insulating substrate 3 using a bonding agent 2 comprising e.g. epoxy resin. Then, the HgCdTe wafer 1 is ground and etched to be thinned until the bonding agent 2 fixed in the groove 4 is exposed. Finally, the HgCdTe wafer 1 is etched down to specified thickness.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は、HgCclTe (水銀カドミウムチルラ
イド)結晶奢用いた赤外線検出素子の製造方法に関する
ものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] This invention relates to a method for manufacturing an infrared detection element using a large amount of HgCclTe (mercury cadmium chillide) crystal.

〔従来の技術〕[Conventional technology]

第2図(a) 〜(C)は従来のHgCdTe結晶を用
いた赤外線検出素子の製造方法を示す断面図、であり、
これらの図において、1はHgCdTeウェハ、2はこ
のHgCdTeウェハ1を接着する接着剤、3は前記H
gCdTeウェハ〕か接着剤2によって接着保持される
絶縁基板である。
FIGS. 2(a) to (C) are cross-sectional views showing a method of manufacturing an infrared detection element using a conventional HgCdTe crystal,
In these figures, 1 is the HgCdTe wafer, 2 is the adhesive for bonding the HgCdTe wafer 1, and 3 is the HgCdTe wafer.
gCdTe wafer] or an insulating substrate adhered and held by adhesive 2.

次に製造工程について説明する。Next, the manufacturing process will be explained.

既に周知のように、光伝導型赤外線検出素子はHgCd
Teのチップ表面に受光部を開設する形で一対の電極を
配設し、これら一対の電極間に、例えば定電流電源を接
続した状態で赤外光を受光部に入射し、その入射光量に
対応して変化する上記一対の電極間の抵抗変化を電圧変
化として検出することにより赤外線を検出するようにな
っている。
As is already well known, the photoconductive infrared detection element is made of HgCd.
A pair of electrodes is arranged on the surface of the Te chip with a light receiving area, and with a constant current power source connected between these pair of electrodes, infrared light is incident on the light receiving area, and the amount of incident light is Infrared rays are detected by detecting a corresponding change in resistance between the pair of electrodes as a voltage change.

ところで、このような赤外線検出素子を多数製造するに
は、一般に第2図(a)に示すように、例えばサファイ
ア等の絶縁基板3上にHgCdTeウェハ]を接着剤2
で接着した状態で、第2図(b)に示すように、HgC
dTeウェハ1の表面を研庁、エンチングして20pm
程度の厚さに成形した後、写真製版、エツチングしてそ
のHgCdTeウェハ1を第2図(C)に示すように、
溝4により分離して絶縁基板3上に光伝導型赤外線素子
となる素子部5を行列に配列する方法が採られている。
By the way, in order to manufacture a large number of such infrared detecting elements, generally, as shown in FIG.
As shown in Figure 2(b), the HgC
The surface of the dTe wafer 1 was etched for 20 pm.
After forming the HgCdTe wafer 1 to a certain thickness, photolithography and etching are performed to form the HgCdTe wafer 1 as shown in FIG. 2(C).
A method is adopted in which element parts 5, which become photoconductive infrared elements, are arranged in rows and columns on an insulating substrate 3 separated by grooves 4.

〔発明が解決しようとする間通点〕[Intermediate point that the invention attempts to solve]

従来の赤外線検出素子は以上のようにして形成されてい
るので、接着剤2で接着してHgCdTeウェハ1を2
0JLm程度まで薄くした後、写真製版、エツチングの
工程を経るため、そのとき使用する薬品類、例えば有機
溶剤、レジスト剥離剤、 Hg Cd T eウェハ1
のエツチング液等で接着剤2が侵され、HgCdTeウ
ェハ1の周辺部が剥がれたり、浮き上がったり、割れが
生じたりする等の問題点があり、特に受光部で上記のよ
うな現象が起こると、感度の低下や受光部寸法不良によ
る歩留り低下を招くなどの問題点があった。
Since the conventional infrared detection element is formed as described above, the HgCdTe wafer 1 is bonded with the adhesive 2.
After thinning the wafer to about 0 JLm, it undergoes photolithography and etching processes, so the chemicals used at that time, such as organic solvents, resist stripping agents, Hg Cd Te wafer 1
There are problems such as the adhesive 2 being attacked by the etching solution etc., and the peripheral part of the HgCdTe wafer 1 peeling off, lifting up, or cracking, especially if the above phenomenon occurs in the light receiving area. There were problems such as a decrease in sensitivity and a decrease in yield due to defective dimensions of the light receiving part.

この発明は、上記のような問題点を解決するためになさ
れたもので、接着剤が侵されず、HgCdTeウェハに
剥がれや割れを生じることなく、かつ歩留りの高い赤外
線検出素子の製造方法を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a method for manufacturing an infrared detection element that does not damage the adhesive, does not cause peeling or cracking on the HgCdTe wafer, and has a high yield. The purpose is to

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明に係る赤外線検出素子の製造方法は、HgCd
Teウェハの一面に所定の深さに素子形成領域を区画す
る溝をエツチングし、その溝を接着面側として基板上に
接着剤により接着した後、研摩、エツチングしてHgC
dTeウェハを少なくとも溝内に固着した接着剤が現れ
るまで薄くする工程を含むものである。
The method for manufacturing an infrared detection element according to the present invention includes HgCd
A groove is etched on one surface of the Te wafer to define an element forming area at a predetermined depth, and the groove is used as the adhesive surface to adhere to the substrate using an adhesive. After that, it is polished, etched, and then etched with HgC.
The process involves thinning the dTe wafer at least to the extent that adhesive is bonded within the grooves.

〔作用〕[Effect]

この発明においては、接着面側のエツチングされた溝に
よって研摩、エツチングで薄くされたHgCdTeウェ
ハは素子分離されるため、接着後の写真製版工程をなく
すことができ、接着剤が侵されることなく、HgCdT
eウェハの剥がれや割れを生じない。
In this invention, since the HgCdTe wafer, which has been thinned by polishing and etching, is separated by the etched grooves on the adhesive side, the photolithography process after adhesion can be eliminated, and the adhesive is not eroded. HgCdT
e-Wafer does not peel or crack.

〔実施例〕〔Example〕

第1図(a)〜(e)はこの発明の一実施例を説明する
ための工程図である。まず、第1図(a)に示すように
、厚さ300〜500 p、 mのHgCdTeウェハ
1上の一面に素子形成領域を区画するために写真製版し
、例えば臭素(B r)とメタノールとの混合液でエツ
チングし、例えば深さ20〜30gmの溝4をエツチン
グして赤外線検出素子となる素子部5を形成する。次に
第1図(b)に示すように、HgCdTeウェハ1の溝
4が掘られた面を接着面として、例えばサファイアから
なる絶縁基板3上に、例えばエポキシ樹脂からなる接着
剤2で接着する0次いで第1図(c)、(d)に示すよ
うに、HgCdTeウェハ1を、例えばアルミナを用い
て研摩、エツチングし、溝4中に固着した接着剤2が現
れるまで薄くする。その後、例えば臭素とメタノールと
の混合液でエツチングして、所望の厚さ10〜20gm
にする。次゛に第1図(e)に示すように、例えばイン
ジウム(In)からなる一対の電極6を素子部5の両端
に形成し、保護膜形成した後、例えばグイシングツ−等
で接着剤2の露出している部分を切りチップに分割する
ことにより赤外線検出素子が得られる。
FIGS. 1(a) to 1(e) are process diagrams for explaining one embodiment of the present invention. First, as shown in FIG. 1(a), photolithography is carried out to define device formation regions on one side of a HgCdTe wafer 1 having a thickness of 300 to 500 p.m. A groove 4 having a depth of 20 to 30 gm, for example, is etched to form an element portion 5 which becomes an infrared detection element. Next, as shown in FIG. 1(b), the HgCdTe wafer 1 is bonded onto an insulating substrate 3 made of sapphire, for example, with an adhesive 2 made of epoxy resin, using the surface where the grooves 4 of the HgCdTe wafer 1 are dug as the adhesive surface. Next, as shown in FIGS. 1(c) and 1(d), the HgCdTe wafer 1 is polished and etched using, for example, alumina to thin it until the adhesive 2 fixed in the grooves 4 appears. After that, it is etched with a mixture of bromine and methanol, for example, to a desired thickness of 10 to 20 g.
Make it. Next, as shown in FIG. 1(e), a pair of electrodes 6 made of, for example, indium (In) are formed on both ends of the element part 5, and after a protective film is formed, the adhesive 2 is coated with, for example, a glazing tool. An infrared detection element can be obtained by cutting the exposed portion and dividing it into chips.

なお、上記実施例では、溝4を素子部5の周囲全体に入
れたが、一部分に入れてもよい。また溝4は直線でなく
曲っていてもよい。さらに、上記実施例では単素子につ
いて説明したが、受光部が列状に並んだアレイ素子であ
っても同様の効果を奏する。
In the above embodiment, the groove 4 is placed all around the element portion 5, but it may be placed only partially. Moreover, the groove 4 may not be straight but may be curved. Furthermore, although the above embodiments have been described with respect to a single element, the same effect can be achieved even with an array element in which the light receiving sections are arranged in rows.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、HgCdTeウェハの
一面に素子形成領域を区画する溝をエツチングし、その
溝を接着面側として絶縁基板上に接着した後、HgCd
Teウェハを少なくとも溝内に固着された接着剤が現れ
るまで薄くするようにしたので、接着剤が侵される工程
がなく1歩留りよく、かつ再現性よく赤外線検出素子を
得るこ赤外線検出素子の製造工程を示す図、第2図(a
)〜(C)は従来の赤外線検出素子の製造工程を示す図
である。
As explained above, this invention etches grooves on one surface of a HgCdTe wafer to define an element forming area, and after bonding the HgCdTe wafer onto an insulating substrate with the groove as the adhesive surface,
Since the Te wafer is made thin enough to at least expose the adhesive fixed in the groove, there is no step in which the adhesive is eroded, and infrared detecting elements can be obtained with good yield and good reproducibility.The manufacturing process of infrared detecting elements Figure 2 (a)
) to (C) are diagrams showing the manufacturing process of a conventional infrared detection element.

図において、1はHgCdTeウェハ、2は接着剤、3
は絶縁基板、4は溝、5は素子部、6は電極である。
In the figure, 1 is the HgCdTe wafer, 2 is the adhesive, and 3 is the HgCdTe wafer.
4 is an insulating substrate, 4 is a groove, 5 is an element portion, and 6 is an electrode.

なお、各図中の同一符号は同一または相当部分を示す。Note that the same reference numerals in each figure indicate the same or corresponding parts.

代理人 大 岩 増 !n    (外2名)第1図 第1図 第2図 手続補正書(1゛1発〕 昭和  年  月  日 持8午庁長官殿              1”・1
、事件の表示   特願昭1−119521号2、発明
の名称   赤外線検出素子のWl造方法3、補正をす
る者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者志岐守哉 4、代理人 住 所    東京都千代田区丸の内二丁目2番3号三
菱電機株式会社内 氏名 (7375)弁理士大岩増雄 (3!!絡先03(213)3421持許部ン〕l −
1 5、補正の対象 明細書の発明の詳細な説明の欄および図面6、補正の内
容 (1)明細書第5頁11行の「研摩、エツチングし、」
を、「研摩し、」と補正する。
Agent Masu Oiwa! n (2 others) Figure 1 Figure 1 Figure 2 Procedural amendment (1゛1 shot) Showa year, month, day, 8pm Mr. Commissioner of the Agency 1”・1
, Indication of the case Japanese Patent Application No. 1-119521 2, Title of the invention Wl manufacturing method for infrared detection element 3, Relationship with the person making the amendment Patent applicant Address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Moriya Shiki 4, Agent Address Mitsubishi Electric Corporation 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (7375) Patent Attorney Masuo Oiwa (3!! Contact 03 ( 213) 3421 Permit Department]l -
1 5. Detailed description of the invention in the specification to be amended and Drawing 6, Contents of the amendment (1) "Polishing and etching" on page 5, line 11 of the specification
is corrected as "polished".

(2)  第1図(b)を別紙のように補正する。(2) Correct Figure 1(b) as shown in the attached sheet.

以  上that's all

Claims (1)

【特許請求の範囲】[Claims] HgCdTeウェハの一面に素子形成領域を区画する溝
をエッチングする工程と、前記溝が形成された面を接着
面として前記HgCdTeウェハを絶縁基板上に接着剤
により接着する工程と、前記絶縁基板上に接着したHg
CdTeウェハを少なくとも前記溝内に固着した接着剤
が現れるまで薄くする工程とを含むことを特徴とする赤
外線検出素子の製造方法。
etching grooves on one surface of the HgCdTe wafer to define element forming regions; bonding the HgCdTe wafer onto an insulating substrate with an adhesive using the surface where the grooves are formed as an adhesive surface; Glued Hg
A method for manufacturing an infrared detection element, comprising the step of thinning a CdTe wafer at least until adhesive fixed in the groove is exposed.
JP61119521A 1986-05-22 1986-05-22 Manufacture of infrared ray detecting element Pending JPS62274676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61119521A JPS62274676A (en) 1986-05-22 1986-05-22 Manufacture of infrared ray detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61119521A JPS62274676A (en) 1986-05-22 1986-05-22 Manufacture of infrared ray detecting element

Publications (1)

Publication Number Publication Date
JPS62274676A true JPS62274676A (en) 1987-11-28

Family

ID=14763331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61119521A Pending JPS62274676A (en) 1986-05-22 1986-05-22 Manufacture of infrared ray detecting element

Country Status (1)

Country Link
JP (1) JPS62274676A (en)

Similar Documents

Publication Publication Date Title
US4426768A (en) Ultra-thin microelectronic pressure sensors
US5041900A (en) Semiconductor device having sealed electrical feedthrough
RU2121733C1 (en) Method for manufacturing single-crystalline silicon pads on crystal substrate
US4791465A (en) Field effect transistor type semiconductor sensor and method of manufacturing the same
JPS5812747B2 (en) Manufacturing method of thin substrate imaging device
CN103712721A (en) SOI pressure strain gauge and manufacturing method thereof
JPH07506909A (en) Liquid crystal display including electrodes and driving device integrated in single crystal semiconductor layer and method for manufacturing the same
US4695861A (en) Backside mosaic photoconductive infrared detector array
JPH06268183A (en) Manufacture of semiconductor device
US4803375A (en) Image sensors and methods of manufacturing same including semiconductor layer over entire substrate surface
US4570329A (en) Apparatus and method for fabricating backside mosaic of photoconductive infrared detectors
JPS62274676A (en) Manufacture of infrared ray detecting element
JPS6390859A (en) Thin film transistor and manufacture thereof
JP2895328B2 (en) Semiconductor device manufacturing method
JPH0945882A (en) Semiconductor substrate and manufacture thereof
JP2006156567A (en) Surface protection tape and manufacturing process of semiconductor device
JPS59104523A (en) Production of infrared-ray detector
JPS61280660A (en) Manufacture of semiconductor device
JPH08279444A (en) Microstructure and manufacturing method thereof
JPH10270387A (en) Manufacture of semiconductor device
JPH06260671A (en) Semiconductor radiation detector and manufacture thereof
JPH07249782A (en) Semiconductor sensor having hinge structure and its fabrication
JPH09134893A (en) Method for cutting semiconductor wafer
JPH0638511B2 (en) Method of manufacturing infrared detection element
JPS644662B2 (en)