JPS62274669A - Gallium arsenide field-effect type semiconductor device - Google Patents

Gallium arsenide field-effect type semiconductor device

Info

Publication number
JPS62274669A
JPS62274669A JP11876986A JP11876986A JPS62274669A JP S62274669 A JPS62274669 A JP S62274669A JP 11876986 A JP11876986 A JP 11876986A JP 11876986 A JP11876986 A JP 11876986A JP S62274669 A JPS62274669 A JP S62274669A
Authority
JP
Japan
Prior art keywords
substrate
layer
gallium arsenide
semiconductor device
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11876986A
Other languages
Japanese (ja)
Inventor
Kazumasa Onodera
小野寺 和正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11876986A priority Critical patent/JPS62274669A/en
Publication of JPS62274669A publication Critical patent/JPS62274669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To attenuate the leak current of a substrate, and to contrive suppression of generation of a side-gate effect by a method wherein a field-effect transistor element is completely surrounded by a high resistance insulation damage layer. CONSTITUTION:An insulation damage layer 2 is provided on the position deeper than an active layer 3, and another dielectric damage layer 12 is provided in such a manner that the lateral direction of a transistor element is isolated. Accordingly, the active region of a fieldeffect transistor element is completely isolated on a substrate from other regions. These insulation damage layers 2 and 12 are formed by performing an implantation of proton H<+> ions, for example, the spreading of a depletion layer to an active region by a substrate depletion layer is inhibited, and the leak current of the substrate is attenuated. As a result, the generation of a side-gating effect can be impeded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分ガ〕 本発明はガリウム砒素(GaAs)を基板に用いた′1
界効果トランジスタlに関し、特にショットキー形ゲー
ト電匝を有するメス形の1界効果トランジスタの構造に
関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Industrial Application] The present invention uses gallium arsenide (GaAs) as a substrate.
The present invention relates to a field effect transistor 1, and in particular to the structure of a female type 1 field effect transistor having a Schottky-type gate capacitor.

〔従来の技術〕[Conventional technology]

ガリウム砒素メス電界効果トランジスタ(以下Ga A
s −Mg2− FETという)は、約107〜10’
Ωα程度の半絶縁性基板上に低濃度の活性層をエピタキ
シャル成長もしくはイオン注入等により形成してこれを
チャネル領域とし、シlツキ−ゲートの空乏層によりチ
ャネル幅を制御して所望の電気的特性を得るか一般的な
ものである。
Gallium arsenide female field effect transistor (hereinafter referred to as Ga A
s -Mg2- FET) is approximately 107 to 10'
A low concentration active layer is formed on a semi-insulating substrate of about Ωα by epitaxial growth or ion implantation, this is used as a channel region, and the channel width is controlled by the depletion layer of the Schiltsky gate to obtain desired electrical characteristics. What you get is common.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この際、シ璽ットキーゲート空乏層≠峡手寺乏−71(
以下ゲート空乏層という)と同時に基板空乏層が半絶縁
性基板と活性層との界面に第2の空乏層として一般に形
成される。従って、トランジスタの電気的特性はその基
板空乏層の性質に大ぎ(左右されることは容易に想像さ
れる。この基板空乏層の性質を考える場合とりわけ重要
な要素はその深い準位(Deep  Level)の形
成であり、しかも現在の製造技術では回避できないとい
うことである。この準位が存在することによって基板電
位が負のときの活性層側への空乏層の広がりに変化が生
じ、深い準位の密度が高ければ高い程その影響は太き(
空乏層の広がりも大きい。従って。
At this time, the Shitkeygate depletion layer ≠ Kyotejipo -71 (
At the same time, a substrate depletion layer (hereinafter referred to as gate depletion layer) is generally formed as a second depletion layer at the interface between the semi-insulating substrate and the active layer. Therefore, it is easy to imagine that the electrical characteristics of a transistor are greatly influenced by the properties of its substrate depletion layer.When considering the properties of this substrate depletion layer, a particularly important factor is its deep level. ), which cannot be avoided with current manufacturing technology.The existence of this level causes a change in the spread of the depletion layer toward the active layer when the substrate potential is negative, resulting in the formation of a deep level. The higher the density of the points, the stronger the influence (
The depletion layer is also large. Therefore.

チャネル幅はそれだけ減少してソース、ドレイン間に流
れる電流は減少する。しかも基板自体が比較的抵抗のと
きこの基板リーク電流が流れるので。
The channel width decreases accordingly, and the current flowing between the source and drain decreases. Moreover, this substrate leakage current flows when the substrate itself is relatively resistive.

これによる電圧降下により基板空乏層は更に広がり、近
接ソース電位が相対的に負であればソース。
The resulting voltage drop causes the substrate depletion layer to further expand, and if the nearby source potential is relatively negative, the source.

ドレイン間電流は更に減少する。以上はサイド。The drain-to-drain current decreases further. Above is the side.

ゲーティング(8ide Gatirrg)効果トL、
テ知られてSす、メス(MES)の他のミス(MIS)
形その他にも現われGaAs−PETを基本素子にもつ
GaAs・集積回路装置を製造する際の一つの障害とな
っている。
Gating (8ide Gatirrg) effect L,
Other mistakes of the known S (MES) (MIS)
This phenomenon appears in other forms as well, and is an obstacle in the production of GaAs integrated circuit devices having GaAs-PET as a basic element.

本発明の目的は、上記の情況に鑑み、基省空乏層による
基[17−り電流の発生を抑制してサイド・ゲーティン
グ効果を低減したガリウム砒素電界効果形半導体装置を
提供することである。
In view of the above circumstances, an object of the present invention is to provide a gallium arsenide field effect semiconductor device that suppresses the generation of base current due to the base depletion layer and reduces the side gating effect. .

〔問題点を肩決するための手段〕[Means for resolving issues]

本発明のガリウム砒素電界効果半導体装置は。 The gallium arsenide field effect semiconductor device of the present invention is a gallium arsenide field effect semiconductor device.

ガリウム砒素半絶縁性基板と、前記ガリウム砒素半絶縁
性基板上に形成される電界効果トランジスタと、前記ガ
リウム砒素半絶縁性基板内に前記電界効果トランジスタ
の能動領域の底面および側面の全てを取囲むように形成
され前記能動領域を基板内で島状に絶縁隔離する絶縁ダ
メージ層とを含む すなわち、本発明によれば、基板空乏層が形成される活
性層と基板との界面よシも深い位置に絶縁ダメージ層が
形成される。
a gallium arsenide semi-insulating substrate, a field effect transistor formed on the gallium arsenide semi-insulating substrate, and surrounding all of the bottom and side surfaces of the active region of the field effect transistor within the gallium arsenide semi-insulating substrate; In other words, according to the present invention, the interface between the active layer and the substrate where the substrate depletion layer is formed is located at a deep position. An insulating damage layer is formed.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示す断面慣造図で6る。本
実施例はGaAs−MES 4hFETKN施した場合
を示すもので、ガリウム砒素半絶縁性基板1と、活性層
3.ソース領域4.ドレイン領域5゜ゲート電極6,9
.ソース寛極8.ドレイン電極10から成る電界効果ト
ランジスタと、横形および縦形の絶縁ダメージ層2およ
び12とを含む。ここで、7は表面保@膜、11は金(
Au)電極である。
FIG. 1 is a conventional cross-sectional view showing one embodiment of the present invention. This example shows a case where a GaAs-MES 4hFETKN is formed, and includes a gallium arsenide semi-insulating substrate 1, an active layer 3. Source area 4. Drain region 5° Gate electrodes 6, 9
.. Source Kangyoku 8. It includes a field effect transistor consisting of a drain electrode 10 and horizontal and vertical insulation damage layers 2 and 12. Here, 7 is a surface-retaining film, and 11 is gold (
Au) electrode.

第1図から明らかなように絶縁ダメージ層2は活性層3
よりも深い位置に設けられ、また、絶縁ダメージ層12
はトランジスタ素子の横方向を隔離するように設けられ
る。従って、電界効果トランジスタ素子の能動領域は基
板内で完全に他と絶縁分離される。これらの絶縁ダメー
ジ層2および12は例えばプロトン(H+)イオンの打
込みによって形成され、基板空乏層による活性領域への
空乏層の広がりを阻止し基板リーク電流を世減するので
、従来問題とされたサイド・ゲーティング効果の発生を
充分に抑止し得る。本発明の半導体装置はつぎの方法に
よれは容易に製造することができる。
As is clear from FIG. 1, the insulation damage layer 2 is the active layer 3.
The insulation damage layer 12 is provided at a deeper position than the
are provided so as to isolate the transistor elements in the lateral direction. Therefore, the active region of the field effect transistor element is completely isolated within the substrate. These insulation damage layers 2 and 12 are formed, for example, by implanting proton (H+) ions, and prevent the substrate depletion layer from spreading into the active region, reducing substrate leakage current, which has been a problem in the past. The occurrence of the side gating effect can be sufficiently suppressed. The semiconductor device of the present invention can be easily manufactured by the following method.

第2図(a)〜(d)は本発明半導体装置を製造する際
の一工程順序図である。まず第3図(a)に示すように
ガリウム砒素(GaAs )基板1内にはプロトンイオ
ン(H+)が打込lれ横形の絶縁ダメージ層2が形成さ
れ、ついで活性層3が例えばイオン注入法によって形成
される。ついで通常の製造プロセスを用いて第3図(b
)の如くソース領域4 、 トレイン領域5.ゲート電
極6よ9成る電界効果トランジスタが形成される。ここ
で7は表面保*aである。更に金(Au)材をスパッタ
法等を用いて被覆し、通常のホト・レジスト工程により
開孔部13を形成して再びプロトン(H”)t−イオン
注入すれば縦型絶縁ダメージ層12が横型絶縁ダメージ
層2と連結されて形成される。
FIGS. 2(a) to 2(d) are sequential diagrams of one step in manufacturing the semiconductor device of the present invention. First, as shown in FIG. 3(a), proton ions (H+) are implanted into a gallium arsenide (GaAs) substrate 1 to form a horizontal insulation damage layer 2, and then an active layer 3 is formed by, for example, ion implantation. formed by. Then, using a normal manufacturing process, the product shown in FIG.
), the source region 4, train region 5. A field effect transistor consisting of gate electrodes 6 to 9 is formed. Here, 7 is the surface retention*a. Furthermore, if a gold (Au) material is coated using a sputtering method or the like, an opening 13 is formed by a normal photoresist process, and proton (H") t- ions are implanted again, the vertical insulation damage layer 12 is formed. It is formed connected to the horizontal insulation damage layer 2.

第3図(C)はこの状態を示している。ここで金(Au
)材11の配線部分を残して他を除去することにより本
発明の電界効果半導体装置は第3図(d)の如く完成す
る。なお、以上の説明中発明と関連の少ない部分につい
ては一部省略した。以上はGaAs 11MES eF
ETについて述べたが、MIS型の電界効果トランジス
タを含む基板空乏層が形成されるすべての素子構造に適
用することが可能である。また、ダメージを生じせしめ
る方法としては、プロトン注入のみにつき述べたが他の
方法、例えば、RIE(反応性イオンエツチング)、イ
オン−ミーリング、等信の方法を用いて形成してもよい
ことは明らかである。
FIG. 3(C) shows this state. Here, gold (Au
) By leaving the wiring portion of the material 11 and removing the rest, the field effect semiconductor device of the present invention is completed as shown in FIG. 3(d). Note that some parts of the above description that are less relevant to the invention have been omitted. The above is GaAs 11MES eF
Although ET has been described, the invention can be applied to all device structures in which a substrate depletion layer is formed, including MIS type field effect transistors. In addition, although only proton implantation has been described as a method for causing damage, it is clear that other methods such as RIE (reactive ion etching), ion-milling, and etching methods may also be used. It is.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば電界効果ト
ランジスタ素子全体を高抵抗の絶縁ダメージ層で取囲む
ことによって基板リーク電流が低減されサイドゲート効
果を著しく抑制し得るので、ガリウム砒素電界効果トラ
ンジスタの藁集積化を達成し得る効果?Mする。
As explained in detail above, according to the present invention, by surrounding the entire field effect transistor element with a high-resistance insulating damage layer, the substrate leakage current can be reduced and the side gate effect can be significantly suppressed. What are the effects of achieving straw-scale integration of transistors? M.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面構造図、第2図(
a)〜(d)は本発明を製造する際の工程順序図である
。 1・−・・・・GaAs基板、2・・・・・−横形絶縁
ダメージ層、3・・・・・・活性層、4・・・・・・ソ
ース領域、5・・−・−・ドレイン領域、6・・・・・
−(下層)ゲート電極、7・−・・・表ml保護膜、8
・・・・・・ソース電極、9・・・・・・(上層)ゲー
ト電極、10・・・−・・ドレイン電極、11・・・・
−・fL(Au)′電極、12・・・・・・縦形絶縁ダ
メージ層。 代理人 弁理士  内 原   −) 日  。 /−−−σaAs半J辛糸kal、L、   f−−−
オ膚ffpt=t*タヌーシメ所 、3−3占小生層 
  4−  ソーズ頓上戎、 ターーートレイン4喧成
、乙−m−と“ド′メ旨)ゲニト燦IEト、   7・
−一表6白イを1焚2、 8−0−ソース電左7−−−
(J:層ンリ゛−ト霞オ生、  1i−−−p’bイン
IIEギ45、  n−#(Itt)’e才に/2・・
−拳ぽJ!’l’eυにダメージ層。
Figure 1 is a cross-sectional structural diagram showing one embodiment of the present invention, and Figure 2 (
a) to (d) are process flow diagrams for manufacturing the present invention. 1...GaAs substrate, 2...-horizontal insulating damage layer, 3...active layer, 4...source region, 5...-drain Area, 6...
- (lower layer) gate electrode, 7... surface ml protective film, 8
...Source electrode, 9... (upper layer) gate electrode, 10...--Drain electrode, 11...
-・fL(Au)' electrode, 12... Vertical insulation damage layer. Agent: Patent Attorney Uchihara -) Japan. /---σaAs half J spicy kal, L, f---
Ohadaffpt=t*Tanushimesho, 3-3 Zankoo layer
4- Swords Tojo Ebisu, Tar-train 4-Kinari, Otsu-m- and “Do-me-ji) Genitsan IEto, 7.
-Table 6 1 burn 2, 8-0-Source electric left 7---
(J: layered Kasumi Oo, 1i---p'b in IIE Gi 45, n-#(Itt)'e year old/2...
-Kenpo J! Damage layer to 'l'eυ.

Claims (1)

【特許請求の範囲】[Claims] ガリウム砒素半絶縁性基板と、前記ガリウム砒素半絶縁
性基板上に形成される電界効果トランジスタと、前記ガ
リウム砒素半絶縁性基板内に前記電界効果トランジスタ
の能動領域の底面および側面の全てを取囲むように形成
され前記能動領域を基板内で島状に絶縁隔離する絶縁ダ
メージ層とを含むことを特徴とするガリウム砒素電界効
果形半導体装置。
a gallium arsenide semi-insulating substrate, a field effect transistor formed on the gallium arsenide semi-insulating substrate, and surrounding all of the bottom and side surfaces of the active region of the field effect transistor within the gallium arsenide semi-insulating substrate; a gallium arsenide field effect semiconductor device comprising: an insulating damage layer formed in the manner described above and insulating and isolating the active region in an island shape within a substrate.
JP11876986A 1986-05-22 1986-05-22 Gallium arsenide field-effect type semiconductor device Pending JPS62274669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11876986A JPS62274669A (en) 1986-05-22 1986-05-22 Gallium arsenide field-effect type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11876986A JPS62274669A (en) 1986-05-22 1986-05-22 Gallium arsenide field-effect type semiconductor device

Publications (1)

Publication Number Publication Date
JPS62274669A true JPS62274669A (en) 1987-11-28

Family

ID=14744612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11876986A Pending JPS62274669A (en) 1986-05-22 1986-05-22 Gallium arsenide field-effect type semiconductor device

Country Status (1)

Country Link
JP (1) JPS62274669A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141879A (en) * 1989-08-28 1992-08-25 Herbert Goronkin Method of fabricating a FET having a high trap concentration interface layer
US5166768A (en) * 1989-12-25 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor integrated circuit device with an element isolating region
US5185534A (en) * 1990-11-02 1993-02-09 Mitsubishi Denki Kabushiki Kaisha Monolithic parallel connected transistor structure
US5276340A (en) * 1989-11-21 1994-01-04 Fujitsu Limited Semiconductor integrated circuit having a reduced side gate effect
EP0600449A2 (en) * 1992-12-01 1994-06-08 Nec Corporation Fabrication method of compound semiconductor integrated circuit device
US5508210A (en) * 1993-03-09 1996-04-16 Mitsubishi Denki Kabushiki Kaisha Element isolating method for compound semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141879A (en) * 1989-08-28 1992-08-25 Herbert Goronkin Method of fabricating a FET having a high trap concentration interface layer
US5276340A (en) * 1989-11-21 1994-01-04 Fujitsu Limited Semiconductor integrated circuit having a reduced side gate effect
US5166768A (en) * 1989-12-25 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor integrated circuit device with an element isolating region
US5185534A (en) * 1990-11-02 1993-02-09 Mitsubishi Denki Kabushiki Kaisha Monolithic parallel connected transistor structure
EP0600449A2 (en) * 1992-12-01 1994-06-08 Nec Corporation Fabrication method of compound semiconductor integrated circuit device
EP0600449A3 (en) * 1992-12-01 1997-01-02 Nec Corp Fabrication method of compound semiconductor integrated circuit device.
US5508210A (en) * 1993-03-09 1996-04-16 Mitsubishi Denki Kabushiki Kaisha Element isolating method for compound semiconductor device
US5640026A (en) * 1993-03-09 1997-06-17 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor device including implanted isolation regions

Similar Documents

Publication Publication Date Title
JP3082671B2 (en) Transistor element and method of manufacturing the same
TWI384629B (en) Semiconductor structure and method of forming the same
JPH0468774B2 (en)
TW201101423A (en) Integrated circuit system with high voltage transistor and method of manufacture thereof
US4825274A (en) Bi-CMOS semiconductor device immune to latch-up
JPS62274669A (en) Gallium arsenide field-effect type semiconductor device
JPS6119164A (en) Supplementary integrated circuit and method of producing same
JP3516565B2 (en) Transistor for electrostatic protection circuit and method of manufacturing the same
US6399989B1 (en) Radiation hardened silicon-on-insulator (SOI) transistor having a body contact
US4370669A (en) Reduced source capacitance ring-shaped IGFET load transistor in mesa-type integrated circuit
JPS6057673A (en) Mos type semiconductor device
JPS63244874A (en) Input protective circuit
US6716728B2 (en) Radiation hardened silicon-on-insulator (SOI) transistor having a body contact
JPH07335666A (en) Junction-type field effect transistor and its manufacture
JPH03195064A (en) Mos field effect transistor
JPS6254476A (en) Lateral field effect transistor and manufacture thereof
JPS60262468A (en) Mos type field-effect transistor
JPH0355877A (en) Compound semiconductor device
JPS62213163A (en) Semiconductor device
JPS6395658A (en) Semiconductor device
JPS61100975A (en) Junction type field-effect transistor
JPS61296756A (en) Semiconductor device and its manufacture
JPH03231471A (en) Insulated-gate field-effect transistor
JPS5898980A (en) Semiconductor device and manufacture thereof
JPH07202225A (en) Semiconductor device