JPS62274086A - Electrolytic anion substitution method - Google Patents

Electrolytic anion substitution method

Info

Publication number
JPS62274086A
JPS62274086A JP61116208A JP11620886A JPS62274086A JP S62274086 A JPS62274086 A JP S62274086A JP 61116208 A JP61116208 A JP 61116208A JP 11620886 A JP11620886 A JP 11620886A JP S62274086 A JPS62274086 A JP S62274086A
Authority
JP
Japan
Prior art keywords
anion exchange
exchange membrane
formula
anion
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61116208A
Other languages
Japanese (ja)
Inventor
Takashi Mori
隆 毛利
Masaharu Doi
正治 土井
Kenichi Fukuda
福田 健市
Yasuhiro Kuranai
庫内 康博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP61116208A priority Critical patent/JPS62274086A/en
Publication of JPS62274086A publication Critical patent/JPS62274086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To improve the durability of diaphragms in an electrolytic cell used to synthesize amino acid by an electrolytic ion substitution method and to develop an electrolytic anion substitution method by which superior efficiency is attained, by using F-contg. anion exchange membranes each having a specified structure as the diaphragms. CONSTITUTION:When amino acid is synthesized by an electrolytic anion substitution method using ion exchange membranes, an electrolytic cell 1 is divided into an anode chamber 6, an intermediate chamber 7 and a cathode chamber 8 with anion exchange membranes 2, 3, the anode 4 of Pt or the like and the cathode 5 of Fe or the like are placed in the anode and cathode chambers 6, 8, respectively, and hydrochloric acid and sodium hydroxide are fed to the anode and cathode chambers 6, 8, respectively. Electrolysis is then carried out at 50A/dm<2> current density to obtain an amino acid soln. by the substitution of OH<-> for Cl<-> in the intermediate chamber 7. An F- contg. anion exchange membrane represented by formula I and having quat. ammonium groups represented by formula II or IV is used as the anion exchange membrane 2. An F-contg. anion exchange membrane represented by the formula I and having quat. ammonium groups represented by formula III is used as the anion exchange membrane 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン交換膜電解法により、イオンを含む水
溶液中の陰イオン種を、他の陰イオン種へ置換する電解
隨イオン置換法に関するものであり、さらに詳しくは、
特殊な構造を有すフッ素系陰イオン交換膜を隔膜として
用いる電解陰イオン置換法に関するものである。。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrolytic ion replacement method for replacing anion species in an aqueous solution containing ions with other anion species using an ion exchange membrane electrolysis method. For more details,
This invention relates to an electrolytic anion replacement method using a fluorine-based anion exchange membrane with a special structure as a diaphragm. .

本発明の方法は、各種の利用分野が考えられるが、特に
、有機、無機化合物の合成分野に於て、極めて有効な方
法を提示するものである。
Although the method of the present invention can be used in various fields, it is particularly effective in the field of synthesis of organic and inorganic compounds.

〔従来技術〕[Prior art]

アミノ酸合成分野に於ては、タンパク質を濃塩酸にて加
水分解することにより、得られろアミノ酸を含む塩酸溶
液より、アミノ酸が合成されている。このプロセスの中
で、アミノ酸の塩rI!溶液からアミノ酸を得るために
は、一般にアルカリにて中和し、生じた塩を電気透析法
により除去する方法、或いは、OH−型陰イオン交換樹
脂を接触させる方法等が良く知られている。
In the field of amino acid synthesis, amino acids are synthesized from a hydrochloric acid solution containing amino acids obtained by hydrolyzing proteins with concentrated hydrochloric acid. During this process, the amino acid salt rI! In order to obtain an amino acid from a solution, there are generally well known methods such as neutralizing with an alkali and removing the resulting salt by electrodialysis, or contacting with an OH-type anion exchange resin.

しかしながら、中和−電気透析法は、塩廃液を生じるこ
と、電気透析に繁雑な工程管理を必要とすること等の問
題があり、又イオン交換樹脂法は、樹脂再生廃液等の問
題が指摘されている。
However, the neutralization-electrodialysis method has problems such as generating salt waste liquid and requiring complicated process control for electrodialysis, and the ion exchange resin method has been pointed out to have problems such as resin regeneration waste liquid. ing.

又、アミン合成分野に於ても同様の問題がある。Similar problems also exist in the field of amine synthesis.

アミン合成に於ては、アミンの塩酸溶液を大量のアルカ
リにて中和し、生じた塩を電気透析法や晶析法により分
離するプロセスがある。このプロセスに於て用いるアル
カリのコストは、アミン製造コストのかなりの部分を占
め、又、電気透析や晶析工程は、繁雑な工程管理を必要
とする。
In amine synthesis, there is a process in which a hydrochloric acid solution of an amine is neutralized with a large amount of alkali, and the resulting salt is separated by electrodialysis or crystallization. The cost of the alkali used in this process accounts for a significant portion of the amine production cost, and the electrodialysis and crystallization steps require complicated process control.

さらに、高純度の金属酸化物の合成分野に於ても類似の
プロセスが存在する。高純度の金属酸化物の湿式合成は
、一般には、金属を強酸溶液で溶解し、これに大量のア
ルカリを加え、金属水酸化物として沈殿させるプロセス
が必要である。このプロセスに於ても大量の塩廃液を生
じ、又、金属水酸化物中の不溶なイオン(例えば、Na
 、H魂、0Lso、2−等)を充分除去することは難
しく、最終的に得られる金属酸化物中の不純物として残
存することになる。
Furthermore, similar processes exist in the field of synthesis of high purity metal oxides. Wet synthesis of high-purity metal oxides generally requires a process in which the metal is dissolved in a strong acid solution, a large amount of alkali is added thereto, and the metal hydroxide is precipitated. This process also generates a large amount of salt waste, and also insoluble ions (e.g., Na) in the metal hydroxide.
, Hso, 0Lso, 2-, etc.) is difficult to sufficiently remove, and they remain as impurities in the finally obtained metal oxide.

これ等のプロセスは、いずれも必要物質の強酸溶液を大
量のアルカリにて中和するか、或いはイオン交換樹脂法
を用いるという点で共通したプロセスであり、共通の問
題点をかかえている。
These processes all have a common problem in that they either neutralize a strong acid solution of the necessary substance with a large amount of alkali or use an ion exchange resin method.

近年、アミノ酸の金成分′tfK於て、電解イオン置換
法が提案され注目を集めている。(例えば、特開昭58
−55577) このプロセスは、陽極、陰極間を数枚の炭化水素系陰イ
オン交換膜で分割し、陰イオン交換膜にはさまれた中間
室にアミノ酸の塩酸溶液を供給し、一方の陰イオン交換
膜で、C2−イオンを透過、除去し、他方の陰イオン交
換膜より、OH−イオンを透過、供給する方法である。
In recent years, an electrolytic ion replacement method has been proposed for the gold component 'tfK of the amino acid and has attracted attention. (For example, JP-A-58
-55577) In this process, the anode and cathode are separated by several hydrocarbon-based anion exchange membranes, an amino acid hydrochloric acid solution is supplied to the intermediate chamber between the anion exchange membranes, and one anion This is a method in which C2- ions are permeated and removed by an exchange membrane, and OH- ions are permeated and supplied from the other anion exchange membrane.

電極反応は、塩素ガスと水素ガスの発生反応であり、こ
れを合成してタンパク質の加水分解に必要な塩酸り回収
することができる。
The electrode reaction is a reaction that generates chlorine gas and hydrogen gas, which can be synthesized to recover hydrochloric acid necessary for protein hydrolysis.

このプロセスは、原理的に不必要な廃棄物を生成するこ
ともなく、極めて有用な方法であるが、ある重要な問題
を含んでいる。
Although in principle this process does not generate unnecessary waste and is an extremely useful method, it does have some important problems.

それは、炭化水素系陰イオン交換膜の耐久性の問題であ
る。
This is a problem of durability of hydrocarbon-based anion exchange membranes.

炭化水素系の陰イオン交換膜は、一般に強酸。Hydrocarbon-based anion exchange membranes are generally strong acids.

強アルカリ、高温領域では耐久性に乏しく、さらに塩素
ガス等の強酸化性物質下に於【は、全くといって良い程
、耐久性を有していない膜であり、数週間程の短期間で
膜が崩壊することもある。
It has poor durability in strong alkali and high temperature areas, and it has almost no durability under strong oxidizing substances such as chlorine gas, and it can be used for a short period of about a few weeks. The membrane may collapse.

従って、従来の炭化水素系の陰イオン交換膜を用いて、
この様な、プロセスを実施しようとすれば、陰イオン交
換膜の頻繁な置換えを余儀なくされ結果的にプロセス自
体の経済性を乏しいものとすることKよる。
Therefore, using a conventional hydrocarbon-based anion exchange membrane,
If such a process were to be carried out, the anion exchange membrane would have to be replaced frequently, resulting in poor economic efficiency of the process itself.

以上述べた様に、イオン交換膜電解法による、電解陰イ
オン置換法は、公知の技術であり、かつ、工業プロセス
として実用化の要望の極めて高いものであるにもかかわ
らず、プロセス上の制約条件や、解決を必要とする多く
の問題点のため、未だ満足すべき工業プロセスとして確
立されていない現状にある。
As mentioned above, although the electrolytic anion replacement method using ion-exchange membrane electrolysis is a well-known technology and there is an extremely high demand for its practical application as an industrial process, there are process limitations. Due to the conditions and many problems that need to be solved, it has not yet been established as a satisfactory industrial process.

〔本発明の目的〕[Object of the present invention]

本発明の目的は、従来のイオン交換膜を用いる電解陰イ
オン置換法の欠点を取り除き、効率のよい、経済的な電
解陰イオン置換法を提供するものである。
An object of the present invention is to eliminate the drawbacks of conventional electrolytic anion replacement methods using ion exchange membranes and to provide an efficient and economical electrolytic anion replacement method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、イオン交換膜を用いる電解陰イオン置換
法に関し、特に従来問題とされていた陰イオン交換膜に
関し、鋭意検討を重ねた結果、特殊な構造を有すフッ素
系陰イオン交換膜が、極めて優れた特性を示すことを見
いだし、さらにこの特殊な構造を有すフッ素系陰イオン
交換膜を用いる電解操作により、種々のプロセスに適用
可能な電解陰イオン置換法換法を実現し得ることを見い
だし、本発明を完成するに到ったものである。
The present inventors have conducted intensive studies regarding the electrolytic anion replacement method using ion exchange membranes, and in particular regarding anion exchange membranes, which have been a problem in the past, and have developed a fluorine-based anion exchange membrane with a special structure. We have discovered that this membrane exhibits extremely excellent properties, and furthermore, by electrolytic operation using a fluorine-based anion exchange membrane with this special structure, it is possible to realize an alternative electrolytic anion replacement method that can be applied to a variety of processes. This discovery led to the completion of the present invention.

本発明に用いる特殊な構造を有すフッ素系陰イオン交換
膜とは、下記一般式 よ 0馬 直 で表わされる繰り返し単位の共重合体よりなる7、素系
陰イオン交換膜を意味している。
The fluorine-based anion exchange membrane having a special structure used in the present invention refers to an element-based anion exchange membrane made of a copolymer of repeating units represented by the following general formula. .

更に、本発明に用いるフッ素系陰イオン交換膜は、第4
級アンモニウム基を含む基として、下記一般式 或いは、下記一般式 或いは、下記一般式 の第4級アンモニウム基を含む基を有すフッ素系陰イオ
ン交換膜を用いることが望ましい。
Furthermore, the fluorine-based anion exchange membrane used in the present invention has a fourth
As the group containing a quaternary ammonium group, it is desirable to use a fluorine-based anion exchange membrane having a group containing a quaternary ammonium group represented by the following general formula, the following general formula, or the following general formula.

これらのフッ素系陰イオン交換膜としては、具体的には
以下のような構造の重合体膜を例示することができる。
Specific examples of these fluorine-based anion exchange membranes include polymer membranes having the following structure.

1P、C−0F 駿 Ha ■ 0馬 ′IPsO−01F 番 CII! Q IF−OF。1P, C-0F Shun Ha ■ 0 horses 'IPsO-01F number CII! Q IF-OF.

C馬 ■ LiA +嶋悄←べ0馬01F吋 p  : 一+o%掲←−01F、OF増 +悄悄¥悄7へ 本発明に用いる特殊な構造を有すフッ素系陰イオン交換
膜の交換容量は、α16 meq/ 9・乾燥樹脂〜A
 Orneq/ 9・乾燥樹脂の範囲のものを用いるこ
とかできるが、好ましくは、rL5 meq/ 9・乾
燥樹脂〜2.8 meq/ 9・乾燥樹脂の範囲のもの
が用いられる。
C Horse ■ LiA + Shima Yu ← Be 0 Horse 01F 吋p: 1 + o % posted ← -01F, OF increase + Yu Yu ¥ Yu 7 Exchange capacity of the fluorine-based anion exchange membrane having a special structure used in the present invention is α16 meq/9・Dry resin~A
Orneq/9.Dry resin can be used, but preferably, rL5 meq/9.Dry resin to 2.8 meq/9.Dry resin is used.

交換容量が上記範囲未満の場合は、膜の抵抗が高く、電
解電圧が上昇し、電力コストの上昇をまねき、交換容量
が上記範囲を越える場合は、膜の膨潤、崩壊等の問題が
生じ、安定した電解述転を妨げる原因となる。
If the exchange capacity is less than the above range, the resistance of the membrane will be high and the electrolytic voltage will rise, leading to an increase in electricity costs.If the exchange capacity exceeds the above range, problems such as swelling and collapse of the membrane will occur. This becomes a cause of interfering with stable electrolytic reversal.

本発明に用いるフッ素系陰イオン交換膜の膜厚は通常4
0μ〜500μの範囲で使用できるが、好ましくは、1
00μ〜50Qμの範囲のものが用いられる。さらに1
本発明に用いるフッ素系陰イオン交換膜は、膜の強度を
上昇させるために、補強材を導入することもできる。
The thickness of the fluorine-based anion exchange membrane used in the present invention is usually 4
It can be used in the range of 0μ to 500μ, but preferably 1
Those in the range of 00μ to 50Qμ are used. 1 more
A reinforcing material can also be introduced into the fluorine-based anion exchange membrane used in the present invention in order to increase the strength of the membrane.

以上の様な、特殊な構造を有すフッ素系陰イオン交換膜
は、優れた耐熱性、耐酸性、耐アルカリ性および耐酸化
性を示すものであり、さらに、この特殊な構造を有すフ
ッ素系陰イオン交換膜を用いる電解操作により、種々の
プロセスに適用可能な効率の良い電解陰イオン置換法を
実現することが出来る。
The fluorine-based anion exchange membrane with the above-mentioned special structure exhibits excellent heat resistance, acid resistance, alkali resistance, and oxidation resistance. By electrolytic operation using an anion exchange membrane, it is possible to realize an efficient electrolytic anion replacement method that can be applied to various processes.

本発明の原理図を図1に示す。A diagram of the principle of the present invention is shown in FIG.

図1には、本発明の例の一つとして、アミノ酸(AA)
の塩酸溶液を2枚の陰イオン交換膜により分割した3室
型電解槽に供給し、電解陰イオン置換法により、C1−
イオンなOH−イオンへ置換する例が示しである。
FIG. 1 shows amino acid (AA) as one example of the present invention.
A hydrochloric acid solution of C1-
An example of substitution with an ionic OH- ion is shown.

1は電解槽、2.3は各々陰イオン交換膜(AM)14
は陽極、5は陰極、6は陽極室、7は中間室。
1 is an electrolytic cell, 2.3 is each anion exchange membrane (AM) 14
is an anode, 5 is a cathode, 6 is an anode chamber, and 7 is an intermediate chamber.

8は陰極室である。    ″ 中間室7にアミノ酸の塩酸溶液(AA−HOI)を供給
し、陽極室6に塩酸、陰極室8に水酸化ナトリウム溶液
を供給する。
8 is a cathode chamber. ``An amino acid hydrochloric acid solution (AA-HOI) is supplied to the intermediate chamber 7, hydrochloric acid is supplied to the anode chamber 6, and a sodium hydroxide solution is supplied to the cathode chamber 8.

電解反応を開始すれば、5JA極4より塩素ガス、陰極
5より水素ガスが発生する。中間室7では陰イオン交換
膜2を通し、Ol−イオンが、陽極室6へ移動し、陰極
室8より陰イオン交換膜5を通し、OH″″イオンが中
間室7へ移動する。
When the electrolytic reaction is started, chlorine gas is generated from the 5JA electrode 4 and hydrogen gas is generated from the cathode 5. In the intermediate chamber 7 , Ol- ions move to the anode chamber 6 through the anion exchange membrane 2 , and OH'''' ions move from the cathode chamber 8 to the intermediate chamber 7 through the anion exchange membrane 5 .

以上の結果、中間室7では01−イオンがOH−イオン
K11l!換され、最終的にアミノ酸溶液が得られるこ
とになる。
As a result of the above, in the intermediate chamber 7, the 01- ion is the OH- ion K11l! Finally, an amino acid solution is obtained.

この様゛なプロセスに於ては、陰イオン交換膜は、酸性
溶液、アルカリ性溶液および塩素ガスを含む酸化性溶液
という苛酷な条件下にさらされる。
In such processes, anion exchange membranes are exposed to harsh conditions of acidic solutions, alkaline solutions, and oxidizing solutions containing chlorine gas.

この様な苛酷な条件下に於ては、従来の炭化水素系の陰
イオン交換膜は、耐久性に乏しく、事実上、工業プロセ
スとしては実現困難なものであったが、本発明で用いる
特殊な構造を有すフッ素系陰イオン交換膜の優れた耐久
性により、電解アニオン置換法が工業プロセスとして成
立し得ることとなる。
Under such harsh conditions, conventional hydrocarbon-based anion exchange membranes have poor durability and are practically difficult to implement as an industrial process, but the special membrane used in the present invention Due to the excellent durability of the fluorine-based anion exchange membrane having this structure, the electrolytic anion replacement method can be established as an industrial process.

本発明で用いるフッ素系陰イオン交換膜は、いずれも極
めて優れた耐酸性を示すものであるが、図1の陰イオン
交換膜2の様に、酸性溶液と共に酸化性溶液に接する場
合は、上記、フッ素陰イオン交換膜の構造の中でも特に
耐酸化性に優れたフ。
All of the fluorine-based anion exchange membranes used in the present invention exhibit extremely excellent acid resistance. However, when the anion exchange membrane 2 in FIG. 1 comes into contact with an oxidizing solution as well as an acidic solution, Among the structures of fluorine anion exchange membranes, fluoride has particularly excellent oxidation resistance.

素系陰イオン交換膜とし【、フッ素系陰イオン交換膜の
第4級アンモニウム基を含む基が、下記一般式 し2はハロゲン陰イオン            〕又
は、フッ素系陰イオン交換膜の第4級アンモニウム基を
含む基が下記一般式 で表わされる陰イオン交換膜を用いることが望ましく、
又、図1の陰イオン交換膜5の様に、酸性溶液と共にア
ルカリ性溶液に接する場合は、特に耐アルカリ性に優れ
たフッ素系陰イオン交換膜として、フッ素系陰イオン交
換膜の第4級アンモニウム基を含む基が、下記一般式 で表わされる陰イオン交換膜を用いろことが望ましい。
[The group containing the quaternary ammonium group of the fluorine-based anion exchange membrane has the following general formula, where 2 is a halogen anion] or the quaternary ammonium group of the fluorine-based anion exchange membrane. It is desirable to use an anion exchange membrane in which the group containing is represented by the following general formula,
In addition, when the anion exchange membrane 5 in FIG. 1 comes into contact with an alkaline solution as well as an acid solution, the quaternary ammonium group of the fluorine anion exchange membrane is used as a fluorine anion exchange membrane with particularly excellent alkali resistance. It is preferable to use an anion exchange membrane in which the group containing the following formula is represented by the following general formula.

なお、本発明で用いる特殊な構造を有すフッ素系陰イオ
ン交換膜は、膜の易加工性により用途にあわせて1.平
膜状9円筒状およびチューブ状等の形状を用いることも
出来る。
Note that the fluorine-based anion exchange membrane with a special structure used in the present invention has 1. Shapes such as a flat membrane shape, a cylindrical shape, and a tube shape can also be used.

本発明に用いる電解槽の陽極及び陰極としては、従来公
知の電極材料を用いることができるが、目的とする電解
プロセスの電極反応に対し、安価で低過電圧を示し、か
つ耐食性の優れた[極材料が適宜選択される。
Conventionally known electrode materials can be used as the anode and cathode of the electrolytic cell used in the present invention. Materials are selected appropriately.

この様な電極材料は、例えば陽極としては、T1゜Ta
、Zn、Nb等の耐食性基材の表面に、Pt、工r。
Such an electrode material is used as an anode, for example, T1°Ta
, Zn, Nb, etc. on the surface of a corrosion-resistant base material such as Pt, or.

Rh等の白金族金属及び/又は白金族金属の酸化物を被
覆した陽極が用いられ、陰極としては、1Fa、 Ni
、 Ou等の金属、又はこれらの合金や、これらの表面
に低過電圧を示す物1(例えば、ラネ一二、ケル等)を
被覆した陰極を用いることができる。
An anode coated with a platinum group metal such as Rh and/or an oxide of a platinum group metal is used, and the cathode is made of 1Fa, Ni
A cathode made of a metal such as , Ou, or an alloy thereof, or whose surface is coated with a material 1 exhibiting a low overvoltage (for example, Raney 12, Kel, etc.) can be used.

本発明のイオン交換膜電解法においては、電解槽は通常
、陽極室、中間室、陰極室の3室よりなるが、3室以外
の多室型を選択することも可能であり、さらに、積層セ
ルを用いて効率の良い電解方法を実施することも可能で
ある。
In the ion exchange membrane electrolysis method of the present invention, the electrolytic cell usually consists of three chambers: an anode chamber, an intermediate chamber, and a cathode chamber, but it is also possible to select a multi-chamber type other than three chambers. It is also possible to implement efficient electrolysis methods using cells.

さらに、本発明のイオン交換膜電解法においては、電解
温度は室温から100℃迄可能であり、電流密度は、通
常、50A/dn/以下の範囲で実施することができろ
Furthermore, in the ion exchange membrane electrolysis method of the present invention, the electrolysis temperature can range from room temperature to 100° C., and the current density can usually be carried out in the range of 50 A/dn/or less.

〔本発明の効果〕[Effects of the present invention]

以上述べた様に、特殊な構造を有すフッ素系陰イオン交
換膜を用いることにより、効率の良い電解陰イオン置換
法が工業プロセスとして実現可能となる。
As described above, by using a fluorine-based anion exchange membrane having a special structure, an efficient electrolytic anion replacement method can be realized as an industrial process.

本発明の方法は、各種の利用分野が考えられるが、特に
、有機、無機化合物の合成分野に於【極めて工業的価値
の高いものである。
Although the method of the present invention can be used in various fields, it is particularly of extremely high industrial value in the field of synthesis of organic and inorganic compounds.

〔実施例〕〔Example〕

以下、実施例を述べるが本発明は、これに限定されるも
のではない。
Examples will be described below, but the present invention is not limited thereto.

実施例1 イオン交換膜電解法により、グリシンを含む塩酸溶液よ
り、グリシン溶液を得る電解陰イオン「を換法を実施し
た。
Example 1 An electrolytic anion was exchanged to obtain a glycine solution from a hydrochloric acid solution containing glycine using an ion exchange membrane electrolysis method.

電解槽は、図1の様な3室壁m解槽とし、陽極としてT
1の1xpanded M@ta1基材上に貴会1aK
t化物を被覆した電極を使用し、電極としてN1のEx
panded Metal  を用いた。電極面積は各
々(L 56 c1m’ 、陽、陽極間距離は、71J
とした。
The electrolytic cell is a 3-chamber wall cell as shown in Figure 1, and T is used as the anode.
1 of 1xpanded M@ta1 on the base material 1aK
An electrode coated with t-oxide is used, and the Ex of N1 is used as the electrode.
Panned Metal was used. The area of each electrode is (L 56 c1m', anode, distance between anodes is 71J
And so.

IIJA極室と中間室を分υIするために1陰イオン交
換膜としては、下記の構造 一4or、oy、Y(ay、cp)− を示すフッ素系陰イオン交換膜(交換容!1.10me
q/9乾燥樹脂、膜厚140μ)を用い、陰極室と陽極
室を分割するために陰イオン交換膜として、下記の構造 −(oy、ay、)→oy、or)− を示すフッ素系陰イオン交換膜(交換容量1.00me
q/9乾燥樹脂、膜厚130μ)を用いた。
In order to separate the IIJA electrode chamber and the intermediate chamber, a fluorine-based anion exchange membrane (exchange volume: 1.10me) having the following structure -4or,oy,Y(ay,cp)-
q/9 dry resin, film thickness 140μ) was used as an anion exchange membrane to separate the cathode chamber and the anode chamber. Ion exchange membrane (exchange capacity 1.00me
q/9 dry resin, film thickness 130μ) was used.

陽極室には、2NのHatを供給し、陰極室には2Nの
NaOHを供給し、中間室に2 !1101/ Lの等
モルのグリシンの塩酸溶液を供給、循環した。電流密度
を20A/am”とし、室温で電解した所、電解電圧は
4.9■であった。電解の継続と共にグリシンの塩酸溶
液がグリシン溶液へ変化するが、それと共に中間室のグ
リシン溶液のpH値が増大し、等電点に近づき、導電性
が低下してくる。従って電解電圧の上昇をきたす様にな
る。
2N Hat is supplied to the anode chamber, 2N NaOH is supplied to the cathode chamber, and 2! 1101/L of an equimolar solution of glycine in hydrochloric acid was supplied and circulated. When electrolysis was carried out at room temperature with a current density of 20A/am, the electrolysis voltage was 4.9μ.As the electrolysis continued, the glycine hydrochloric acid solution changed to a glycine solution, but at the same time, the glycine solution in the intermediate chamber changed to a glycine solution. As the pH value increases and approaches the isoelectric point, the conductivity decreases.Therefore, the electrolytic voltage increases.

電解電圧が8vを越えた所で、電解を停止した庚申間室
の01−イオン除去率、即ち電解陰イオン置換率は96
%、1!流効率は55%であった。又、中間室溶液のp
Hは2.6であり、グリシン溶液が等電点付近にあるこ
とがわかる。
When the electrolysis voltage exceeded 8V, the 01-ion removal rate of the Koshin chamber where electrolysis was stopped, that is, the electrolytic anion replacement rate was 96.
%, 1! The flow efficiency was 55%. Also, p of the intermediate chamber solution
H is 2.6, indicating that the glycine solution is near the isoelectric point.

さらに、電解後の陽極室、陰極室のグリシン址を測定し
た所、殆どゼロであり、グリシンは陽、陰極室へは殆ど
リークしていないことがわかる。
Furthermore, when the amount of glycine in the anode and cathode chambers after electrolysis was measured, it was almost zero, indicating that almost no glycine leaked into the anode and cathode chambers.

なお、電流効率が55%ということは、フッ素系陰イオ
ン交換膜を通過するHイオンの逆泳動が生じたためであ
る。
Note that the current efficiency of 55% is due to the occurrence of back migration of H ions passing through the fluorine-based anion exchange membrane.

実施例2.比較例1 グルテリンのチ、素含有モルに対し、1.5倍モルの塩
酸を加えて加水分解し、約20%の混合アミノ酸と、約
16%の塩酸溶液を含むアミノ酸の塩酸溶液を調整した
。この溶液10tを、実施例1と同様の3室型電解槽を
用い、実施例1と同一の条件で連続電解テストを10日
間実施した。
Example 2. Comparative Example 1 An amino acid hydrochloric acid solution containing about 20% mixed amino acids and about 16% hydrochloric acid solution was prepared by adding 1.5 times the molar amount of hydrochloric acid to the mole containing glutelin. . 10 tons of this solution was subjected to a continuous electrolysis test for 10 days under the same conditions as in Example 1 using the same three-chamber electrolytic cell as in Example 1.

最初の中間室へ供給する10を中の塩酸量は、01″″
イオン量で約44 mol、通電量は約64Fとなる。
The amount of hydrochloric acid in 10 to be supplied to the first intermediate chamber is 01''''
The amount of ions is about 44 mol, and the amount of current is about 64F.

10日間の電解テストの結果、中間室へ供給する10を
中の塩酸量は01−イオン量で約4molK低下した。
As a result of the 10-day electrolysis test, the amount of hydrochloric acid in 10 supplied to the intermediate chamber decreased by about 4 molK in terms of 01-ion amount.

従って、電解陰イオン置換率は約91%。Therefore, the electrolytic anion replacement rate is approximately 91%.

陰イオン交換膜 この10日間のテストの間、電解電圧は初期4.8Vか
ら徐々に増大したものの8vを越えることはなかった。
Anion Exchange Membrane During the 10 day test, the electrolytic voltage gradually increased from an initial 4.8V but never exceeded 8V.

一方、比較例1として、実施例1の7.素系陰イオン交
換膜のかわりに、炭化水素系の陰イオン交換膜を用い、
他は実施例1と全く同様な電解テストを実施した所、電
解電圧は初期4,4vであったが電解時間の経過と共に
徐々に電解電圧は上昇し、7日めで107以上となり、
次の日、膜にクラ。
On the other hand, as Comparative Example 1, 7. Using a hydrocarbon-based anion-exchange membrane instead of an elementary-based anion-exchange membrane,
An electrolytic test was conducted in the same manner as in Example 1, and the electrolytic voltage was 4.4 V at the beginning, but as the electrolysis time progressed, the electrolytic voltage gradually increased and reached 107 or more on the 7th day.
The next day, the membrane was cracked.

りが発生し、各室の液の混入が生じ電解の継続が不可能
であった。
This caused contamination of the liquid in each chamber, making it impossible to continue electrolysis.

7′ 7′ 4壬鴫==ムτ 参考例 本発明で用いる特殊な構造を有すフッ素系陰イオン交換
膜と炭化水素系陰イオン交換膜の耐久性テストの結果を
表1に示す。
Reference Example Table 1 shows the results of a durability test of a fluorine-based anion exchange membrane and a hydrocarbon-based anion exchange membrane having a special structure used in the present invention.

耐久性の評価方法は、それぞれの溶液に一定時間膜を浸
漬し、その後、(L 1mol/ Lの塩化ナトリウム
水溶液中で電気抵抗を測定し、電気抵抗値が急激に上昇
した日数をもって膜が劣化したとした。
The durability is evaluated by immersing the membrane in each solution for a certain period of time, then measuring the electrical resistance in a 1 mol/L sodium chloride aqueous solution. I did it.

表より明らかな様に本発明で用いる特殊な構造を有す)
、素系陰イオン交換膜は、炭化水素系陰イオン交換膜に
比較して優れた耐久性を示す。
As is clear from the table, it has a special structure used in the present invention)
, element-based anion exchange membranes exhibit superior durability compared to hydrocarbon-based anion exchange membranes.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の電解プロセスの一例を示す概念図である
。 1、 電解槽 2、フッ素系陰イオン交換膜 五 フッ素系陰イオン交換膜 4、  @極 S 陰極 & 陽極室 l 中間室 & 陰極室
FIG. 1 is a conceptual diagram showing an example of the electrolysis process of the present invention. 1. Electrolytic cell 2. Fluorine anion exchange membrane 5. Fluorine anion exchange membrane 4. @ Electrode S Cathode & anode chamber l Intermediate chamber & Cathode chamber

Claims (6)

【特許請求の範囲】[Claims] (1)イオン交換膜として、下記一般式 ▲数式、化学式、表等があります▼ 〔X=FまたはCF_3 l=0または1〜5の整数 m=0または1 n=1〜5の整数 p、qは正の数であって、その比p/qは2〜16であ
る。 Yは第4級アンモニウム基〕 で表わされる繰り返し単位の共重合体よりなるフッ素系
陰イオン交換膜を用いて電解室を分割し、イオンを含む
水溶液を供給して、イオン交換膜電解法により該水溶液
中の陰イオン種を他の陰イオン種へ置換することを特徴
とする電解陰イオン置換法。
(1) As an ion exchange membrane, there are the following general formulas ▲ mathematical formulas, chemical formulas, tables, etc. q is a positive number, and its ratio p/q is 2-16. Y is a quaternary ammonium group] The electrolytic chamber is divided using a fluorine-based anion exchange membrane made of a copolymer of repeating units represented by the following formula, an aqueous solution containing ions is supplied, and the electrolysis is carried out by ion exchange membrane electrolysis. An electrolytic anion replacement method characterized by replacing anion species in an aqueous solution with other anion species.
(2)フッ素系陰イオン交換膜の第4級アンモニウム基
を含む基として下記一般式 ▲数式、化学式、表等があります▼ 〔R^1、R^2、R^3は低級アルキル基(ただし、
R^1とR^2が一体となってテトラメチレン鎖、ペン
タメチレン鎖を形成してもよい) Z^■はハロゲン陰イオン〕 で表わされる陰イオン交換膜を用いる特許請求の範囲第
1項記載の方法。
(2) Groups containing quaternary ammonium groups in fluorine-based anion exchange membranes include the following general formula ▲ Numerical formulas, chemical formulas, tables, etc. ▼ [R^1, R^2, R^3 are lower alkyl groups (but ,
(R^1 and R^2 may be combined to form a tetramethylene chain or a pentamethylene chain) Z^■ is a halogen anion] Claim 1 using an anion exchange membrane represented by Method described.
(3)フッ素系陰イオン交換膜の第4級アンモニウム基
を含む基として下記一般式 ▲数式、化学式、表等があります▼ 〔R^1、R^2、R^3は低級アルキル基(ただし、
R^1とR^2が一体となってテトラメチレン鎖、ペン
タメチレン鎖を形成してもよい。) R^4は水素原子または低級アルキル基 Zはハロゲンイオン〕 で表わされる陰イオン交換膜を用いる特許請求の範囲第
1項記載の方法。
(3) Groups containing quaternary ammonium groups in fluorine-based anion exchange membranes include the following general formula ▲ Numerical formulas, chemical formulas, tables, etc. ▼ [R^1, R^2, R^3 are lower alkyl groups (but ,
R^1 and R^2 may be combined to form a tetramethylene chain or a pentamethylene chain. ) R^4 is a hydrogen atom or a lower alkyl group Z is a halogen ion] The method according to claim 1, using an anion exchange membrane represented by the following formula.
(4)フッ素系陰イオン交換膜の第4級アンモニウム基
を含む基として、下記一般式 ▲数式、化学式、表等があります▼ 〔R^1、R^2、R^3は低級アルキル基(ただし、
R^1とR^2が一体となってテトラメチレン鎖、ペン
タメチレン鎖を形成してもよい。) R^4、R^5は水素原子または低級アルキル基Zは、
ハロゲン陰イオン aは3〜7の整数〕 で表わされる陰イオン交換膜を用いる特許請求の範囲第
1項記載の方法。
(4) As a group containing a quaternary ammonium group in a fluorine-based anion exchange membrane, there are the following general formula ▲ mathematical formula, chemical formula, table, etc. ▼ [R^1, R^2, R^3 are lower alkyl groups ( however,
R^1 and R^2 may be combined to form a tetramethylene chain or a pentamethylene chain. ) R^4 and R^5 are hydrogen atoms or lower alkyl group Z is
Halogen anion a is an integer of 3 to 7.] The method according to claim 1, using an anion exchange membrane represented by:
(5)酸化性溶液に接する膜として、フッ素系陰イオン
交換膜の第4級アンモニウム基を含む基が、下記一般式 ▲数式、化学式、表等があります▼ 〔R^1、R^2、R^3は低級アルキル基(ただし、
R^1とR^2が一体となってテトラメチレン鎖、ペン
タメチレン鎖を形成してもよい。) Z^■はハロゲン陰イオン〕 又は、フッ素系陰イオン交換膜の第4級アンモニウム基
を含む基が、下記一般式 ▲数式、化学式、表等があります▼ 〔R^1、R^2、R^3は低級アルキル基(ただし、
R^1とR^2が一体となってテトラメチレン鎖、ペン
タメチレン鎖を形成してもよい。) R^4、R^5は水素原子または低級アルキル基Zは、
ハロゲン陰イオン aは3〜7の整数〕 で表わされる陰イオン交換膜を用いる特許請求の範囲第
1項記載の方法。
(5) As a membrane in contact with an oxidizing solution, the group containing a quaternary ammonium group of a fluorine-based anion exchange membrane has the following general formula ▲ Numerical formula, chemical formula, table, etc. ▼ [R^1, R^2, R^3 is a lower alkyl group (however,
R^1 and R^2 may be combined to form a tetramethylene chain or a pentamethylene chain. ) Z^■ is a halogen anion] Or, the group containing the quaternary ammonium group of the fluorine-based anion exchange membrane is the following general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [R^1, R^2, R^3 is a lower alkyl group (however,
R^1 and R^2 may be combined to form a tetramethylene chain or a pentamethylene chain. ) R^4 and R^5 are hydrogen atoms or lower alkyl group Z is
Halogen anion a is an integer of 3 to 7.] The method according to claim 1, using an anion exchange membrane represented by:
(6)アルカリ性溶液に接する膜として、フッ素系陰イ
オン交換膜の第4級アンモニウム基を含む基が、下記一
般式 ▲数式、化学式、表等があります▼ 〔R^1、R^2、R^3は低級アルキル基(ただし、
R^1とR^2が一体となってテトラメチレン鎖、ペン
タメチレン鎖を形成してもよい。) R^4は水素原子または低級アルキル基 Zはハロゲンイオン〕 で表わされる陰イオン交換膜を用いる特許請求の範囲第
1項記載の方法。
(6) As a membrane in contact with an alkaline solution, the group containing the quaternary ammonium group of the fluorine-based anion exchange membrane has the following general formula ▲ Numerical formula, chemical formula, table, etc. ▼ [R^1, R^2, R ^3 is a lower alkyl group (however,
R^1 and R^2 may be combined to form a tetramethylene chain or a pentamethylene chain. ) R^4 is a hydrogen atom or a lower alkyl group Z is a halogen ion] The method according to claim 1, using an anion exchange membrane represented by the following formula.
JP61116208A 1986-05-22 1986-05-22 Electrolytic anion substitution method Pending JPS62274086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61116208A JPS62274086A (en) 1986-05-22 1986-05-22 Electrolytic anion substitution method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61116208A JPS62274086A (en) 1986-05-22 1986-05-22 Electrolytic anion substitution method

Publications (1)

Publication Number Publication Date
JPS62274086A true JPS62274086A (en) 1987-11-28

Family

ID=14681516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61116208A Pending JPS62274086A (en) 1986-05-22 1986-05-22 Electrolytic anion substitution method

Country Status (1)

Country Link
JP (1) JPS62274086A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459986A (en) * 1990-06-28 1992-02-26 Agency Of Ind Science & Technol Production of ammonium peroxydisulfate
WO1998038224A1 (en) * 1997-02-28 1998-09-03 University Of Wollongong Hydrodynamic electroprocessing of soluble conducting polymers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459986A (en) * 1990-06-28 1992-02-26 Agency Of Ind Science & Technol Production of ammonium peroxydisulfate
WO1998038224A1 (en) * 1997-02-28 1998-09-03 University Of Wollongong Hydrodynamic electroprocessing of soluble conducting polymers

Similar Documents

Publication Publication Date Title
JPS61170588A (en) Production of quaternary ammonium hydroxide
US4261803A (en) Electrolysis of aqueous solution of potassium chloride
JPS62274086A (en) Electrolytic anion substitution method
KR20160129423A (en) Bipolar Membrane for Water-Splitting Electrodialysis Process
JPH0830048B2 (en) Amino acid production method
JPS61231189A (en) Production of amino alcohol
JPS602393B2 (en) Amino acid production method
JP3478893B2 (en) Method for producing high-purity choline
JPS62105922A (en) Recovery of metal and acid
JPH01111894A (en) Method for purifying dipeptide ester
JPS63270487A (en) Electrolytic anion substitution method
JPS6311684A (en) Electrolytic ion substitution method
JP2643128B2 (en) Method for producing quaternary ammonium hydroxide
JPS59193289A (en) Preparation of high-purity quaternary ammonium hydroxide
JPS62294189A (en) Production of metal salt
JPS6299487A (en) Separation of acid and alkali from aqueous salt solution
JPH02102126A (en) Production of alkali bichromate and chromic acid
JPS62294193A (en) Method for depositing and recovering metal
JPS6297610A (en) Method for separating acid and alkali from aqueous solution of salt
JPS6342387A (en) Electrolytic ion substitution method
JPH06299385A (en) Production of water solution of quarternary ammonium hydroxide and organic carboxylic acid
JPS61190085A (en) Production of quaternary ammonium hydroxide by electrolysis
JPS6347386A (en) Separation of acid and alkali from aqueous salt solution
JPS6297609A (en) Method for separating acid and alkali from aqueous solution of salt
JPS60131987A (en) Method for electrolytically winning chromium using ion exchange membrane