JPS62274019A - Production of high-chrominum alloy - Google Patents

Production of high-chrominum alloy

Info

Publication number
JPS62274019A
JPS62274019A JP11489386A JP11489386A JPS62274019A JP S62274019 A JPS62274019 A JP S62274019A JP 11489386 A JP11489386 A JP 11489386A JP 11489386 A JP11489386 A JP 11489386A JP S62274019 A JPS62274019 A JP S62274019A
Authority
JP
Japan
Prior art keywords
ore
furnace body
slag bath
carbonaceous material
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11489386A
Other languages
Japanese (ja)
Inventor
Tsutomu Usui
碓井 務
Haruyoshi Tanabe
治良 田辺
Junichi Fukumi
純一 福味
Masahiro Kawakami
川上 正弘
Kenzo Yamada
健三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11489386A priority Critical patent/JPS62274019A/en
Publication of JPS62274019A publication Critical patent/JPS62274019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To improve reduction efficiency and to decrease the consumption of a carbonaceous material by blowing Cr ore and the carbonaceous material together gas from side blowing tuyeres into the slag bath in a furnace body of a converter type at the time of specifying an OD ratio and subjecting the Cr ore, etc., to melt reduction in said furnace body. CONSTITUTION:A molten iron 2 is preliminarily put into the furnace body 1, and the Cr ore, charbonaceous material and flux are supplied from a hopper 3 into the furnace body; at the same time, oxygen is blown from a top blowing lance 4 into the furnace body and oxygen is blown from tuyeres 6 for secondary combustion therein to attain iota0.4 OD ratio. Then, the carbonaceous material is subjected to primary combustion by the oxygen from the lance 4 and the gaseous CO generated by such combustion is subjected to the secondary combustion by the oxygen from the tuyeres 6. The slag bath 5 is powerfully stirred when the Cr ore and carbonaceous material are blown together with the oxygen, air or gaseous nitrogen into the slag bath 5 from the side blowing tuyeres 7. A large quantity of heat generated by the primary and secondary combustion is thereby efficiently transferred to the slag bath 5. The reaction contact area of the Cr ore and carbonaceous material in the slag bath 5 is increased and the Cr ore is efficiently reduced.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔産業上の利用分野〕 この発明は例えば転炉型の炉体でCr鉱石を溶融還元し
て高クロム合金を得ろ方法、特にこの溶融還元によって
形成されたスラグ浴におけろCr鉱石の1元効率の向上
に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] This invention provides a method for obtaining a high chromium alloy by melting and reducing Cr ore, for example, in a converter type furnace body, and in particular, a method for obtaining a high chromium alloy by this melting and reduction. The present invention relates to improving the monomer efficiency of Cr ore in the formed slag bath.

〔従来の技術〕[Conventional technology]

高クロム合金は電気炉を用いて製造するのが一般的であ
ったが、電気炉では製造コストが高くなるという欠点が
ある。このなめ、最近では電気炉の代わりに、転炉型の
炉体を用いてCr鉱石の溶融還元を行わせ、これによっ
て高クロム合金を得る方法が提案されている。
High chromium alloys have generally been manufactured using electric furnaces, but electric furnaces have the disadvantage of high manufacturing costs. In view of this, recently a method has been proposed in which a converter type furnace body is used instead of an electric furnace to melt and reduce Cr ore, thereby obtaining a high chromium alloy.

第1図は転炉型の炉体を用いた高クロム合金の製造方法
を説明するための説明図であり、図において(11は転
炉型の炉体、(2)はこの炉体内に保持された金属溶湯
である鉄溶湯、(31I−1炉体(1)内にCr鉱石、
炭材及びフラックスを供給する原料供給手段であるホッ
パー、(4)は炉体(1)内に上方から酸素を吹き込む
上吹きランス、(5)は鉄溶湯(2)の上に形成された
スラグ浴、(6)は炉体(1→内に酸素を吹き込ませる
二次燃焼用羽口、(7)は炉体(1)の側壁部のスラグ
浴高さ位置に取り付けられている横吹き羽口、(8)は
炉体(1)の底部に取り付けられている底吹き羽口であ
る。
Figure 1 is an explanatory diagram for explaining the method for manufacturing high chromium alloy using a converter-type furnace body. In the figure (11 is a converter-type furnace body, (2) is a Molten iron, which is molten metal, (Cr ore in the 31I-1 furnace body (1),
A hopper is a raw material supply means for supplying carbonaceous material and flux, (4) is a top blowing lance that blows oxygen into the furnace body (1) from above, and (5) is a slag formed on the molten iron (2). (6) is a secondary combustion tuyere for blowing oxygen into the furnace body (1), (7) is a side blower installed on the side wall of the furnace body (1) at the height of the slag bath. The mouth (8) is a bottom blowing tuyere attached to the bottom of the furnace body (1).

ここで、高クロム合金は息下のようにして製造される。Here, high chromium alloys are manufactured in a similar manner.

すなわち、あらかじめ炉体(1)内に鉄溶湯(5)を入
れておき、ホッパー(3)から炉体(1)内にCr鉱石
、炭材及びフラックスを供給し、上吹きランス(4)か
ら炉体(1)内に酸素を吹き込ませるとともにに二次燃
焼用羽口(6)から酸素を吹き込ませてOD比≧0.4
とさせると、炭材が上吹きランス(4)から炉体(1)
内に吹き込ませた酸素により一次燃焼し、この−火燃焼
により発生したCOガスが二次燃焼用羽口(6)から吹
き込ませた酸素によって二次燃焼し、一方、横吹き羽口
(7)から吹き込まれたガスによってスラグ浴(5)が
撹拌され、これによってスラグ浴(5)が−次、二次燃
焼によって発生した多量の熱を捕えて高温となり、スラ
グ浴(5)中のCr鉱石が還元されて金属クロムが生成
し、この金属クロムと鉄溶湯(2)とによって高クロム
合金が生成される。ここで、dD比とは炉内雰囲気ガス
中のCO量+CO量に対する炉内雰囲気ガス中のCO量
の比率をいう。
That is, molten iron (5) is placed in the furnace body (1) in advance, Cr ore, carbonaceous material, and flux are supplied into the furnace body (1) from the hopper (3), and then molten iron (5) is fed into the furnace body (1) from the top blowing lance (4). Oxygen is blown into the furnace body (1) and also from the secondary combustion tuyeres (6) to achieve an OD ratio of 0.4.
When this happens, the carbon material flows from the top blowing lance (4) to the furnace body (1).
The CO gas generated by this flame combustion is subjected to secondary combustion by the oxygen blown into the secondary combustion tuyere (6), while the side blow tuyere (7) The slag bath (5) is stirred by the gas blown into the slag bath (5), and as a result, the slag bath (5) captures a large amount of heat generated by the secondary combustion and becomes high temperature, and the Cr ore in the slag bath (5) is heated. is reduced to produce metallic chromium, and a high chromium alloy is produced by this metallic chromium and the molten iron (2). Here, the dD ratio refers to the ratio of the amount of CO in the furnace atmosphere gas to the amount of CO in the furnace atmosphere gas+the amount of CO.

また、−次、二次燃焼により発生した熱によってスラグ
浴(5)の温度が必要以上に上昇し、耐火物の溶損量が
多くなるので、スラグ浴(5)の過熱を防止し、耐火物
の溶損量を減少させるため、底吹き羽口(8)を設け、
ここから鉄溶湯(2)へガスを吹き込ませて鉄溶湯(2
)を攪拌させ、スラグ浴(5)の熱を鉄溶湯(2)へ効
率よく伝えさせている。
In addition, the temperature of the slag bath (5) rises more than necessary due to the heat generated by secondary combustion, and the amount of erosion of the refractory increases, so overheating of the slag bath (5) is prevented, In order to reduce the amount of material erosion, a bottom blowing tuyere (8) is installed.
From here, gas is blown into the molten iron (2).
) is stirred to efficiently transfer the heat of the slag bath (5) to the molten iron (2).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の高クロム合金の製造方法では、−次
、二次燃焼によって発生した多量の熱がスラグ浴(5)
全体へ効率良く伝わらず、これらの熱が溶融還元のため
に有効利用されず、炭材が必要以上に消費され、又、精
錬時間が必要以上に長くなり、このため、高クロム合金
の製造コストが必要以上に高(なっているという問題点
がある。
In the conventional manufacturing method for high chromium alloys as described above, a large amount of heat generated by secondary combustion is transferred to the slag bath (5).
The heat is not efficiently transmitted to the entire body, and this heat is not effectively used for melting and reduction, resulting in more carbon material being consumed than necessary, and the refining time becoming longer than necessary, which reduces the manufacturing cost of high chromium alloys. There is a problem that the value is higher than necessary.

この発明は、かかる問題点を解決するためになされたも
ので、発生した熱を効率良くスラグ浴(5)全体へ伝え
させ、又、Cr鉱石と炭材との反応界面積を増大させ、
炭材の消費量を減少させ、高クロム合金の製造コストを
低減させることができる高クロム合金の製造方法を得る
ことを目的とする。
This invention was made to solve these problems, and it allows the generated heat to be efficiently transmitted throughout the slag bath (5), increases the reaction interface area between the Cr ore and the carbonaceous material,
It is an object of the present invention to provide a method for producing a high chromium alloy that can reduce the consumption of carbonaceous material and reduce the production cost of the high chromium alloy.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る高クロム合金の製造方法は、転炉型の炉
体に金属溶湯を保持させ、該炉体内に原料供給手段から
Cr鉱石、炭材及びフラックスを供給させ、該炉体内に
上吹きランスから酸化性ガスを吹き込ませるとともに、
該炉体内に二次燃焼用羽口から酸化性ガスを吹き込ませ
て、OD比≧0、4とさせ、該炉体の側壁部に設けた横
吹き羽口から該炉体内に形成されたスラグ浴へCr鉱石
と炭材とをガスとともに吹き込ませてなるものである。
The method for producing a high chromium alloy according to the present invention includes holding a molten metal in a converter-type furnace body, supplying Cr ore, carbonaceous material, and flux into the furnace body from a raw material supply means, and blowing top into the furnace body. Along with blowing oxidizing gas from the lance,
Oxidizing gas is blown into the furnace body from the secondary combustion tuyere to make the OD ratio ≧0, 4, and the slag formed inside the furnace body from the side blowing tuyere provided on the side wall of the furnace body. It is made by blowing Cr ore and carbonaceous material together with gas into a bath.

〔作用〕[Effect]

この発明においては、横吹き羽口からスラグ浴内へCr
鉱石と炭材とをガスとともに吹き込ませると、このCr
鉱石と炭材とガスとにより該スラグ浴が強力に攪拌され
、−次、二次燃焼によって発生した多量の熱が効率良く
スラグ浴に伝えられ、又、Cr鉱石と炭材との反応接触
面積が増大させられ、その結果、Cr鉱石が効率良く還
元させられる。
In this invention, Cr flows from the side blowing tuyere into the slag bath.
When ore and coal are blown together with gas, this Cr
The slag bath is strongly stirred by the ore, carbonaceous material, and gas, and a large amount of heat generated by secondary combustion is efficiently transferred to the slag bath, and the reaction contact area between the Cr ore and carbonaceous material is is increased, and as a result, Cr ore is efficiently reduced.

〔実施例〕〔Example〕

この発明は、従来技術において説明したものと略同−の
構成を有し、更に、横吹き羽口(7)からスラグ浴(5
)内にCr鉱石と炭材とを酸素、空気又は窒素ガスとと
もに吹き込ませてなるものである。
This invention has substantially the same configuration as that explained in the prior art, and furthermore, the side blowing tuyere (7) is connected to the slag bath (5).
) into which Cr ore and carbonaceous material are blown together with oxygen, air or nitrogen gas.

積吹き羽口(7)からスラグ浴(5)内にCr鉱石と炭
材とを酸素、空気又は窒素ガスとともに吹き込ませると
、この吹き込ませたこれらのCr鉱石と炭材とガスとに
よって炉体(1)内のスラグ浴(5)が強力に攪拌され
、−次、二次燃焼によって発生した多量の熱が効率良く
スラグ浴(5)に均一に伝えられるとともに、スラグ浴
(5)中のCr鉱石と炭材との反応接触面積が増大し、
Cr鉱石が効率良く還元され、また、攪拌によりスラグ
浴の部分的な過熱が防止されて耐火物の溶損が抑制され
る。
When Cr ore and carbonaceous materials are blown into the slag bath (5) through the blowing tuyeres (7) together with oxygen, air, or nitrogen gas, the furnace body is The slag bath (5) in (1) is strongly stirred, and a large amount of heat generated by secondary combustion is efficiently and uniformly transferred to the slag bath (5). The reaction contact area between Cr ore and carbonaceous material increases,
The Cr ore is efficiently reduced, and the stirring prevents the slag bath from being partially overheated, thereby suppressing melting loss of the refractory.

実験例 上吹きランス(4)から酸素を900ONrn″/Hr
で吹き込ませ、二次燃焼用羽口(6)から酸素を540
ONrn’/)(rで吹き込ませてOD比≧0.4とし
、ホッパー(3)から炉体(1)内にCr鉱石を290
kg/m i n、コークスを130 kg/s+ i
 n供給し、横吹き羽口(7)からCr鉱石を50〜2
00kg/m i n、炭材を40=150kg/ m
 i n 1ガスとともに吹き込ませ、底吹き羽口(8
)から2000 Nm/Hrの酸素を吹き込ませて溶融
還元の実験をした。
Experimental example Oxygen was supplied from the upper blowing lance (4) at 900ONrn''/Hr.
540 ml of oxygen from the secondary combustion tuyeres (6).
ONrn'/) (by blowing at r to make the OD ratio ≧0.4, 290 Cr ore is injected into the furnace body (1) from the hopper (3).
kg/min, coke at 130 kg/s+i
Cr ore is supplied from the side blowing tuyere (7) to 50 to 2
00kg/min, carbon material 40=150kg/m
Blow in with i in 1 gas, and blow through the bottom blowing tuyeres (8
), 2000 Nm/Hr of oxygen was blown into the melting reduction experiment.

この実験から、横吹き羽口(7)からのCr鉱石と炭材
の吹込iとスラグ浴中のCr濃度の減少速度との関係を
求めたところ、第2図Aに示すとおりとなり、横吹き羽
口(7)からのCr鉱石と炭材の吹込量と耐火物溶損指
数との関係を求めたところ、第3図Aに示すとおりとな
った。
From this experiment, the relationship between the injection i of Cr ore and carbonaceous material from the side-blown tuyere (7) and the rate of decrease in the Cr concentration in the slag bath was found as shown in Figure 2A. The relationship between the amount of Cr ore and carbon material injected from the tuyere (7) and the refractory corrosion index was determined, and the results were as shown in Figure 3A.

比較例 また、横吹き羽口(7)からガスだけを吹き込ませ、こ
れ以外は上記実験例と同様の実験をし、横吹き羽口(7
)からのガスの吹込量とスラグ浴中のCrlll度の減
少速度との関係を求めたところ、第2図Bに示すとおり
となり、横吹き羽口(7)からのガスの吹込量と耐火物
溶損指数との関係を求めたところ、第3図已に示すとお
りとなった。
Comparative Example In addition, an experiment was conducted in the same manner as in the above experimental example except that only gas was blown from the side blowing tuyere (7).
) The relationship between the amount of gas blown from the side blowing tuyeres (7) and the rate of decrease in the degree of Crll in the slag bath was determined as shown in Figure 2B. When the relationship with the erosion index was determined, it was as shown in Figure 3.

これらの実験により、横吹き羽口(7)によるCr鉱石
と炭材の吹き込みがスラグ浴(5)への着熱効率を良好
ならしめ、スラグ浴(5)中のCrj1度の減少速度を
早めるとともに、耐火物の溶損量を少なくさせているこ
とがわかる。
Through these experiments, it was found that the blowing of Cr ore and carbonaceous materials through the side blowing tuyere (7) improves the heat transfer efficiency to the slag bath (5), accelerates the rate of decrease of 1 degree Crj in the slag bath (5), and It can be seen that the amount of erosion of refractories is reduced.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、炉体内で発生した熱を
スラグ浴全体へ均一に効率良く伝えさせろとともに、C
r鉱石と炭材との接触を良好ならしめたので、Cr鉱石
の還元効率が良好になり、Cr鉱石還元のための炭材の
消費量が減少し、その結果、高クロム合金を安価に製造
することができるという効果がある。
As explained above, this invention aims to uniformly and efficiently transmit the heat generated in the furnace to the entire slag bath, and to
Since the contact between r ore and carbonaceous material is made good, the reduction efficiency of Cr ore is improved, and the consumption of carbonaceous material for Cr ore reduction is reduced, and as a result, high chromium alloy can be manufactured at low cost. The effect is that it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高クロム合金の製造方法を説明するための説F
IA図、第2図はガス吹込量とスラグ浴中のCrlll
度の減少速度との関係を示すグラフ、第3図はガス吹込
量と耐火物の溶損指数との関係を示すグラフである。 図において、(1)は炉体、(2)は鉄溶湯、(3)は
ホッパー、(4)は上吹きランス、(5)はスラグ浴、
(6)は二次燃焼用羽口、(7)は横吹き羽口、(8)
は底吹き羽口である。 なお、各図中同一符号は同一または相当部分を示す。
Figure 1 is a theory F for explaining the manufacturing method of high chromium alloy.
IA diagram and Figure 2 show the amount of gas blown and the Crlll in the slag bath.
FIG. 3 is a graph showing the relationship between the amount of gas blown and the erosion index of the refractory. In the figure, (1) is the furnace body, (2) is the molten iron, (3) is the hopper, (4) is the top blowing lance, (5) is the slag bath,
(6) is a secondary combustion tuyere, (7) is a side blowing tuyere, (8)
is a bottom-blown tuyere. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 転炉型の炉体に金属溶湯を保持させ、該炉体内に原料供
給手段からCr鉱石、炭材及びフラックスを供給し、該
炉体内に上吹きランスから酸化性ガスを吹き込ませると
ともに、該炉体内に二次燃焼用羽口から酸化性ガスを吹
き込ませてOD比≧0.4とさせ、該炉体の側壁部に設
けた横吹き羽口から該炉体内に形成されたスラグ浴へC
r鉱石と炭材とをガスとともに吹き込ませる高クロム合
金の製造方法
Molten metal is held in a converter-type furnace body, Cr ore, carbonaceous material, and flux are supplied from a raw material supply means into the furnace body, and oxidizing gas is blown into the furnace body from a top blowing lance. Oxidizing gas is blown into the body from the secondary combustion tuyere to make the OD ratio ≧0.4, and C is fed into the slag bath formed inside the furnace body from the side blowing tuyere provided on the side wall of the furnace body.
Method for manufacturing high chromium alloy by blowing r ore and carbonaceous material together with gas
JP11489386A 1986-05-21 1986-05-21 Production of high-chrominum alloy Pending JPS62274019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11489386A JPS62274019A (en) 1986-05-21 1986-05-21 Production of high-chrominum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11489386A JPS62274019A (en) 1986-05-21 1986-05-21 Production of high-chrominum alloy

Publications (1)

Publication Number Publication Date
JPS62274019A true JPS62274019A (en) 1987-11-28

Family

ID=14649284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11489386A Pending JPS62274019A (en) 1986-05-21 1986-05-21 Production of high-chrominum alloy

Country Status (1)

Country Link
JP (1) JPS62274019A (en)

Similar Documents

Publication Publication Date Title
US3323907A (en) Production of chromium steels
US4414026A (en) Method for the production of ferrochromium
AU657427B2 (en) The production of high titania slag from ilmenite
JPS62274019A (en) Production of high-chrominum alloy
JP3752051B2 (en) Scrap melting method and scrap melting lance
EP0950117B1 (en) A method for producing metals and metal alloys
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPS62116712A (en) Melting and smelting vessel having splash lance
JP2512919B2 (en) Refining method for stainless steel with less oxidation of valuable metals such as Cr during decarburization of molten steel
JPS62274018A (en) Method and apparatus for producing high-chromium alloy
JP5526614B2 (en) Melting reduction method
JPH0826378B2 (en) Method for producing molten iron containing chromium
JPS62274020A (en) Method and apparatus for producing high-chromium alloy
JPH01191719A (en) Method for operating smelting reduction furnace
JPH09227918A (en) Method for smelting stainless steel
JP2837282B2 (en) Production method of chromium-containing hot metal
JP2023093079A (en) Method for charging reduced iron to electric furnace
JPH01252710A (en) Method for operating iron bath type smelting reduction furnace
JPS6338506A (en) Adding method for powdery carbon material into smelting reduction furnace
JPH01195211A (en) Method for melting and reducing iron oxide
JPH02107709A (en) Smelting reduction furnace
JPH07216425A (en) Production of molten iron alloy
JPH02282410A (en) Smelting reduction method for ore
JPH0421729B2 (en)
JPH032933B2 (en)