JPS6227329A - Method for controlling substitution reaction of sulfide with copper ion - Google Patents

Method for controlling substitution reaction of sulfide with copper ion

Info

Publication number
JPS6227329A
JPS6227329A JP16608885A JP16608885A JPS6227329A JP S6227329 A JPS6227329 A JP S6227329A JP 16608885 A JP16608885 A JP 16608885A JP 16608885 A JP16608885 A JP 16608885A JP S6227329 A JPS6227329 A JP S6227329A
Authority
JP
Japan
Prior art keywords
slurry
sulfide
copper
substitution reaction
copper ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16608885A
Other languages
Japanese (ja)
Other versions
JPH0557203B2 (en
Inventor
Masato Sugimoto
杉本 誠人
Tadashi Yoshida
忠司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP16608885A priority Critical patent/JPS6227329A/en
Publication of JPS6227329A publication Critical patent/JPS6227329A/en
Publication of JPH0557203B2 publication Critical patent/JPH0557203B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To control the titled substitution reaction by simple operation independently of a change in the composition of sulfide by regulating the oxidation- reduction potential of a slurry at the outlet of a reactor so as to keep the concn. of copper ions in the slurry at a prescribed value during the reaction. CONSTITUTION:A slurry contg. sulfide and an aqueous soln. having a prescribed copper ion concn. are poured into a slurry tank 1 and mixed by stirring to prepare a slurry as starting material. This slurry is poured into a substitution reaction tank 3 provided with an overflow pipe 4, an oxidation-reduction electrode 5, a stirrer 6 and a copper ion feeding pipe 7. While the slurry is kept at a prescribed temp. and stirred for a prescribed time, an aqueous soln. having a prescribed copper ion concn. is added to the slurry from the pipe 7 and brought into a substitution reaction. The oxidation-reduction potential of the slurry is always measured with the electrode 5 at the outlet of the tank 3 and the amount of copper ions added is increased or decreased according to the measured value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硫化物スラリーと銅イオンとを接触させて硫
化銅の沈殿と硫黄と結合していた元素をイオン化させる
笛換反応法の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an improvement of the conversion reaction method in which a sulfide slurry and copper ions are brought into contact with each other to precipitate copper sulfide and ionize elements bonded to sulfur. It is related to.

〔従来の技術〕[Conventional technology]

従来、硫化物と銅イオンとの置換反応を行なう場合、原
料である硫化物の品位及び銅イオンの濃度を予め分析し
、夫々の添加量を決定すると同時に、反応後の水溶液中
の銅イオン濃度を分析しつつ銅イオンの添加量を調整す
るという方法が行なわれていた。
Conventionally, when performing a substitution reaction between sulfide and copper ions, the quality of the raw material sulfide and the concentration of copper ions are analyzed in advance, and the amount of each added is determined.At the same time, the concentration of copper ions in the aqueous solution after the reaction is determined. The method used was to analyze the amount of copper ions and adjust the amount of copper ions added.

又、この置換反応を効率良く行なうためには、硫化物と
銅イオンを含有する水溶液とを向流多段方式で反応させ
るのが好ましいが、この場合も頻繁に分析する必要があ
る等煩雑であるだけでなく充分なコントロールは困難と
いう欠点があった。
In addition, in order to carry out this substitution reaction efficiently, it is preferable to react the sulfide and an aqueous solution containing copper ions in a countercurrent multistage system, but this is also complicated and requires frequent analysis. Another drawback was that sufficient control was difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記の欠点のない硫化物と銅イオンによる置
換反応の管理方法を提供することを目的とする。
The object of the present invention is to provide a method for managing the substitution reaction between sulfide and copper ions without the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の方法は、上記の置換反応を行なうに際し、反応
容器出口のスラリーの酸化還元電位をコントロールする
ことにより、反応終液中の銅イオン濃度を所定値に維持
し、それによって原料である硫化物の組成変動に影響さ
れずに該置換反応を安定して行なうというものである。
The method of the present invention maintains the copper ion concentration in the final reaction solution at a predetermined value by controlling the oxidation-reduction potential of the slurry at the outlet of the reaction vessel when carrying out the above-mentioned substitution reaction. The purpose of this method is to stably carry out the substitution reaction without being affected by changes in the composition of the substance.

〔作用〕[Effect]

本発明において、対象とする硫化物としては例えばAs
 S % ZnS % N15s Co55 Na S
−、HS等であり、これらの硫化物(以下MSと略す)
と銅イオン(C+u”)との置換反応式は、M S −
1−Cu+2− OuS十M+2で表わされ、生成する
CuSが非常に安定であることを利用したものである。
In the present invention, the target sulfide is, for example, As
S % ZnS % N15s Co55 Na S
-, HS, etc., and these sulfides (hereinafter abbreviated as MS)
The substitution reaction formula between and copper ion (C+u”) is M S −
It is expressed as 1-Cu+2-OuS+M+2 and takes advantage of the fact that the CuS produced is very stable.

上記の置換反応を充分に行ない且つ銅イオンの使用量を
最小限に抑える為には、反応終了後の飼イオン濃度を適
正な値に維持する必要がある。
In order to carry out the above-mentioned substitution reaction sufficiently and to minimize the amount of copper ions used, it is necessary to maintain the feed ion concentration at an appropriate value after the reaction is completed.

本願発明者等は種々検討の結果、硫化物と銅イオンとの
スラリーの酸化還元電位が、該スラリーの濾液の銅イオ
ン濃度に強い相関があることを見出した。
As a result of various studies, the inventors of the present application found that the redox potential of a slurry of sulfides and copper ions has a strong correlation with the copper ion concentration of the filtrate of the slurry.

これにより各種の硫化物スラリーに、適切な銅濃度例え
ば硫酸銅水溶液(Ou −50〜100 v’l )を
添加して所定時間度忘させ、反応終了後のスラリーの酸
化還元電位を測定すると、上記スラリーの濾液の銅濃度
が直ちに判明すると云うものである。
As a result, when various sulfide slurries are added with an appropriate copper concentration, for example, an aqueous copper sulfate solution (Ou -50 to 100 v'l) and allowed to forget for a predetermined period of time, the redox potential of the slurry is measured after the reaction is completed. The copper concentration of the slurry filtrate can be immediately determined.

酸化還元電位の測定は、通常の酸化還元電極(Pt/A
、g −Ag(!l)を用いてスラリー状態のま−で正
確な値を得ることができる。
The redox potential is measured using a normal redox electrode (Pt/A
, g -Ag(!l) can be used to obtain accurate values in the slurry state.

従って該電位を常時測定できるように第1図のフローの
ように配置し、置換反応槽3の出口の酸化還元電極5に
より酸化還元電位を知りつつ、銅イオンの添加量を増減
すると、原料である硫化物の組成に変動があっても連続
的にスラリーの濾液の銅濃度を一定の値に保持すること
ができる。
Therefore, by arranging the arrangement as shown in the flowchart in Fig. 1 so that the potential can be constantly measured, and increasing or decreasing the amount of copper ions added while knowing the redox potential using the redox electrode 5 at the outlet of the displacement reaction tank 3, the raw material Even if the composition of a certain sulfide varies, the copper concentration of the slurry filtrate can be continuously maintained at a constant value.

置換反応槽における滞留時間は、硫化物の種類等により
一様ではないが、通常3時間程度で行なわれる。
The residence time in the displacement reaction tank varies depending on the type of sulfide, but it is usually about 3 hours.

〔実施例〕〔Example〕

以下実施例について説明する。 Examples will be described below.

実施例1 銅製諌排ガスの洗浄液を硫化物で処理して得られた硫化
砒素を含有する第1表に示した殿物50神とOu  と
して80g/lを含有する試薬1級により調製した硫酸
銅水溶液1001とを原料スラリ一槽1に入れプロペラ
式攪拌機により混合し原料スラリーとした。このスラリ
ーを、有効容量10 tでオーバーフロー管4を備え、
オーバーフロー管4の近くに設けた酸化還元電極5、攪
拌機6、及び銅イオン供給管7がセットされている置換
反応槽3に101入れ、蒸気パイプにより65 rに保
持して3時間プロペラ式攪拌機で軽い攪拌を行ないなが
ら、Cu+2として80g/ノを含有する前記の硫酸銅
水溶液を銅イオン供給管7から添加し酸化還元電位を2
30mVに調節した。
Example 1 Copper sulfate prepared with 50 precipitates shown in Table 1 containing arsenic sulfide obtained by treating copper flue gas cleaning solution with sulfide and a reagent grade 1 containing 80 g/l as O. Aqueous solution 1001 was placed in a raw material slurry tank 1 and mixed with a propeller type stirrer to obtain a raw material slurry. This slurry was prepared with an overflow pipe 4 with an effective capacity of 10 t,
101 was placed in a displacement reaction tank 3 in which a oxidation-reduction electrode 5, a stirrer 6, and a copper ion supply pipe 7 were set near the overflow pipe 4, maintained at 65 r with a steam pipe, and heated with a propeller-type stirrer for 3 hours. While performing light stirring, the above-mentioned copper sulfate aqueous solution containing 80 g/N of Cu+2 was added from the copper ion supply pipe 7 to bring the oxidation-reduction potential to 2.
The voltage was adjusted to 30 mV.

第  1  表 次に、該反応槽3内のスラリーと同じ温度に蒸気パイプ
で保温されている原料スラリ一槽1のスラリーを1分間
当り約55mg連続的に置換反応槽に供給しく滞留時間
は3時間)同時に酸化還元電位を所定値とするように同
じ硫酸銅水溶液を銅イオン供給管7から添加し、各1時
間毎にスラリー出口の酸化還元電位と、同時にそのスラ
リーをスラリー受は槽8に入る前に少量採取し吸引濾過
した濾液の銅濃度を原子吸光法により測定した。
Table 1 Next, about 55 mg of slurry in tank 1 of the raw material slurry, which is kept at the same temperature as the slurry in reaction tank 3 by a steam pipe, is continuously fed to the displacement reaction tank per minute, and the residence time is 3. At the same time, the same copper sulfate aqueous solution is added from the copper ion supply pipe 7 so as to bring the redox potential to a predetermined value. A small amount of the filtrate was sampled and filtered by suction before entering the test, and the copper concentration was measured by atomic absorption spectrometry.

その結果を第2表及び第2図に酸化還元電位(以下OR
Pと略す)と銅イオン濃度との関係として示す。
The results are shown in Table 2 and Figure 2. Oxidation-reduction potential (hereinafter referred to as OR
(abbreviated as P) and the copper ion concentration.

第2表及び第2図より明らかなように、ORP値と銅イ
オン濃度とは強い相関を示し、銅イオンの添加によって
スラリーのORP値をコントロールすることにより、常
に所定の銅濃度の反応終液を得ることができた。
As is clear from Table 2 and Figure 2, there is a strong correlation between the ORP value and the copper ion concentration, and by controlling the ORP value of the slurry by adding copper ions, the final reaction solution always has a predetermined copper concentration. I was able to get

実施例2 試薬1級の硫酸亜鉛及び試薬1級の硫酸ニッケルを夫々
水に溶解し、これに各1.5当量の試薬1級の水硫化ナ
トリウムを添加して攪拌し、生成した沈殿を吸引濾過法
により固液分離し第3表に示す硫化物を得た。
Example 2 Zinc sulfate, a first class reagent, and nickel sulfate, a first class reagent, were each dissolved in water, and 1.5 equivalents of each of sodium bisulfide, a first class reagent, was added and stirred, and the precipitate formed was sucked. Solid-liquid separation was performed by a filtration method to obtain the sulfides shown in Table 3.

第  3  表  (重量%) 第3表の硫化物を、夫々実施例1で使用した硫酸銅を約
1710に希釈したCu+2として7.6 g/lの濃
度のものを夫々1007づつ添加混合して原料スラリー
とした。
Table 3 (% by weight) The sulfides in Table 3 were mixed by adding 100% of the copper sulfate used in Example 1 to a concentration of 7.6 g/l as Cu+2, which was diluted to about 171%. It was made into a raw material slurry.

置換反応槽にて添加する硫酸銅水溶液は、実施例1と同
様Ou+2として80 g/!、のものを使用し1最初
のORP値をznSは62mV、NiSは103mVに
調節、置換反応槽の温度は各60 Cとした以外は、実
施例1と同様にしてORB値を変動させ、対応する反応
終液のCu濃度を分析した。
The copper sulfate aqueous solution added in the displacement reaction tank was 80 g/! as Ou+2 as in Example 1. The ORB value was varied in the same manner as in Example 1, except that the initial ORP value was adjusted to 62 mV for znS and 103 mV for NiS, and the temperature of the displacement reaction tank was 60 C. The Cu concentration of the final reaction solution was analyzed.

その結果を第3図及び第4図に示す。The results are shown in FIGS. 3 and 4.

図から判るようにZnS 、 NiSともほぼ実施例1
と同様の結果が得られた。
As can be seen from the figure, both ZnS and NiS are similar to Example 1.
Similar results were obtained.

〔発明の効果〕〔Effect of the invention〕

硫化物のスラリーに銅イオンを添加して置換反応を行な
う際に、反応槽出口でスラリー状のま\ORP値を読み
取り、必要量の銅イオンを添加することにより所定の銅
濃度の反応終液が得られるので、硫化物組成の変動等に
影響されずに、又その都度銅濃度を測定するという煩雑
な作業も不要で長時間連続して置換反応を管理すること
ができる。
When performing a substitution reaction by adding copper ions to a sulfide slurry, read the ORP value of the slurry at the outlet of the reaction tank, and add the required amount of copper ions to obtain a final reaction solution with a predetermined copper concentration. is obtained, the substitution reaction can be continuously managed for a long time without being affected by changes in the sulfide composition, etc., and without the need for the complicated work of measuring the copper concentration each time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の概略説明図、第2
図は硫化砒素、第3図は硫化亜鉛、第4図は硫化ニッケ
ルを夫々銅イオンと置換した場合の酸化還元電位(横軸
)と銅イオン濃度(縦軸)との関係を示した図である。 1・・・原料スラリ一槽、2・・ポンプ、3・・置換反
応槽、4・・オーバーフロー管、5・・酸化還元電極、
6・・攪拌機、 7・・銅イオン供給管、 8・・置換スラリー受は槽。
FIG. 1 is a schematic explanatory diagram of an apparatus for carrying out the method of the present invention, and FIG.
The figure shows the relationship between the redox potential (horizontal axis) and the copper ion concentration (vertical axis) when arsenic sulfide is replaced with copper ions, Figure 3 is with zinc sulfide, and Figure 4 is where nickel sulfide is replaced with copper ions. be. 1... Raw material slurry tank, 2... Pump, 3... Substitution reaction tank, 4... Overflow pipe, 5... Redox electrode,
6. Stirrer, 7. Copper ion supply pipe, 8. Displacement slurry receiver tank.

Claims (1)

【特許請求の範囲】[Claims] (1)銅イオンより、硫黄イオンとの結合力が弱い元素
の硫化物と銅イオンとを接触させ、該硫化物中の硫黄と
結合していた元素を溶解し、硫黄を銅イオンと結合させ
て沈殿を生成する置換反応において、銅イオンを含有す
る水溶液と該硫化物との混合スラリーの出口の酸化還元
電位を銅イオンの添加量を調整して所定値に調整するこ
とにより、該スラリーを固液分離し得られた反応終液の
銅濃度を所望の値に保持することを特徴とする硫化物と
銅イオンによる置換反応の管理方法。
(1) A sulfide of an element that has a weaker bonding force with sulfur ions than a copper ion is brought into contact with a copper ion, the element bonded to sulfur in the sulfide is dissolved, and the sulfur is bonded with the copper ion. In the substitution reaction that produces a precipitate, the redox potential at the outlet of the mixed slurry of the aqueous solution containing copper ions and the sulfide is adjusted to a predetermined value by adjusting the amount of copper ions added. A method for managing a substitution reaction between sulfide and copper ions, characterized by maintaining the copper concentration of the final reaction solution obtained by solid-liquid separation at a desired value.
JP16608885A 1985-07-26 1985-07-26 Method for controlling substitution reaction of sulfide with copper ion Granted JPS6227329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16608885A JPS6227329A (en) 1985-07-26 1985-07-26 Method for controlling substitution reaction of sulfide with copper ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16608885A JPS6227329A (en) 1985-07-26 1985-07-26 Method for controlling substitution reaction of sulfide with copper ion

Publications (2)

Publication Number Publication Date
JPS6227329A true JPS6227329A (en) 1987-02-05
JPH0557203B2 JPH0557203B2 (en) 1993-08-23

Family

ID=15824767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16608885A Granted JPS6227329A (en) 1985-07-26 1985-07-26 Method for controlling substitution reaction of sulfide with copper ion

Country Status (1)

Country Link
JP (1) JPS6227329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020480A (en) * 2000-07-03 2002-01-23 Mitsubishi Gas Chem Co Inc Process for producing polyphenylene ether
JP2012107264A (en) * 2010-11-15 2012-06-07 Sumitomo Metal Mining Co Ltd Method for separating copper ion, and method for producing electrolytic nickel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020480A (en) * 2000-07-03 2002-01-23 Mitsubishi Gas Chem Co Inc Process for producing polyphenylene ether
JP2012107264A (en) * 2010-11-15 2012-06-07 Sumitomo Metal Mining Co Ltd Method for separating copper ion, and method for producing electrolytic nickel

Also Published As

Publication number Publication date
JPH0557203B2 (en) 1993-08-23

Similar Documents

Publication Publication Date Title
US4416786A (en) Process for the treatment of continuous waste water streams having changing contents of different oxidizable materials with hydrogen peroxide
DE2837219C2 (en)
CN104903248B (en) The method for handling industry water
DE2337733C3 (en) Process and system for treating wastewater
US4172784A (en) Process for the separation of cadmium (Cd++)-ions from sewage, waste water and aqueous solutions
US4172785A (en) Process for the separation of Cu++ -ions from sewage, waste water and aqueous solutions
JPH0762664B2 (en) Method for measuring and adjusting the electrochemical potential in a slurry
JPS6227329A (en) Method for controlling substitution reaction of sulfide with copper ion
FI57619C (en) FOERFARANDE FOER SELEKTIVT AVLAEGSNANDE AV VISMUT OCH ANTIMON UR ELEKTROLYT SPECIELLT VID ELEKTROLYTISK RENING AV KOPPAR
US3238128A (en) Apparatus and process for treatment of liquids with lime
DE3440894C1 (en) Process for the joint reprocessing of spent photographic developing and fixing solutions
KR101055073B1 (en) Metal separation control method and apparatus
US4713156A (en) Process for regulating an electro-dialyzer and improved electrodialysis apparatus
SU679636A1 (en) Method of controlling the process of purifying nickel-cobalt solutions from iron
JPH0675707B2 (en) Method and apparatus for treating liquid containing cyanide compound
SU621768A1 (en) Method of solving metal hydroxide and reduction of metal
SU833556A1 (en) Method of purifying aqueous solutions from metals
SU1066657A1 (en) Method of automatic regulation of the process of preparing ore for flotation
RU1777065C (en) Method of volt-amperometric determination of concentration of nickel in solutions of zinc sulfate
JP2000258393A (en) Method for measuring and controlling lead/cadmium concentration in drain
Ishibashi et al. Amperometric Titrations. IV. The Use of Metal Electrode of High Negative Potential and its Application to the Determination of Sulfur in Pyrite
SU1054294A1 (en) Method for separating selenium and tellurium
US5154806A (en) Process for reducing energy requirements in the electrolytic production of chlorine and sodium hydroxide
JPH01222099A (en) Method for removing fe ion in plating solution
SE451604B (en) WAY TO CONTROL A GALVANIC COLLECTION OF A METAL