JPS62272556A - Three-dimensional semiconductor integrated circuit device and manufacture thereof - Google Patents

Three-dimensional semiconductor integrated circuit device and manufacture thereof

Info

Publication number
JPS62272556A
JPS62272556A JP61116470A JP11647086A JPS62272556A JP S62272556 A JPS62272556 A JP S62272556A JP 61116470 A JP61116470 A JP 61116470A JP 11647086 A JP11647086 A JP 11647086A JP S62272556 A JPS62272556 A JP S62272556A
Authority
JP
Japan
Prior art keywords
semiconductor
insulating film
dimensional
substrate
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61116470A
Other languages
Japanese (ja)
Inventor
Takashi Kato
隆 加藤
Masao Taguchi
眞男 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61116470A priority Critical patent/JPS62272556A/en
Priority to KR1019870002514A priority patent/KR900008647B1/en
Priority to DE8787104091T priority patent/DE3778944D1/en
Priority to EP87104091A priority patent/EP0238089B1/en
Publication of JPS62272556A publication Critical patent/JPS62272556A/en
Priority to US07/325,122 priority patent/US4939568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a 3-dimensional IC laminated in multiple layers in high yield by using a unit 3-dimensional element having a semiconductor circuit electrically connected through a conductor post passing through a semiconductor substrate on both sides of the substrate and connecting terminals led on an insulating film to be coated from the conductor circuits. CONSTITUTION:A 3-dimensional semiconductor integrated circuit device is composed to include a unit 3-dimensional semiconductor integrated circuit element A having semiconductor circuits 2a, 2b on both side surfaces of a semiconductor substrate 1 so that the circuits 2a, 2b are electrically connected by a conductor post 4 insulated from the substrate 1 through the substrate 1 and connecting terminals 6, 7 led from the circuits 2a, 2b on at least one of insulating film 5 to be coated of the films 5 for covering the circuits 2a, 2b. Thus, since the 3-dimensional ICs are formed of multilayer unit of the unit 3-dimensional IC element of both side structure, its integration density is improved. Since it has a laminated structure, good components can be sorted at every semiconductor circuit of each layer to be laminated, its manufacturing yield is improved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔目 次〕 概要 産業上の利用分野 従来の技術 発明が解決しようとする問題点 問題点を解決するための手段 作用 実施例 構造の一実施例の側断面図(第2図) 製造方法の一実施例の工程断面図(第3図)配線コンタ
クト部形成工程図(第4図)FROM通用例の模式図(
第5図) マスクROM適用例の模式図(第6図)発明の効果 〔概 要〕 半導体基板の両面に該基板内を貫通する導電体ポスト(
スルーホール)を介して相互に電気的に接続する半導体
回路を有し、それぞれの半導体回路から被覆絶縁膜上に
接続端子が導出されてなる単位三次元半導体集積回路素
子により構成される三次元半導体集積回路とその製造方
法。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Table of Contents] Overview Industrial Field of Application Conventional Technology Problems to be Solved by the Invention Means for Solving the Problems Action Example Structure Implementation A side sectional view of an example (Fig. 2) A process sectional view of an example of the manufacturing method (Fig. 3) A process diagram of forming a wiring contact portion (Fig. 4) A schematic diagram of a general example of FROM (
(Fig. 5) Schematic diagram of an application example of a mask ROM (Fig. 6) Effects of the invention [Summary] Conductor posts (
A three-dimensional semiconductor consisting of a unit three-dimensional semiconductor integrated circuit element, which has semiconductor circuits that are electrically connected to each other via (through-holes), and connection terminals are led out from each semiconductor circuit onto a covering insulating film. Integrated circuits and their manufacturing methods.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体集積回路装置が縦方向に積層高集積化
されてなる三次元半導体集積回路装置(IC)の改良に
関する。
The present invention relates to an improvement in a three-dimensional semiconductor integrated circuit device (IC) in which semiconductor integrated circuit devices are vertically stacked and highly integrated.

従来のIcは、厚い(プロセス工程における破損を避け
るため所要の厚さ以上に制限される)シリコン(Si)
基板の一表面のみに半4体回路が形成され°ζいた。
Conventional ICs are made of thick silicon (Si) (limited to a required thickness to avoid damage during process steps).
A half-quad circuit was formed on only one surface of the board.

そして該ICの高集積化はチップの拡大、素子及び配線
の微細化と高密度配置等によって達成されていた。
High integration of the IC has been achieved by expanding the size of the chip, miniaturizing elements and wiring, and arranging them at high density.

然しなからこの方法では、チップの大きさが制限される
ことから集積度に限界を生ずるので、更に集積度の向上
を図るために三次元構造の半導体ICが開発されている
However, with this method, the size of the chip is limited, which puts a limit on the degree of integration, so three-dimensional semiconductor ICs have been developed to further improve the degree of integration.

〔従来の技術〕[Conventional technology]

従来、三次元ICの製造方法として一般化しているのは
S C) 1 (Silicon On In5ula
tor)技術を用いる方法である。
Conventionally, the popular method for manufacturing 3D ICs is S C) 1 (Silicon On In5ula).
This is a method using the tor technology.

この方法によれば、下部の半導体素子上に絶縁膜を気相
成長し、該絶縁股上に多結晶シリコン層を気相成長し、
レーザアニール等の方法により該多結晶シリコン層を再
結晶化し、該再結晶シリコン層に上部の半導体素子を形
成することにより三次元tCが製造される。
According to this method, an insulating film is grown in vapor phase on the lower semiconductor element, a polycrystalline silicon layer is grown in vapor phase on the insulating layer,
A three-dimensional tC is manufactured by recrystallizing the polycrystalline silicon layer by a method such as laser annealing and forming an upper semiconductor element on the recrystallized silicon layer.

しかしこの方法は、レーザアニールに際して結晶粒界の
少ない良質の再結晶シリコン層を再現性良く形成するこ
とが難しいごとにより、多層に積層される三次元ICを
歩留り良く形成するのが極めて困難であるという問題が
あった。
However, with this method, it is difficult to form a high-quality recrystallized silicon layer with few grain boundaries with good reproducibility during laser annealing, making it extremely difficult to form three-dimensional ICs stacked in multiple layers with a high yield. There was a problem.

また・該三次元IC内にマスクROMを配設しようとす
ると、情報の書込みに相当するコンタクト窓の形成工程
が、三次元構造を形成するプロセス工程の中途に入って
来るため、ROM情報人手から出荷までの製造手番が非
常に長引くという問題を生ずる。
In addition, when trying to arrange a mask ROM in the three-dimensional IC, the process of forming contact windows, which corresponds to writing information, comes in the middle of the process of forming the three-dimensional structure. A problem arises in that the manufacturing process until shipment is extremely long.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする問題点は、従来方法による三
次元ICが、多層に積層することが製造歩留り上手可能
に近< (1層当たり50%の歩留りとすると4層積層
しただけで6%程度の歩留りに下がってしまうので実用
的でない)、また短手番による所要マスクROMの配設
が困難であった点である。
The problem to be solved by the present invention is that it is almost possible to improve the manufacturing yield by stacking three-dimensional ICs in multiple layers using the conventional method. (It is not practical because the yield would be reduced to a level of

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、半導体基板(1)の両面に半導体回路(
2a) (2b)が形成され、該半導体回路(2a) 
(2b)が該半導体基板(1)を貫通する該半導体基板
と絶縁された導電体ポスト(4)によって電気的に接続
されてなり、且つ、該半導体回路(2a) (2b)上
を覆う被覆絶縁膜(5z) uの少なくとも一方の被覆
絶縁膜の表面に、その下部の半4体回路(2a) (2
b)から導出された接続端子(6) (7)を有する単
位三次元半導体集積回路素子(A)を含んでなる本発明
による三次元半導体集積回路装置、及び、 半導体基板の表面に未貫通穴を形成し、該未貫通穴の内
面に絶縁膜を形成し、該未貫通穴を導電体で埋めること
によって該半導体基板に該半導体基板から絶縁された導
電体ポストを形成する工程と、該半導体基板の表面に該
真電体ポストの上端部に電気的に接続する第1の半導体
回路を形成する工程と、該半導体基板上に第1の被覆絶
縁膜を形成し、該第1の被覆絶縁膜の表面に該第1の半
導体回路から接続端子を導出する工程と、該半導体基板
上に支持基板を貼着した後、該半導体基板の裏面を研磨
して該導電体ポスト下端部を表出せしめる工程と、該半
導体基板の裏面に、該導電体ポストの下端部に電気的に
接続する第2の半導体回路を形成する工程と、該半導体
基板の裏面上に第2の被覆絶縁膜を形成し、該第2の被
覆絶縁膜の表面に第2の半導体回路から接続端子を導出
する工程とを有する本発明による三次元半導体集積回路
装置の製造方法によって解決される。
The above problem is that semiconductor circuits (
2a) (2b) is formed, and the semiconductor circuit (2a)
(2b) is electrically connected to the semiconductor substrate by an insulated conductor post (4) penetrating the semiconductor substrate (1), and the coating covers the semiconductor circuits (2a) and (2b). Insulating film (5z) On the surface of at least one covering insulating film of u, the half-quad circuit (2a) (2
A three-dimensional semiconductor integrated circuit device according to the present invention, comprising a unit three-dimensional semiconductor integrated circuit element (A) having connection terminals (6) and (7) led out from b), and a non-through hole in the surface of the semiconductor substrate. forming a conductor post insulated from the semiconductor substrate on the semiconductor substrate by forming an insulating film on the inner surface of the non-through hole and filling the non-through hole with a conductor; forming a first semiconductor circuit electrically connected to the upper end of the true electric post on the surface of the substrate; forming a first covering insulating film on the semiconductor substrate; A step of leading out a connection terminal from the first semiconductor circuit on the surface of the film, and after pasting a support substrate on the semiconductor substrate, polishing the back surface of the semiconductor substrate to expose the lower end of the conductor post. forming a second semiconductor circuit electrically connected to the lower end of the conductive post on the back surface of the semiconductor substrate; and forming a second covering insulating film on the back surface of the semiconductor substrate. However, this problem is solved by the method of manufacturing a three-dimensional semiconductor integrated circuit device according to the present invention, which includes the step of leading out connection terminals from the second semiconductor circuit on the surface of the second covering insulating film.

〔作 用〕[For production]

即ち本発明によれば第1図に模式側断面を示す原理図の
ように、半導体基板(1)の両面に導電体ポスト(4)
で相互に接続された半導体回路が形成されるので、1枚
の半導体基板に形成される半導体回路の集積度は2倍に
向上し、更に該単位三次元IC(A)がその両面に導出
された接続端子(6)(7)を介して電気的に接続され
て積み重ねられるので、高集積度の多重積層構造の三次
元IC(B)を形成するごとが可能になる。
That is, according to the present invention, as shown in the principle diagram showing a schematic side cross section in FIG.
Since interconnected semiconductor circuits are formed on a single semiconductor substrate, the degree of integration of semiconductor circuits formed on a single semiconductor substrate is doubled, and furthermore, the unit three-dimensional ICs (A) can be drawn out on both sides of the semiconductor substrate. Since the semiconductor devices are electrically connected via the connecting terminals (6) and (7) and stacked, it is possible to form a three-dimensional IC (B) having a multi-layered structure with a high degree of integration.

また各層の半導体回路(2a) (2b)を構成する半
真体素子は総て半纏体重結晶基板(1)によって形成さ
れるのでその特性は安定すると同時に、上記積み重ね構
造(B)がとれることにより特性選別を各層の半導体回
路(2a) (2b)ごとに行うことが可能になるので
、多層構造の三次元ICの製造歩留りが大幅に向上する
Furthermore, since the semi-solid elements constituting the semiconductor circuits (2a) (2b) in each layer are all formed by the semi-integrated heavy crystal substrate (1), their characteristics are stable, and at the same time, the stacked structure (B) described above is achieved. Since characteristics can be selected for each layer of semiconductor circuits (2a) (2b), the manufacturing yield of multilayer three-dimensional ICs is greatly improved.

更にまた上記積み重ね構造(B)がとれることにより、
基板(1)下面の配線変更が積み上げ積層工程の直前で
単位三次元tC素子(A)ごとになし得るので、ROM
情報の変更等に際しての配線変更が極めて容易になり、
ROMを含んだ多層構造の三次元ICの製造手番も大幅
に短縮される。
Furthermore, by obtaining the above-mentioned stacked structure (B),
Since the wiring on the bottom surface of the substrate (1) can be changed for each unit three-dimensional TC element (A) immediately before the stacking and laminating process, the ROM
It becomes extremely easy to change the wiring when changing information, etc.
The manufacturing time for a multilayer three-dimensional IC including a ROM is also greatly reduced.

〔実施例〕〔Example〕

以下本発明を図示実施例により、具体的に説明する。 The present invention will be specifically described below with reference to illustrated embodiments.

第2図は本発明の構造の一実施例を示す模式側断面図、
第3図(a)〜+11は本発明の製造方法の一実施例を
示す工程断面図、第4図は導電体ポストと回路配線との
コンタクトの形成方法を示す工程断面図、第5図は本発
明に係るl)ROMの構造を示す模式平面図(al及び
模式側断面図fbl、第6図は本発明に係るマスクRO
Mの回路図(al、情報“1”の場合の模式側断面図(
bl及び情報“0”の場合の模式側断面図(C)である
FIG. 2 is a schematic side sectional view showing an embodiment of the structure of the present invention;
3(a) to +11 are process cross-sectional views showing one embodiment of the manufacturing method of the present invention, FIG. 4 is a process cross-sectional view showing a method for forming contacts between conductor posts and circuit wiring, and FIG. l) A schematic plan view (al) showing the structure of the ROM according to the present invention and a schematic side sectional view fbl, FIG. 6 shows the mask RO according to the present invention.
Circuit diagram of M (al, schematic side sectional view in case of information “1”)
FIG. 3 is a schematic side sectional view (C) in the case of bl and information “0”.

全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.

本発明に係る積層構造の三次元ICは例えば第2図に示
すように、セラミック等よりなる配線基板46上に第1
の単位三次元IC素子(A、)が固着され、更にその上
に第2の単位、三次元IC素子(A2)が積層固着され
てなっている。
For example, as shown in FIG. 2, a three-dimensional IC with a laminated structure according to the present invention has a first layer on a wiring board 46 made of ceramic or the like.
A unit three-dimensional IC element (A,) is fixed thereon, and a second unit three-dimensional IC element (A2) is further laminated and fixed thereon.

即ち、第1の単位三次元IC素子(A、)は、例えばp
型シリコン(p−3i)基板1の表面に第1のnチャネ
ルMOSトランジスタ(Trl)を含む第1の半導体回
路が形成され、且つ裏面に第2のnチャネルMO3I−
ランジスタ(Tr2)を含む第2の半導体回路が形成さ
れ、例えば二酸化シリコン(SiO□)よりなる層間絶
縁膜26及び41上に配設された表面と裏面のn゛型型
詰結晶シリコンポリSi)回路配線27と42とが、p
−Si基板1を貫通し且つ叶Si基板lとの間がSiO
□絶縁膜3によって絶縁されたn°型ポリSiよりなる
導電体ボスト4a、4bによって電気的に接続され、両
面の半導体回路上が少なくとも上層部に熱硬化性シリコ
ン樹脂層を有する被覆絶縁膜29.45で覆われ、下部
の回路配線27.42から前記被覆絶縁膜29.45の
表面に例えばアルミニウム(A1)よりなる接続端子!
1】ち熱圧着端子6a、6b、7a、 7bがそれぞれ
導出されてなっており、熱圧着手段によりセラミック等
よりなる配線基板46上に78.7bを介し電気的に接
続し、且つ被覆絶縁膜45を構成する熱硬化性シリコン
樹脂層を介して強固に融着固定されている。
That is, the first unit three-dimensional IC element (A,) is, for example, p
A first semiconductor circuit including a first n-channel MOS transistor (Trl) is formed on the front surface of a type silicon (p-3i) substrate 1, and a second n-channel MOS transistor (Trl) is formed on the back surface.
A second semiconductor circuit including a transistor (Tr2) is formed, and the front and back surfaces are formed on interlayer insulating films 26 and 41 made of, for example, silicon dioxide (SiO□). The circuit wirings 27 and 42 are
-SiO through the Si substrate 1 and between the Si substrate 1 and the Si substrate 1
□A covering insulating film 29 that is electrically connected by conductor posts 4a and 4b made of n° type poly-Si insulated by the insulating film 3, and has a thermosetting silicone resin layer on at least the upper layer on the semiconductor circuits on both sides. .45, and connecting terminals made of aluminum (A1), for example, are connected from the lower circuit wiring 27.42 to the surface of the covering insulating film 29.45!
1) Thermocompression bonding terminals 6a, 6b, 7a, and 7b are respectively led out, and are electrically connected to the wiring board 46 made of ceramic or the like by thermocompression bonding means via 78.7b, and are coated with an insulating film. 45 is firmly fused and fixed via a thermosetting silicone resin layer.

そして第2の単位三次元1c素子(A2)は表面部の熱
圧着端子6a、6b及び熱硬化性シリコン樹脂層29h
を形成しないことを除いて第1の単位三次元Ic素子(
A、)と同様の構造を有しく回路構造は勿論同一とは限
らない)、熱圧着手段により熱圧着端子7a、7bを介
し第1の単位三次元IC素子(AI)の熱圧着端子6a
、6bと電気的に接続され、且つ裏面の被覆絶縁膜45
を構成する熱硬化性シリコン樹脂層により第1の単位三
次元(C素子(A、)表面の熱硬化性シリコン樹脂層2
9bと強固に融着固定されることにより第1の単位三次
元IC素子(A、)上に、積層されてなっている。
The second unit three-dimensional 1c element (A2) includes thermocompression terminals 6a and 6b on the surface and a thermosetting silicone resin layer 29h.
The first unit three-dimensional Ic element (
The circuit structure is, of course, not necessarily the same as that of A, ), but the thermocompression terminal 6a of the first unit three-dimensional IC element (AI) is attached via the thermocompression terminals 7a and 7b by thermocompression means.
, 6b, and the covering insulating film 45 on the back surface.
The thermosetting silicone resin layer 2 on the surface of the first unit three-dimensional (C element (A,)
By being firmly fused and fixed to 9b, it is laminated on the first unit three-dimensional IC element (A,).

以下に本発明の三次元ICをその製造方法により更に詳
細に説明する。
The three-dimensional IC of the present invention will be explained in more detail below with reference to its manufacturing method.

第3図(a)参照 本発明の方法により例えば本発明の構造に係る三次元n
−MO3ICを形成するに際しては、叶Si基板1の表
面1aの所定の複数位置に、通常のイオンミーリング法
或いはりアクティブ・イオンエツチング法により、例え
ば直径2〜4μm、深さ10μm程度の未貫通穴21a
、21b等を形成し、次いで熱酸化及び気相成長により
上記未貫通穴21a、21b等の内面を含む基板1上に
厚さ例えば5000人程度0SiO□屯縁膜3を形成し
、次いで気相成長法により該基板上に、上記未貫通穴2
La、21b等を充填し得る厚さに第1の導電体となる
n゛型ポリSi層104を形成する。
Referring to FIG. 3(a), the method of the present invention can be used, for example, to create a three-dimensional structure according to the structure of the present invention.
- When forming the MO3IC, non-through holes with a diameter of 2 to 4 μm and a depth of about 10 μm are formed at a plurality of predetermined positions on the surface 1a of the Si substrate 1 by a normal ion milling method or an active ion etching method. 21a
. The above-mentioned non-through hole 2 is formed on the substrate by a growth method.
An n-type poly-Si layer 104, which becomes a first conductor, is formed to a thickness that allows filling La, 21b, etc.

第3図(bl参照 次いて等方性ドライエノナング手段によるエッチハック
を行って基板l上面のポリSi層104のみを選択的に
除去し、次いで通常のプラズマエツチング等により基板
1上面のSiQ□絶縁膜3を除去し該基1反1内にn゛
型ポリSi層104よりなりSiO□i色縁膜3によっ
て基板1と絶縁された導電体ボスト4a、4b等を形成
する。
FIG. 3 (See BL) Next, etch hacking using isotropic dry enoneration means is performed to selectively remove only the poly-Si layer 104 on the top surface of the substrate 1, and then the SiQ□ insulating film on the top surface of the substrate 1 is etched by ordinary plasma etching. 3 is removed, and conductor posts 4a, 4b, etc. made of an n-type poly-Si layer 104 and insulated from the substrate 1 by the SiO□i colored edge film 3 are formed in the substrate 1.

第3図(C1参照 次いで、熱酸化によるゲート酸化膜の形成、化学気相成
長(CVD)法及びリアクティブ・イオンエソチンク(
RIE)法によるゲート電極の形成、イオン注入法によ
るソース・ドレイン領域の形成等の工程を有する通常の
MOSプロセスにより、上記p−3i基板1の上面にゲ
ート酸化膜22、ポリSiゲート電極23、n゛゛ソー
ス領域24、n゛型型トレイ領領域25りなる第1のn
チャネルMO3I−ランジスタ(’rrl) 、及び図
示しない抵抗、ギヤバッタ等の素子を形成する。
Figure 3 (see C1) Next, a gate oxide film is formed by thermal oxidation, chemical vapor deposition (CVD) and reactive ion etching (
A gate oxide film 22, a poly-Si gate electrode 23, A first n source region 24 and an n type tray region 25
A channel MO3I-transistor ('rrl), and elements such as a resistor and a gear batter (not shown) are formed.

そして該主面上に、CVD法より例えば厚さ5000人
程度0S102層間絶縁膜26を形成する。
Then, an OS102 interlayer insulating film 26 having a thickness of about 5,000 layers, for example, is formed on the main surface by the CVD method.

第3図(di参昭 次いで、通常のりソグラフィ技術により上記層開繊縁膜
26にコンタクト窓を形成し、次いでCVD法によるn
゛型ポリSt層の形成、通常のりソグラフィ技術による
パターンニングの工程を経て、該層間絶縁+1!26上
にソース配′s27、図示しないドレイン配線及びその
他の配線28等のポリSi回路配線を形成する。なおこ
の際、例えばソース配線27を導電体ポスト4aの上端
部に、その他の配線28を導電体ポスト4bの上端部に
それぞれコンタクト窓を介し接触せしめる。
FIG. 3 (di reference) Next, a contact window is formed in the layer spread edge film 26 by ordinary glue lithography technique, and then a contact window is formed by CVD method.
After forming a ゛-type polySt layer and patterning using normal glue lithography technology, poly-Si circuit wiring such as a source wiring s27, a drain wiring (not shown), other wiring 28, etc. is formed on the interlayer insulation +1!26. do. At this time, for example, the source wiring 27 is brought into contact with the upper end of the conductor post 4a, and the other wiring 28 is brought into contact with the upper end of the conductor post 4b through contact windows.

次いで上記配線が形成された主面上にCVD法により厚
さ5000人程度0第1の被覆絶縁膜(パッシベーショ
ン膜)29aを形成し、次いで該主面上にスピンコード
法により、 H3 (CI+3) :+SiOSi  O(C113) y
O−−−−−−−PMSS (C1h) :+SiOSi   O(CI!3)コH
3 上記に分子構造を示すシリル化ポリメチルシルセスキオ
キサン(PMSS)等の熱硬化性シリコン樹脂層よりな
る第2の被覆絶縁膜29bをその表面が平坦化する厚さ
に塗布形成する。
Next, a first covering insulating film (passivation film) 29a having a thickness of about 5,000 layers is formed by CVD on the main surface on which the wiring is formed, and then H3 (CI+3) is formed on the main surface by spin code method. :+SiOSiO(C113)y
O---------PMSS (C1h) :+SiOSi O(CI!3)koH
3. A second covering insulating film 29b made of a thermosetting silicone resin layer such as silylated polymethylsilsesquioxane (PMSS) having the molecular structure shown above is coated to a thickness that flattens the surface thereof.

第3図(e)参照 次いで該基板を100℃程度に加熱して上記P?’lS
Sよりなる第2の被覆絶縁膜29b中の溶剤を蒸発させ
た後、該第2の被覆絶縁膜29b上にエツチングマスク
となる2000人程度0厚さのアルミニウム(八l)層
30を形成し、通常のりソグラフィ技術により該AIマ
スク層30に熱圧着端子形成領域に対応する開孔31a
 、31bを形成し、酸素プラズマにより被覆絶縁膜2
9bをエツチングし、次いでCHF、ガス等によるRI
E処理を行って被覆絶縁膜29a及び29bに前記ポリ
St配線例えば27及び28の一部を表出する開孔32
a 、32bを形成する。
Refer to FIG. 3(e). Next, the substrate is heated to about 100° C. and the above P? 'ls
After evaporating the solvent in the second covering insulating film 29b made of S, an aluminum (8L) layer 30 having a thickness of about 2,000 mm is formed as an etching mask on the second covering insulating film 29b. , an opening 31a corresponding to a thermocompression bonding terminal forming area is formed in the AI mask layer 30 by normal gluing lithography technique.
, 31b is formed, and the insulating film 2 is coated with oxygen plasma.
9b, then RI with CHF, gas, etc.
Openings 32 are formed in the covering insulating films 29a and 29b by E treatment to expose a portion of the polyst wirings 27 and 28, for example.
a, forming 32b.

第3図(f)参照 次いで該主面上に蒸着法等により被覆絶縁膜29より厚
く又は等しく熱圧着端子用の金属層例えばAt層106
を形成し、次いで該A1層106の前記開孔32a 、
 32b上に形成された四部33に、スピンコード及び
Ozガスによるエッチパック工程を経てレジスト34を
埋込む。
Referring to FIG. 3(f), a metal layer 106 for thermocompression terminals, for example, an At layer 106, which is thicker than or equal to the covering insulating film 29, is then deposited on the main surface by vapor deposition or the like.
, and then the opening 32a of the A1 layer 106,
A resist 34 is embedded in the four portions 33 formed on the resist 32b through an etch pack process using a spin cord and Oz gas.

第3図(g)参照 次いで、上記レジスト34をマスクにして該主面上のへ
1層106を選択的にエツチング除去し、次いでレジス
ト34を除去することによって、前記被覆絶縁膜29 
(29a及び29b)に埋込まれソース配線27及びそ
の他の配線28゛に接するAtの接続端子即ち熱圧着端
子6a及び6bを形成する。
Referring to FIG. 3(g), the first layer 106 on the main surface is selectively etched away using the resist 34 as a mask, and then the resist 34 is removed to remove the covering insulating film 29.
At connection terminals, that is, thermocompression bonding terminals 6a and 6b, which are embedded in (29a and 29b) and are in contact with the source wiring 27 and other wiring 28', are formed.

第3図(hl参照 次いで上記基板の主面(表面)側に、熱可塑性又は熱分
解性を有し且つ湿性雰囲気熱処理で剥離可能な樹脂例え
ばポリイミド35によって、石英等よりなる支持基板3
6を貼着し、該シリコン基板1の裏面を通常の平面研磨
手段により導電体ボスト4a、4b等の下端部が表出す
るまで平面研磨し、最終的にメカニカルケミカルエツチ
ング等の方法により鏡面仕上げする。この際、シリコン
基板の厚さは例えば5〜7μm程度となる。
FIG. 3 (See hl) Next, a supporting substrate 3 made of quartz or the like is coated with a thermoplastic or thermally decomposable resin such as polyimide 35 that can be peeled off by heat treatment in a humid atmosphere on the main surface (surface) side of the substrate.
6 is pasted, and the back surface of the silicon substrate 1 is polished by ordinary surface polishing means until the lower ends of the conductor posts 4a, 4b, etc. are exposed, and finally mirror-finished by a method such as mechanical chemical etching. do. At this time, the thickness of the silicon substrate is, for example, about 5 to 7 μm.

次いで該半導体基板1の裏面にデバイスを形成する工程
に入るが、この裏面デバイス形成工程は半導体基板1が
薄く強度が弱いため、半導体基板1を上記支持基板36
に貼着したままで行われる。
Next, a step of forming a device on the back side of the semiconductor substrate 1 begins, but in this back side device forming step, the semiconductor substrate 1 is placed on the support substrate 36 because the semiconductor substrate 1 is thin and weak.
It is done with the tape still attached.

そのため上記ポリイミド35等の貼着用樹脂の分解等を
抑えて接着強度を維持する必要があり、基板温度を上昇
させることは避けなければならない。
Therefore, it is necessary to maintain adhesive strength by suppressing the decomposition of the adhesive resin such as the polyimide 35, and it is necessary to avoid increasing the substrate temperature.

従って気相成長、不純物導入領域の活性化等の熱処理は
総てレーザ等短時間のパルス照射によって達成される表
面加熱手段によって行われる。
Therefore, all heat treatments such as vapor phase growth and activation of the impurity-introduced region are performed by surface heating means achieved by short-time pulse irradiation such as a laser.

第3図(i)参照 先ずLOOTorr程度に減圧したモノシラン(SiH
a)と酸素(O,t)の混合ガス中で該シリコン基板1
の裏面のみをレーザ照射により400〜500℃程度に
界温し、該裏面上にCVD法によるゲートSiO□膜3
6を形成し、次いで100Torr程度に減圧したS 
i 114とフォスフイン(PH3)の混合ガス中で該
基板1の裏面のみを600〜650程度に昇温し一ヒ記
ゲートsio□膜37上に厚さ5000人程度0第゛型
ポリSi層を形成し、通常のりソグラフィ手段によりバ
クーンニングして上記n゛型ポリSi層よりなる第2の
ゲート電極38を形成し、次いで通常の選択イオン注入
技術によりjAp型シリコン基板1の裏面に上記第2の
ゲート電極38に整合して砒素(As)を注入し、レー
ザ照射により該イオン注入領域を850〜900℃程度
に加熱し活性化してn゛型の第2のソース領域39及び
第2のドレイン領域40を形成する。
Refer to Figure 3 (i). First, monosilane (SiH
The silicon substrate 1 in a mixed gas of a) and oxygen (O, t)
Only the back surface of is heated to about 400 to 500°C by laser irradiation, and a gate SiO□ film 3 is deposited on the back surface by CVD method.
6 was formed, and then the pressure was reduced to about 100 Torr.
In a mixed gas of i 114 and phosphine (PH3), only the back surface of the substrate 1 is heated to about 600 to 650 ℃, and a 0-type poly-Si layer with a thickness of about 5000 is formed on the gate sio□ film 37. The second gate electrode 38 made of the n-type poly-Si layer is formed by back-cooning using ordinary lithographic means, and then the second gate electrode 38 made of the n-type poly-Si layer is formed on the back surface of the jAp-type silicon substrate 1 by ordinary selective ion implantation technique. Arsenic (As) is implanted in alignment with the gate electrode 38, and the ion-implanted region is heated to about 850 to 900° C. by laser irradiation to activate it, forming an n-type second source region 39 and a second drain. A region 40 is formed.

第3図(J)参照 次いで前記同様S i H,と02の混合ガス中でレー
ザ照射して上記基板の裏面上に厚さ5000人程度0S
iO□層間絶縁膜41を形成し、次いで該Sin、層間
絶縁膜41における例えば導電体ポスト4aの上部を含
む第2のソース領域39上部、第2のドレイン領域40
の上部及び導電体ポスl−4bの上部に、通常のりソグ
ラフィ手段によりコンタクト窓を形成し、次いでnI記
同様S iHaとPH,の混合ガス中でレーザ照射を行
って該基板の裏面上に厚さ5000人程度0S゛型ポリ
Si層を形成し、通常の方法によるパターンニングを行
ってn゛型ポリStよりなり、ソース領域39と導電体
ボス)4aの端面に接触する第2のソース配線42、ド
レイン領域40に接する第2のドレイン配線43、導電
体ボスト4bの端面に接する第2のその他の配線44を
形成する。
Refer to FIG. 3(J). Next, as described above, a laser beam is irradiated in a mixed gas of S i H, and 02 to form a layer of 0S with a thickness of about 5000 on the back surface of the substrate.
An iO□ interlayer insulating film 41 is formed, and then the Si is formed on the interlayer insulating film 41, for example, on the upper part of the second source region 39 including the upper part of the conductor post 4a, and on the second drain region 40.
A contact window is formed on the top of the substrate and on the top of the conductor post l-4b by normal lamination lithography, and then, as in section 1, laser irradiation is performed in a mixed gas of SiHa and PH to form a thick layer on the back surface of the substrate. About 5,000 people formed a 0S type poly-Si layer and patterned it by a normal method to form a second source wiring made of n type polySt and in contact with the source region 39 and the end surface of the conductor boss 4a. 42, a second drain wiring 43 in contact with the drain region 40 and a second other wiring 44 in contact with the end surface of the conductor post 4b are formed.

第3図(kl参照 次いで該基板の裏面上にスピンコード法により厚さ1μ
m程度のPMSS層よりなる被覆絶縁膜45を形成し、
第1図(e)〜(g)で説明したのと同様な方法により
、Atからなり、被M@R膜45の表面に例えば第2の
ソース配線42を導出する熱圧着端子7a及び第2のそ
の他の配線44を導出する熱圧着端子7bを形成する。
Figure 3 (see kl) Next, a layer of 1 μm thick was coated on the back side of the substrate using a spin code method.
A covering insulating film 45 made of a PMSS layer of about m is formed,
By a method similar to that explained in FIGS. 1(e) to (g), a thermocompression bonding terminal 7a and a second source wiring 42 made of At and leading out, for example, the second source wiring 42 to the surface of the M@R film 45 are bonded. A thermocompression bonding terminal 7b from which other wiring 44 is led out is formed.

次いで図示しないが、上記基板をレーザスクライブ等の
方法によりチップ形状に切断して両面構造の単位三次元
IC素子(A)が完成する。なお上記切断は貼着樹脂即
らポリイミド層35に達するように行われる。
Although not shown, the substrate is then cut into chip shapes by a method such as laser scribing to complete a unit three-dimensional IC element (A) with a double-sided structure. Note that the above-mentioned cutting is performed so as to reach the adhesive resin, that is, the polyimide layer 35.

なお上記箪位三次元IC素子(八)が積層に際して最上
部素子専用に用いられる場合には、pPlssよりなる
第2の被覆絶縁膜29bの形成及び表面側の熱圧着端子
6a、6bの形成工程は省略されることもある。
In addition, when the above-mentioned three-dimensional three-dimensional IC element (8) is used exclusively as the uppermost element during stacking, the steps of forming the second covering insulating film 29b made of pPlss and forming the thermocompression terminals 6a and 6b on the front side are performed. is sometimes omitted.

次いで上記熱圧着端子7a、7b等を介し各素子(半専
体回路)毎の特性選別がなされ、良品の素子がマーク或
いは記憶される。
Next, characteristics of each element (semi-dedicated circuit) are selected through the thermocompression terminals 7a, 7b, etc., and non-defective elements are marked or stored.

第3図fl)参照 次いで該三次元tCを更に高集積化するに際しては、上
記単位三次元IC素子(AI)、(A2)等が積み重ね
積層される。
Refer to FIG. 3 fl) Next, when the three-dimensional tC is to be further integrated, the unit three-dimensional IC elements (AI), (A2), etc. are stacked and stacked.

先ず例えばセラミック等を用いて構成されている通常の
配線基板46を400〜450℃に加熱し、該配線基板
46の配線47上に支持基板36に貼着されている良品
の単位三次元IC素子(A、)の裏面の熱圧着端子7a
、7b等を圧接し、電気的に接続固着せしめる。被覆絶
縁膜45としてこの単位三次元IC素子の裏面を覆って
いるPMSS層は400℃で溶融し時間の経過と共にキ
ュアーが進んで固化する性質があるので、上記熱圧着に
際し配線基板46と単位三次元IC素子(A1)は被覆
絶縁膜即ちPMSS層45層上5密着固定される。
First, a normal wiring board 46 made of ceramic or the like is heated to 400 to 450°C, and a good unit three-dimensional IC element attached to the support substrate 36 is placed on the wiring 47 of the wiring board 46. Thermocompression terminal 7a on the back side of (A,)
, 7b, etc., to electrically connect and fix them. The PMSS layer covering the back surface of this unit three-dimensional IC element as the covering insulating film 45 has the property of melting at 400°C and curing and solidifying with the passage of time. The original IC element (A1) is closely fixed on the covering insulating film, that is, the PMSS layer 45.

次いで上記熱圧着のなされた単位三次元1c素子(八、
)の上部を選択的に支持基板36の裏面からのランプ、
レーザ等のエネルギー線(L)照射によりlOO〜25
0℃程度に湿性雰囲気中で加熱し、貼着樹脂即ちポリイ
ミド35を剥離させ、熱圧着された単位三次元IC素子
(八、)を支持基板36から分離する。
Next, the unit three-dimensional 1c element (8,
) from the back surface of the support substrate 36;
lOO~25 by irradiation with energy rays (L) such as laser
It is heated to about 0° C. in a humid atmosphere to peel off the adhesive resin, ie, the polyimide 35, and separate the thermocompression bonded unit three-dimensional IC element (8) from the support substrate 36.

次いで酸素プラズマ処理等により上記単位三次元IC素
子(A、)の上面に付着しているポリイミドを完全に除
去する。
Next, the polyimide adhering to the upper surface of the unit three-dimensional IC element (A,) is completely removed by oxygen plasma treatment or the like.

第2図参照 次いで配vA基板を介して200〜250℃に加熱され
た上記単位三次元IC素子(A1)上に、前述と同様な
方法で別の良品単位三次元IC素子(A2)を、熱圧着
端子6aと7a、6bと7bをそれぞれ位置合わせした
状態で熱圧着しその相互間を電気的に接続固着せしめる
Refer to FIG. 2. Next, on the unit three-dimensional IC element (A1) heated to 200 to 250°C via the vA substrate, another good unit three-dimensional IC element (A2) is placed in the same manner as described above. The thermocompression bonding terminals 6a and 7a, 6b and 7b are aligned and thermocompression bonded to each other to electrically connect and fix them.

この際前述のようにPMSS層29b及び45は溶融し
、しかる後固化するので単位三次元IC素子(^、)と
単位三次元IC素子(A2)は該PMSSNを介して強
固に融着固定された状態で積層される。
At this time, as described above, the PMSS layers 29b and 45 are melted and then solidified, so that the unit three-dimensional IC element (^,) and the unit three-dimensional IC element (A2) are firmly fused and fixed via the PMSSN. They are stacked in a stacked state.

なおここで、単位三次元IC素子(A2)は積層の際上
部専用に用いられるために、上面(表面)側のPMSS
層29b及び熱圧着端子6a・6bは形成されていない
Note that since the unit three-dimensional IC element (A2) is used only for the upper part during stacking, the PMSS on the upper surface (front surface) side
Layer 29b and thermocompression terminals 6a and 6b are not formed.

次いで、前述の方法と同様の手段で単位三次元IC素子
(At)上から支持基板36を剥離する。
Next, the support substrate 36 is peeled off from the unit three-dimensional IC element (At) using the same method as described above.

上記本発明の構造において導電体ポストが細い場合には
、層間絶縁膜の該ラル電体ポストに対するコンタクト窓
の位置ずれ等により回路配線と基板が短絡することを避
けるために導電体ポスト先端部周辺の基板面に凹部を形
成し、該凹部内に前記PMSS等の塗布絶縁膜を埋込み
、該埋込み絶縁膜上で導電体ポスト先端部と回路配線と
の接続を行う構造が用いられる。
In the structure of the present invention, if the conductor post is thin, the area around the tip of the conductor post should be avoided to avoid a short circuit between the circuit wiring and the board due to misalignment of the contact window of the interlayer insulating film with respect to the conductor post. A structure is used in which a recess is formed in the substrate surface, a coated insulating film such as PMSS is buried in the recess, and the tip of the conductor post and the circuit wiring are connected on the buried insulating film.

この構造を用いる際には下記に第4図(al〜(C1を
参照して説明する方法が用いられる。
When using this structure, the method described below with reference to FIGS. 4 (al to (C1) is used.

第4図(al参照 導電体ポスト4の形成されたSi基板1上に該導電体ボ
スト4先端部の周囲を取り囲む環状の開孔51を有する
レジストマスク膜52を形成し、該レジストマスク膜5
2の開孔51を介し等方性のエツチング手段例えば弗硝
酸系の液によるウェットエツチングにより該導電型ポス
ト4と基板1の間に介在せしめられている5i(h絶縁
膜3の周囲に例えば幅2μm、深さ1μm程度の凹部5
3を形成する。
4 (see al) A resist mask film 52 having an annular opening 51 surrounding the tip of the conductor post 4 is formed on the Si substrate 1 on which the conductor post 4 is formed, and the resist mask film 5
By wet etching using an isotropic etching means such as a fluoronitric acid solution through the openings 51 of 2, a width of 5i (h) is formed around the insulating film 3, which is interposed between the conductive post 4 and the substrate 1. Concave portion 5 of approximately 2 μm and depth of 1 μm
form 3.

第4図(bl 上記レジストマスク膜52を除去した後、該基板面の上
記凹部53内にスピンコード法等によりPMSS等の塗
布絶縁膜54を埋込む。
FIG. 4 (bl) After removing the resist mask film 52, a coated insulating film 54 such as PMSS is buried in the recess 53 on the substrate surface by a spin code method or the like.

第4図(C)参照 次いで該基板面にCVO法によりSiO2層間絶縁膜2
6を形成し、次いで通常のりソグラフィ手段により該S
ing層間絶縁膜26にコンタクト窓55を形成し、次
いで通常の配線形成法により該コンタクト窓55部にお
いて導電体ポスト4に接触するポリSi回路配線27を
形成する。
Refer to FIG. 4(C). Next, a SiO2 interlayer insulating film 2 is formed on the substrate surface by CVO method.
6 and then the S
A contact window 55 is formed in the interlayer insulating film 26, and then a poly-Si circuit wiring 27 is formed in the contact window 55 portion to contact the conductor post 4 by a normal wiring forming method.

以上の方法によると、導電体ポスト4先端部の周囲に広
い範囲で塗布絶縁膜54が埋込まれるので、コンタクト
窓55が多少位置ずれしても回路配線27が基板lに短
絡することはない。
According to the above method, the coated insulating film 54 is embedded in a wide area around the tip of the conductor post 4, so even if the contact window 55 is slightly displaced, the circuit wiring 27 will not be short-circuited to the substrate l. .

またコンタクト窓のエツチング形成に際し、オーバエツ
チングにより導電体ポスト4に沿ったStO□絶縁膜3
を含む塗布絶縁膜54に凹部が形成され図示のように導
電体ボスト4の先端部が僅かに突出し、回路配線層27
がこれを包み込むように被着されるので、導電体ポスト
4と回路配線27とのコンタクト品質が向上する。
In addition, when forming the contact window by etching, the StO□ insulating film 3 along the conductive post 4 is removed by over-etching.
A recess is formed in the coated insulating film 54 containing
Since the conductive post 4 and the circuit wiring 27 are coated so as to wrap around the conductive post 4, the quality of contact between the conductive post 4 and the circuit wiring 27 is improved.

なお上記配線接続方法は基板裏面側にも同様に適用され
る。
Note that the above wiring connection method is similarly applied to the back side of the board.

次ぎに本発明の絶縁膜を電気的に破壊して情報の書込み
を行う絶縁膜破壊型FROMへの適用例について、第5
図に示す平面図(al及び側断面図(blを参照し説明
する。
Next, we will discuss an example of application of the present invention to an insulating film breakdown type FROM, which writes information by electrically breaking down an insulating film.
The explanation will be given with reference to the plan view (al) and side sectional view (bl) shown in the figure.

図中、11は基板裏面にある電源配線、12は表裏をつ
なぐ配線(導電体ポスト)、13はMOS I−ランジ
スタのソース/ドレイン領域14bとの接続部、14a
 、14bはソース/ドレイン領域、15はワード線、
115は隣のセルのワード線、16はプログラム素子、
17はビット線である。
In the figure, 11 is a power supply wiring on the back side of the substrate, 12 is a wiring connecting the front and back sides (conductor post), 13 is a connection part with the source/drain region 14b of a MOS I-transistor, and 14a
, 14b is a source/drain region, 15 is a word line,
115 is the word line of the adjacent cell, 16 is the program element,
17 is a bit line.

このPROMセルでプログラミングを行う場合、占込み
対象となるセルのワード線15を駆動し、ビット線17
をプログラミング用の高電位にする。これによってプロ
グラム素子16が破壊されてビット線17とソース/ド
レイン領域14aとの導通が起こる。プログラム素子1
6は100人程0の薄い絶縁膜、或いはポリSiによっ
て形成される。(ポリSiの場合プロゲラ−を中に流し
た電流による発熱により周囲から不純物がポリSi中に
拡散してその導電率が変化する現象が利用される。) この場合、プログラミングに必要なパルス電流の瞬時値
は、電源配線の抵抗によって変化する。
When programming this PROM cell, the word line 15 of the cell to be occupied is driven, and the bit line 17 of the cell to be occupied is driven.
to a high potential for programming. This destroys program element 16 and causes conduction between bit line 17 and source/drain region 14a. Program element 1
6 is formed of a thin insulating film of about 100 layers or poly-Si. (In the case of poly-Si, the phenomenon in which impurities from the surroundings diffuse into poly-Si due to the heat generated by the current flowing through the progelater and its conductivity changes is utilized.) In this case, the pulse current required for programming is The instantaneous value changes depending on the resistance of the power supply wiring.

図示しないが基板の片面にデバイスが形成される従来の
構造においては、上記電源配線がソース/ドレイン領域
14bと一体に形成される拡散層で構成されていた。そ
のため配線抵抗が大きくて瞬時電流値が大きくとれず、
書込みが容易でないといった問題が発生するので、設計
時点で上記電源配線を金属配線層で補強する等の対策が
必要であった。そしてこのとき、ビット線も金属配線で
形成されている関係上両者が最適なレイアウト条件を同
時に満たすことは出来ず、セルアレー内に無駄な電源配
線が走るといったことが不可避になり、そのため集積度
の低下を招くという問題点があった。
Although not shown, in a conventional structure in which a device is formed on one side of a substrate, the power supply wiring is composed of a diffusion layer formed integrally with the source/drain region 14b. Therefore, the wiring resistance is large and the instantaneous current value cannot be obtained large.
Since a problem arises in that writing is not easy, countermeasures such as reinforcing the power supply wiring with a metal wiring layer are required at the time of design. At this time, since the bit lines are also formed of metal wiring, it is impossible for both to satisfy the optimal layout conditions at the same time, and it is inevitable that unnecessary power supply wiring will be run within the cell array, resulting in a reduction in the degree of integration. There was a problem in that it caused a decline.

本発明を適用すれば第5図に示すように、電源は基板1
に形成したスルーホール(導電体ポスト)12を介して
基板1の裏面から給電できるので、電源配線11は基板
の裏面にビット線17等の表面の配線と独立に最適化し
幅広い低抵抗の金属材料により低抵抗に形成することが
できる。
If the present invention is applied, as shown in FIG.
Since power can be supplied from the back side of the board 1 through the through holes (conductor posts) 12 formed in the board, the power supply wiring 11 is optimized independently of the wiring on the front side such as the bit line 17 on the back side of the board, and is made of a wide range of low-resistance metal materials. Therefore, it can be formed with low resistance.

従って、該ROMアレーの集積度の向上が図れ、且つ書
込みが容易に且つ確実に行われるようになるのでその信
頼度が向上する。
Therefore, the degree of integration of the ROM array can be improved, and since writing can be performed easily and reliably, its reliability is improved.

次ぎに本発明のマスクROMへの適用例について、第6
図に示す回路図(al、情報“1”の場合の模式側断面
図(b)、情報“0”の場合の模式側断面図(C)を参
照して説明する。
Next, we will discuss the application example of the present invention to a mask ROM in the sixth section.
Description will be given with reference to the circuit diagram (al) shown in the figure, a schematic side sectional view (b) in the case of information "1", and a schematic side sectional view (C) in the case of information "0".

図中、−しはワード線、BLはビット線、Vccは電源
線、Ml、M2はメモリ用トランジスタ、1は基板、3
は絶縁膜、4は表裏をつなぐ配線(導電体ポスト) 、
14a 、14bはメモリ用トランジスタのソース/ド
レイン領域、18は基板裏面の層開繊8M膜を示す。
In the figure, - is a word line, BL is a bit line, Vcc is a power supply line, Ml, M2 are memory transistors, 1 is a substrate, 3
is an insulating film, 4 is a wiring (conductor post) connecting the front and back sides,
Reference numerals 14a and 14b indicate source/drain regions of memory transistors, and reference numeral 18 indicates a layer-opened 8M film on the back surface of the substrate.

同図に示すように本発明を適用したマスクROMにおい
ては、メモリ用トランジスタM1、M2等の電源Vcc
に接続されない側のソース/ドレイン14aの底部から
絶縁膜3によって基板1と絶縁された導電体ポスト4が
基板1の裏面に導出され、基板lの裏面を覆って層間絶
縁膜18が形成され、ビット線Bしは基板1裏面の層間
絶縁膜18上に配設される。そして情報は上記層間絶縁
膜18に導電体ポスト4へのコンタクト窓の“あり”な
し”によって書き込まれる。この例においてはコンタク
ト窓“あり”が“1”に対応し、“なし゛が“O′に対
応する。
As shown in the figure, in the mask ROM to which the present invention is applied, the power supply Vcc of memory transistors M1, M2, etc.
A conductor post 4 insulated from the substrate 1 by an insulating film 3 is led out from the bottom of the source/drain 14a on the side not connected to the substrate 1 to the back surface of the substrate 1, and an interlayer insulating film 18 is formed covering the back surface of the substrate l. The bit line B is provided on the interlayer insulating film 18 on the back surface of the substrate 1. Information is then written into the interlayer insulating film 18 depending on whether the contact window to the conductor post 4 is present or absent.In this example, the contact window "present" corresponds to "1", and "absent" corresponds to "O". corresponds to

このようにするとマスクROMの形成を、プロセス工程
の最終段階即し三次元1c素子を積層する直前の段階で
容易に行えるので、マスクROM情報変更に伴う該マス
クROMを有する三次元ICの出荷手番が大幅に短縮さ
れる。
In this way, the mask ROM can be easily formed at the final stage of the process, that is, just before the three-dimensional 1c elements are stacked, so that when the mask ROM information is changed, the shipping of the three-dimensional IC with the mask ROM becomes easier. The number will be significantly shortened.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば三次元ICが、半導体
基板の両面に、該半導体基板を貫通して形成された通電
体ポストを介して相互に接続された半導体回路が形成さ
れてなる両面構造の単位三次元ic素子の多重積層体に
よって形成されるので集積密度が向上する。
As described above, according to the present invention, a three-dimensional IC is a double-sided IC in which semiconductor circuits are formed on both sides of a semiconductor substrate and interconnected through current-carrying posts formed through the semiconductor substrate. Since each unit of the structure is formed by a multilayer stack of three-dimensional IC elements, the integration density is improved.

また各層の半導体回路を構成する半導体素子は総て半導
体単結晶基板の両面に直に形成されるのでその特性は安
定すると同時に、上記積み重ね構造であることにより良
品の選別を各層の半導体回路ごとに行って積層すること
が可能になるので製造歩留りが大幅に向上する。
In addition, since all the semiconductor elements that make up the semiconductor circuits in each layer are formed directly on both sides of the semiconductor single crystal substrate, their characteristics are stable.At the same time, because of the stacked structure mentioned above, good products can be selected separately for each semiconductor circuit in each layer. Since it becomes possible to perform multi-layer stacking, manufacturing yields can be greatly improved.

更にまた上記積み重ね構造であることにより、基板下面
の配線変更が積み上げ(積層)工程の直1t■で単位三
次元IC素子ごとになし得るので、ROM情報の変更等
に際しての配線変更が極めて容易になり、ROMを含ん
だ三次元rcの製造手番が大幅に短縮される。
Furthermore, due to the above-mentioned stacked structure, the wiring on the bottom surface of the board can be changed for each unit three-dimensional IC element in just one step during the stacking (lamination) process, making it extremely easy to change the wiring when changing ROM information, etc. This greatly reduces the number of steps needed to manufacture a three-dimensional RC including ROM.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る三次元ICの原理を示す模式側断
面図、 第2図は本発明の構造の一実施例を示す模式側断面図、 第3図(a)〜(11は本発明の製造方法の一実施例を
示す工程断面図、 第4図は導電体ポストと回路配線とのコンタクトの形成
方法を示す工程断面図、 第5図は本発明に係るFROMの構造を示す模式平面図
(a)及び模式側断面図(b)、第6図は本発明に係る
マスクROMの回路図(al、情報“1”の場合の模式
側断面図fb)及び情報“0”の場合の模式側断面図(
C1である。 図において、 ■は半導体基板、 2a、2bは半導体回路、 3は絶縁膜、 4は導電体ポスト、 5は被覆絶縁膜、 6.7は接続端子、 Aは単位三次元1c素子、 Bは単位三次元IC素子の多重積層体 を示す。
FIG. 1 is a schematic side sectional view showing the principle of a three-dimensional IC according to the present invention, FIG. 2 is a schematic side sectional view showing an embodiment of the structure of the present invention, and FIGS. FIG. 4 is a process cross-sectional view showing an embodiment of the manufacturing method of the invention; FIG. 4 is a process cross-sectional view showing a method for forming contacts between conductor posts and circuit wiring; FIG. 5 is a schematic diagram showing the structure of the FROM according to the present invention. A plan view (a), a schematic side sectional view (b), and FIG. 6 are a circuit diagram of a mask ROM according to the present invention (al, a schematic side sectional view fb in the case of information "1") and a schematic side sectional view fb in the case of information "0". Schematic side sectional view of (
It is C1. In the figure, ■ is a semiconductor substrate, 2a and 2b are semiconductor circuits, 3 is an insulating film, 4 is a conductor post, 5 is a covering insulating film, 6.7 is a connection terminal, A is a unit three-dimensional 1c element, and B is a unit Figure 3 shows a multilayer stack of three-dimensional IC elements.

Claims (1)

【特許請求の範囲】 1、半導体基板(1)の両面に半導体回路(2a)(2
b)が形成され、 該半導体回路(2a)(2b)が該半導体基板(1)を
貫通する該半導体基板と絶縁された導電体ポスト(4)
によって電気的に接続されてなり、 且つ、該半導体回路(2a)(2b)上を覆う被覆絶縁
膜(5)の少なくとも一方の被覆絶縁膜の表面に、その
下部の半導体回路(2a)(2b)から導出された接続
端子(6)(7)を有する単位三次元半導体集積回路素
子(A)を含んでなることを特徴とする三次元半導体集
積回路装置。 2、前記半導体基板の表面の半導体回路がROM回路よ
りなり、裏面の半導体回路が該ROM配線の一部よりな
ることを特徴とする特許請求の範囲第1項記載の三次元
半導体集積回路装置。 3、前記半導体回路を覆う被覆絶縁膜の上層部が、熱硬
化性シリコン樹脂よりなることを特徴とする特許請求の
範囲第1項記載の三次元半導体集積回路装置。 4、前記導電体ポスト先端と該半導体回路若しくは回路
配線との接続が、該導電体ポスト先端部の周囲に埋込ま
れた塗布絶縁膜上でなされてなることを特徴とする特許
請求の範囲第1項記載の三次元半導体集積回路装置。 5、半導体基板の表面に未貫通穴を形成し、該未貫通穴
の内面に絶縁膜を形成し、該未貫通穴を導電体で埋める
ことによって該半導体基板に該半導体基板から絶縁され
た導電体ポストを形成する工程と、 該半導体基板の表面に該導電体ポストの上端部に電気的
に接続する第1の半導体回路を形成する工程と、 該半導体基板上に第1の被覆絶縁膜を形成し、該第1の
被覆絶縁膜の表面に該第1の半導体回路から接続端子を
導出する工程と、 該半導体基板上に支持基板を貼着した後、該半導体基板
の裏面を研磨して該導電体ポスト下端部を表出せしめる
工程と、 該半導体基板の裏面に、該導電体ポストの下端部に電気
的に接続する第2の半導体回路を形成する工程と、 該半導体基板の裏面上に第2の被覆絶縁膜を形成し、該
第2の被覆絶縁膜の表面に第2の半導体回路から接続端
子を導出する工程とを有することを特徴とする三次元半
導体集積回路装置の製造方法。 6、前記第1、第2の被覆絶縁膜が、気相成長絶縁膜と
該気相成長絶縁膜上に塗布した熱硬化性シリコン樹脂膜
よりなることを特徴とする特許請求の範囲第5項記載の
三次元半導体集積回路装置の製造方法。 7、前記導電体ポストの先端部と半導体回路とを接続す
るに際して、該半導体基板面の導電体ポストの周囲に凹
部を形成し、該凹部に塗布絶縁膜を埋込み、該塗布絶縁
膜に該導電体ポストの先端部を突出せしめる凹部を形成
し、該導電体ポストの突出部及び塗布絶縁膜上に半導体
回路の配線材料層を形成する工程を有することを特徴と
する特許請求の範囲第4項記載の三次元半導体集積回路
装置の製造方法。
[Claims] 1. Semiconductor circuits (2a) (2) on both sides of the semiconductor substrate (1)
b) is formed, and the semiconductor circuit (2a) (2b) passes through the semiconductor substrate (1), and the conductor post (4) is insulated from the semiconductor substrate.
and the surface of at least one of the covering insulating films (5) covering the semiconductor circuits (2a) (2b), the semiconductor circuits (2a) (2b) below the covering insulating film (5). A three-dimensional semiconductor integrated circuit device comprising a unit three-dimensional semiconductor integrated circuit element (A) having connection terminals (6) and (7) led out from ). 2. The three-dimensional semiconductor integrated circuit device according to claim 1, wherein the semiconductor circuit on the front surface of the semiconductor substrate is a ROM circuit, and the semiconductor circuit on the back surface is a part of the ROM wiring. 3. The three-dimensional semiconductor integrated circuit device according to claim 1, wherein the upper layer of the covering insulating film covering the semiconductor circuit is made of thermosetting silicone resin. 4. The connection between the conductive post tip and the semiconductor circuit or circuit wiring is made on a coated insulating film embedded around the conductive post tip. The three-dimensional semiconductor integrated circuit device according to item 1. 5. Forming a non-through hole in the surface of the semiconductor substrate, forming an insulating film on the inner surface of the non-through hole, and filling the non-through hole with a conductor to make the semiconductor substrate conductive insulated from the semiconductor substrate. forming a first semiconductor circuit electrically connected to the upper end of the conductive post on the surface of the semiconductor substrate; and forming a first covering insulating film on the semiconductor substrate. forming and leading out connection terminals from the first semiconductor circuit on the surface of the first covering insulating film; and after pasting a support substrate on the semiconductor substrate, polishing the back surface of the semiconductor substrate. a step of exposing the lower end of the conductor post; a step of forming a second semiconductor circuit electrically connected to the lower end of the conductor post on the back surface of the semiconductor substrate; and a step of forming a second semiconductor circuit on the back surface of the semiconductor substrate. A method for manufacturing a three-dimensional semiconductor integrated circuit device, comprising the steps of forming a second covering insulating film on a surface of the second covering insulating film, and leading out connection terminals from a second semiconductor circuit on the surface of the second covering insulating film. . 6. Claim 5, wherein the first and second covering insulating films are comprised of a vapor grown insulating film and a thermosetting silicone resin film coated on the vapor grown insulating film. A method of manufacturing the three-dimensional semiconductor integrated circuit device described above. 7. When connecting the tip of the conductor post and the semiconductor circuit, a recess is formed around the conductor post on the surface of the semiconductor substrate, a coated insulating film is embedded in the recess, and the conductive film is filled with the coated insulating film. Claim 4, further comprising the step of forming a concave portion for protruding the tip of the conductive post, and forming a wiring material layer for a semiconductor circuit on the protruding portion of the conductive post and the coated insulating film. A method of manufacturing the three-dimensional semiconductor integrated circuit device described above.
JP61116470A 1986-03-20 1986-05-20 Three-dimensional semiconductor integrated circuit device and manufacture thereof Pending JPS62272556A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61116470A JPS62272556A (en) 1986-05-20 1986-05-20 Three-dimensional semiconductor integrated circuit device and manufacture thereof
KR1019870002514A KR900008647B1 (en) 1986-03-20 1987-03-19 A method for manufacturing three demensional i.c.
DE8787104091T DE3778944D1 (en) 1986-03-20 1987-03-20 THREE-DIMENSIONAL INTEGRATED CIRCUIT AND THEIR PRODUCTION METHOD.
EP87104091A EP0238089B1 (en) 1986-03-20 1987-03-20 Three-dimensional integrated circuit and manufacturing method therefor
US07/325,122 US4939568A (en) 1986-03-20 1989-03-17 Three-dimensional integrated circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61116470A JPS62272556A (en) 1986-05-20 1986-05-20 Three-dimensional semiconductor integrated circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62272556A true JPS62272556A (en) 1987-11-26

Family

ID=14687900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61116470A Pending JPS62272556A (en) 1986-03-20 1986-05-20 Three-dimensional semiconductor integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62272556A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189141A (en) * 1988-01-25 1989-07-28 Nec Corp Semiconductor device
JPH01192135A (en) * 1988-01-27 1989-08-02 Nec Corp Semiconductor device
JPH0541478A (en) * 1991-07-22 1993-02-19 Nec Corp Semiconductor device and manufacture thereof
JP2002516033A (en) * 1997-04-04 2002-05-28 グレン ジェイ リーディ 3D structure memory
JP2005175306A (en) * 2003-12-12 2005-06-30 Sony Corp Semiconductor integrated circuit device and its manufacturing method
WO2006019156A1 (en) * 2004-08-20 2006-02-23 Zycube Co., Ltd. Method for manufacturing semiconductor device having three-dimensional multilayer structure
JP2009500847A (en) * 2005-07-08 2009-01-08 レイセオン カンパニー MMIC with backside multilayer signal routing
JP2011523203A (en) * 2008-05-06 2011-08-04 ガウサム ヴィスワナダム, Wafer level integration module with interconnection
JP2014170940A (en) * 2013-03-04 2014-09-18 Samsung Electronics Co Ltd Semiconductor element and manufacturing method of the same
US8841778B2 (en) 1997-04-04 2014-09-23 Glenn J Leedy Three dimensional memory structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936789B1 (en) * 1969-11-07 1974-10-03
JPS51118975A (en) * 1975-03-19 1976-10-19 Hitachi Ltd Photo controll semiconductor unitegrated circuit device
JPS5893345A (en) * 1981-11-30 1983-06-03 Nec Corp Manufacture of semiconductor device
JPS5948950A (en) * 1982-09-13 1984-03-21 Agency Of Ind Science & Technol Manufacture of three-dimensional integrated circuit structure
JPS5982745A (en) * 1982-11-02 1984-05-12 Agency Of Ind Science & Technol Semiconductor device
JPS59141259A (en) * 1983-02-01 1984-08-13 Seiko Epson Corp Semiconductor device
JPS607149A (en) * 1983-06-24 1985-01-14 Nec Corp Manufacture of semiconductor device
JPS6130059A (en) * 1984-07-20 1986-02-12 Nec Corp Manufacture of semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936789B1 (en) * 1969-11-07 1974-10-03
JPS51118975A (en) * 1975-03-19 1976-10-19 Hitachi Ltd Photo controll semiconductor unitegrated circuit device
JPS5893345A (en) * 1981-11-30 1983-06-03 Nec Corp Manufacture of semiconductor device
JPS5948950A (en) * 1982-09-13 1984-03-21 Agency Of Ind Science & Technol Manufacture of three-dimensional integrated circuit structure
JPS5982745A (en) * 1982-11-02 1984-05-12 Agency Of Ind Science & Technol Semiconductor device
JPS59141259A (en) * 1983-02-01 1984-08-13 Seiko Epson Corp Semiconductor device
JPS607149A (en) * 1983-06-24 1985-01-14 Nec Corp Manufacture of semiconductor device
JPS6130059A (en) * 1984-07-20 1986-02-12 Nec Corp Manufacture of semiconductor device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189141A (en) * 1988-01-25 1989-07-28 Nec Corp Semiconductor device
JPH01192135A (en) * 1988-01-27 1989-08-02 Nec Corp Semiconductor device
JPH0541478A (en) * 1991-07-22 1993-02-19 Nec Corp Semiconductor device and manufacture thereof
JP2008028407A (en) * 1997-04-04 2008-02-07 Glenn J Leedy Information processing method
JP2002516033A (en) * 1997-04-04 2002-05-28 グレン ジェイ リーディ 3D structure memory
JP2011181176A (en) * 1997-04-04 2011-09-15 Glenn J Leedy Information processing method and laminated integrated circuit memory
US9401183B2 (en) 1997-04-04 2016-07-26 Glenn J. Leedy Stacked integrated memory device
JP2008166831A (en) * 1997-04-04 2008-07-17 Glenn J Leedy Method of processing information
JP2008166832A (en) * 1997-04-04 2008-07-17 Glenn J Leedy Information processing method
JP2008172254A (en) * 1997-04-04 2008-07-24 Glenn J Leedy Information processing method
US8933570B2 (en) 1997-04-04 2015-01-13 Elm Technology Corp. Three dimensional structure memory
US8928119B2 (en) 1997-04-04 2015-01-06 Glenn J. Leedy Three dimensional structure memory
US8841778B2 (en) 1997-04-04 2014-09-23 Glenn J Leedy Three dimensional memory structure
JP2005175306A (en) * 2003-12-12 2005-06-30 Sony Corp Semiconductor integrated circuit device and its manufacturing method
WO2006019156A1 (en) * 2004-08-20 2006-02-23 Zycube Co., Ltd. Method for manufacturing semiconductor device having three-dimensional multilayer structure
JP5354765B2 (en) * 2004-08-20 2013-11-27 カミヤチョウ アイピー ホールディングス Manufacturing method of semiconductor device having three-dimensional laminated structure
US7906363B2 (en) 2004-08-20 2011-03-15 Zycube Co., Ltd. Method of fabricating semiconductor device having three-dimensional stacked structure
JPWO2006019156A1 (en) * 2004-08-20 2008-05-08 株式会社ザイキューブ Manufacturing method of semiconductor device having three-dimensional laminated structure
JP2009500847A (en) * 2005-07-08 2009-01-08 レイセオン カンパニー MMIC with backside multilayer signal routing
JP2011523203A (en) * 2008-05-06 2011-08-04 ガウサム ヴィスワナダム, Wafer level integration module with interconnection
JP2014170940A (en) * 2013-03-04 2014-09-18 Samsung Electronics Co Ltd Semiconductor element and manufacturing method of the same

Similar Documents

Publication Publication Date Title
KR900008647B1 (en) A method for manufacturing three demensional i.c.
US5880010A (en) Ultrathin electronics
US6503778B1 (en) Thin film device and method of manufacturing the same
JP3694021B2 (en) Manufacturing method of semiconductor device
CN108346588A (en) A kind of wafer scale system packaging method and encapsulating structure
KR950009977A (en) Multi-layered structure having a single crystal semiconductor film formed over an insulating film and a method of manufacturing the same
JPS63308386A (en) Semiconductor device and manufacture thereof
JP2001015683A (en) Transfer method of ultra-thin substrate and manufacture of multilayer thin film device using the same
JPH07506936A (en) Three-dimensional integrated circuit and its manufacturing method
JP2729413B2 (en) Semiconductor device
JP2001127149A (en) Semiconductor device and its manufacturing method
JPS62272556A (en) Three-dimensional semiconductor integrated circuit device and manufacture thereof
KR100253352B1 (en) Fabrication method of stackable semiconductor chip and stacked semiconductor chip moudle
JPH02199860A (en) High density semiconductor structure and its manufacture
JP2005268662A (en) Method of manufacturing three-dimensional device
JPS6098655A (en) Semiconductor device
JPH0438140B2 (en)
JP2597750B2 (en) Method for manufacturing semiconductor device
JPH04262576A (en) Semiconductor device and manufacture thereof
JP3391321B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPH0845935A (en) Forming method of multilayer interconnection
JPH0447979B2 (en)
JP2603623B2 (en) Manufacturing method of three-dimensional semiconductor integrated circuit
JP3086958B2 (en) Method for manufacturing semiconductor device
JPH04343265A (en) Semiconductor device