JPS62271599A - Acoustic vibrating material and its manufacture - Google Patents

Acoustic vibrating material and its manufacture

Info

Publication number
JPS62271599A
JPS62271599A JP3704887A JP3704887A JPS62271599A JP S62271599 A JPS62271599 A JP S62271599A JP 3704887 A JP3704887 A JP 3704887A JP 3704887 A JP3704887 A JP 3704887A JP S62271599 A JPS62271599 A JP S62271599A
Authority
JP
Japan
Prior art keywords
film
substrate
boron
base material
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3704887A
Other languages
Japanese (ja)
Inventor
Akio Kawasaki
川崎 明朗
Masato Yamamura
山村 眞人
Masakata Ugaji
宇賀治 正名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3704887A priority Critical patent/JPS62271599A/en
Publication of JPS62271599A publication Critical patent/JPS62271599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

PURPOSE:To commercialize an acoustic vibrating material made of B4C with a high hardness and a high acoustic velocity by accelerating the boron carbide B4C under a high electric field, and coating and forming an amorphous B4C film on a substrate. CONSTITUTION:When a boron element 2' melted by the projection of an electron beam 6 passes through an acetylene and plasma atmosphere 11, the boron element and a carbon element are reacted in terms of gas phase to synthesize B4C. It is accelerated by a DC electric field impressed on the substrate, and piles up as a high energy molecule on the substrate 4. By a 12-minute reaction, for example, the B4C film 6.o mum in thickness in coated on the substrate 4. The B4C film formed on the substrate 4 in such a way has no variance in terms of strength, and never triggers the deterioration of a frequency characteristic, whereby the acoustic vibrating material with an excellent sound quality can be obtained.

Description

【発明の詳細な説明】 発明の詳細な説明 本発明は、音響振動材料、特にスピーカのダイアフラム
振動板、カートリッジのカンチレバー等の構成材料とし
て好適な非晶質の84C(ボロンカーバイド)膜を形成
した音響振動材料及びその製法に関する。
Detailed Description of the Invention The present invention forms an amorphous 84C (boron carbide) film suitable for use as an acoustic vibration material, particularly as a constituent material of a diaphragm diaphragm of a speaker, a cantilever of a cartridge, etc. Concerning acoustic vibration materials and their manufacturing method.

音響振動材料として選択の基準となるのは、(i)ヤン
グ率Eが大きく、比重ρが小さく、その比E/ρが大き
いこと、(ii )必然的に加わる機械振動に対してひ
び、割れ等がな(且つ脆さがないこと、(iii )耐
湿度、湿温度サイクル、耐塩水噴霧等の環境試験に安定
で経年変化のないこと、(iv )生産性にすぐれるこ
と、等である。このうち(i)の特性が重要である。下
記に音響振動材料として可能性のあるもの、或は現在使
われているものを列挙する。
The criteria for selecting an acoustic vibration material are (i) a large Young's modulus E, a small specific gravity ρ, and a large ratio E/ρ, and (ii) resistance to cracking and cracking due to the inevitable mechanical vibrations. (iii) It is stable in environmental tests such as humidity resistance, humidity temperature cycle, salt water spray resistance, etc. and does not change over time, (iv) It has excellent productivity, etc. Among these, the characteristic (i) is important.The following is a list of potential acoustic vibration materials or those currently in use.

この表からも分るように84Cは極めて優秀な音響振動
材料である。従来から、この84Cの特性に着目して振
動板材料に応用する試みがなされているが、いずれも不
満足で実用化されていない。
As can be seen from this table, 84C is an extremely excellent acoustic vibration material. Conventionally, attempts have been made to apply the characteristics of 84C to diaphragm materials, but none of them have been satisfactory and have not been put to practical use.

従来技術として、例えば電界蒸着法及び電子ビーム蒸着
法は、原料の84Gを電子ビーム熱源で加熱蒸発させ、
単なる蒸着あるいは一2kV程度の電界中で蒸着させて
いる。しかしこの場合、84Gの融点が2450℃と極
めて高いために、原料84Cに電子ビームを当てると所
謂スプラッシュ現象が起き易く、飛散した84CはTi
等の蒸着基板を貫通して孔をあける。また、原料B4C
が蒸発する際に脱炭し易く、蒸着基板上に被着した膜は
化学量論的な84Cではなく、B(ボロン)過剰な組成
となる。さらに後述するイオンブレーティング法に比べ
て蒸発粒子の粒子エネルギーが0.1〜1eVと小さく
、このため付着強度が小さく、つきまわり(スローイン
グ・パワー)が良くない。
As conventional techniques, for example, electric field evaporation method and electron beam evaporation method heat and evaporate raw material 84G with an electron beam heat source.
It is simply vapor-deposited or vapor-deposited in an electric field of about 12 kV. However, in this case, since the melting point of 84G is extremely high at 2450°C, when the raw material 84C is irradiated with an electron beam, a so-called splash phenomenon tends to occur, and the scattered 84C is Ti.
A hole is drilled through the vapor deposition substrate. In addition, raw material B4C
is easily decarburized when it evaporates, and the film deposited on the deposition substrate has a composition that is not stoichiometric 84C but has an excess of B (boron). Furthermore, the particle energy of the evaporated particles is small at 0.1 to 1 eV, compared to the ion blating method described later, and therefore the adhesion strength is small and the throwing power is poor.

又、高周波スパッタ法は84G原料ターゲントを高周波
スパツタリングする方法であるが、蒸着速度が0.01
〜1μ/ll1inと小さく、特に数μ以上の膜厚を必
要とする振動板においては実用性に乏しい。粒子エネル
ギーは1〜10eνあるので接着強度は改善される。
In addition, the high frequency sputtering method is a method of high frequency sputtering of 84G raw material target, but the deposition rate is 0.01
The thickness is as small as ~1 μ/ll1 inch, and is particularly impractical for diaphragms that require a film thickness of several μ or more. Since the particle energy is 1 to 10 eν, the adhesive strength is improved.

CVD法による84C膜生成法は、壬数百℃に加熱され
た基板上に84Cの構成成分であるQCρ3及びC11
4などの炭化水素の混合ガスを導入し、熱分解反応によ
って84Gを被着させる所謂化学気相成長の一種である
。基板が高温となるのでアルミニウム、アルミニウム合
金は溶融して使えず、ヂタンの絞り型等の基板も変形し
易いので、タングステン等の高融点全屈のみに有効と思
われる。しかもタングステン等は比重ρ(=19.3)
も大きいので、音響振動材料の基板としては適さない。
The 84C film production method using the CVD method is to deposit QCρ3 and C11, which are the constituent components of 84C, on a substrate heated to several hundred degrees Celsius.
This is a type of chemical vapor deposition in which a mixed gas of hydrocarbons such as 4 is introduced and 84G is deposited through a thermal decomposition reaction. Since the substrate becomes high temperature, aluminum and aluminum alloys are melted and cannot be used, and the substrate of ditanium drawing dies is easily deformed, so it is thought to be effective only for high melting point materials such as tungsten. Moreover, the specific gravity of tungsten etc. is ρ (=19.3)
Since it is also large, it is not suitable as a substrate for acoustic vibration materials.

このように、84Cを音響振動材料として製膜化する技
術は未だ確率されているとは云えず製品化されるに至っ
ていない。
As described above, the technology for forming a film using 84C as an acoustic vibration material has not yet been established and has not yet been commercialized.

本発明は、上述の点に鑑みて新規な音響振動材料及びそ
の製造方法を提(J目−るものである。
In view of the above points, the present invention proposes a novel acoustic vibration material and a method for manufacturing the same.

本発明は、基本的にはボロン単体元素を気体化し、一方
アセチレン、メタン等の炭化水素ガスをプラズマ化し、
このプラズマ中でボロン元素と炭素元素を化学反応(気
相反応)させて84Cを合成し、この合成された84C
を高電界により加速して所要の基材表面上に堆積させ、
84C膜を形成する。
The present invention basically gasifies the simple element of boron, and on the other hand, converts hydrocarbon gas such as acetylene and methane into plasma,
In this plasma, boron element and carbon element are chemically reacted (gas phase reaction) to synthesize 84C, and this synthesized 84C
is deposited on the surface of the desired substrate by accelerating it with a high electric field,
84C film is formed.

この場合、ボロンの蒸発速度及び炭化水素ガス圧(ガス
濃度)等の反応条件を最適に選ぶことにより化学量論的
組成(B : 78.3重量%、C: 21.Tffl
量%l量適い84C膜が得られる。
In this case, by optimally selecting reaction conditions such as boron evaporation rate and hydrocarbon gas pressure (gas concentration), the stoichiometric composition (B: 78.3% by weight, C: 21.Tffl
A suitable 84C film is obtained.

ボロン元素を気体化する手段としては加熱蒸発あるいは
スパフタリングがあり、その加熱蒸発熱源としては、レ
ーザビーム、高周波誘導加熱、電子ビーム加熱等が利用
される。ボロン元素の融点は従来2300℃〜2500
℃の範囲で多数の値が報告されているが、最新の研究で
は2075℃という値が最も信頼されている。この値は
84Cの融点2450℃よりはるかに低いもので、84
Cそのものを蒸発させる前述の従来技術より極めて容易
である。ボロン元素は熔解の際、そのるつぼ材料、ビー
ムの径、ビームの走査方法、昇温速度を最適に選ぶこと
によって、きれいに熔け、スプラッシユ現象を回避し得
ることも判明した。
The means for gasifying the boron element include thermal evaporation or sputtering, and the heat source for the evaporation is a laser beam, high-frequency induction heating, electron beam heating, or the like. The melting point of boron element is conventionally 2300℃~2500℃
Although many values have been reported in the range of degrees Celsius, the most reliable value is 2075 degrees Celsius according to the latest research. This value is much lower than the melting point of 84C, 2450°C, and
This is much easier than the above-mentioned conventional technique in which C itself is evaporated. It has also been found that boron can be melted cleanly and the splash phenomenon can be avoided by optimally selecting the crucible material, beam diameter, beam scanning method, and heating rate.

84Cのもう一つの構成元素である炭素Cの原料として
は01〜4の飽和、不飽和の炭化水素が選ばれる。常温
で気体であり、分子中に窒素N、酸素O1硫黄S、ハロ
ゲン等を含まないものなら特に選択性はない。ガス圧を
調整するために反応とは直接に関係のない^r、IIs
等の不活性ガスを混入することも可能である。なお、炭
化水素ガスを導入するだけでも、ある程度ボロン蒸気と
反応して84Cを合成することが可能であるが、導入し
た炭化水素ガスをプラズマ化させた方が反応効率が上昇
し84Cを効果的に生成させることができる。導入した
炭化水素ガスをプラズマ化させる手段としては、活性化
反応蒸着(A RE)法、低圧プラズマ付着(LPPD
)法、高周波コイル法等が採用される。
As raw materials for carbon C, which is another constituent element of 84C, 01 to 4 saturated and unsaturated hydrocarbons are selected. If it is a gas at room temperature and does not contain nitrogen, oxygen, oxygen, sulfur, S, halogen, etc. in its molecules, it has no particular selectivity. ^r, IIs that are not directly related to the reaction to adjust the gas pressure
It is also possible to mix an inert gas such as. Although it is possible to react with boron vapor to some extent and synthesize 84C by simply introducing hydrocarbon gas, the reaction efficiency increases and 84C is effectively synthesized by turning the introduced hydrocarbon gas into plasma. can be generated. Methods for converting introduced hydrocarbon gas into plasma include activated reactive vapor deposition (ARE) and low pressure plasma deposition (LPPD).
) method, high frequency coil method, etc. are adopted.

又、B4Cl1iiを被着させる基材にはマイナス数百
V〜マイナス数kVの直流高電圧をかけ、所謂イオンブ
レーティング法を併用することにより、粒子エネルギー
は数10〜1o00eV程度となり、84C膜の基材上
への被着強度が向上する。基材の清浄化は84C膜の接
着強度にきわめて重要である。これは、通當(i)ハロ
ゲン化炭素溶剤による超音波洗浄、蒸気洗浄、(ii)
高真空(10−5〜10−’ Torr)中で100℃
〜数100℃に加熱して脱水、脱ガス、(iii )A
r等の不活性ガスプラズマによるポンパーディング、等
の工程をとることにより充分満足すべき84C膜の接着
強度が得られる。
In addition, by applying a DC high voltage of minus several hundred volts to minus several kilovolts to the substrate on which B4Cl1ii is deposited, and also using the so-called ion blating method, the particle energy becomes about several tens of eV to 1000 eV. The adhesion strength on the base material is improved. Cleaning of the substrate is critical to the adhesion strength of the 84C film. This generally involves (i) ultrasonic cleaning with a halogenated carbon solvent, steam cleaning, and (ii)
100°C in high vacuum (10-5 to 10-' Torr)
Dehydration and degassing by heating to ~100°C, (iii) A
A sufficiently satisfactory adhesive strength of the 84C film can be obtained by using a process such as pumping with inert gas plasma such as R.

次に、本発明における具体的な実験結果にもとづ〈実施
例を示す。
Next, examples will be shown based on specific experimental results of the present invention.

第1図は本発明に適用される活性化反応性イオンブレー
ティング装置を示す。同図中、(1)は真空チャンバー
で、このチャンバー(1)内に原料のボロン元素(2)
を入れたるつぼ(3)及び之と対向して84C膜が被着
される所定形状に成型された基材(4)を保持する基材
ホルダー(5)が配される。ホルダー(5)にはプラネ
タリ治具が備えられ、基材(4)が自転、公転せられる
。・ボロン元素(2)は電子ビーム(6)による照射加
熱で蒸発される。るつぼ(3)と基材(4)間には炭化
水素ガス例えばアセチレンガス(C2H2)を導入する
ための内側に多孔を有したリング状のガス導入部(7)
が配されると共に、導入したアセチレンガスをプラズマ
化するためのリング状の電極(B)が配される。電極(
B1はARE電源に接続され、例えば+100Vが印加
される。一方、各基材(4)にはホルダー(5)を通し
°(−1にシル−2kV程度の直流電圧が印加される。
FIG. 1 shows an activated reactive ion blating device applied to the present invention. In the figure, (1) is a vacuum chamber, and the raw material boron element (2) is inside this chamber (1).
A base material holder (5) is arranged to hold a base material (4) molded into a predetermined shape to which the 84C film is to be applied. The holder (5) is equipped with a planetary jig, and the base material (4) is rotated and revolved around its axis. - The boron element (2) is evaporated by irradiation and heating by the electron beam (6). Between the crucible (3) and the base material (4) is a ring-shaped gas introduction part (7) with pores inside for introducing a hydrocarbon gas such as acetylene gas (C2H2).
and a ring-shaped electrode (B) for turning the introduced acetylene gas into plasma. electrode(
B1 is connected to the ARE power supply and, for example, +100V is applied thereto. On the other hand, a DC voltage of approximately -2 kV is applied to each base material (4) through the holder (5).

(9)は基材(4)を所定温度に加熱する加熱ヒータで
熱電対によってコントロールされる。
(9) is a heater that heats the base material (4) to a predetermined temperature and is controlled by a thermocouple.

(10)は84G膜の膜厚を測定するための膜厚モニタ
(水晶振動子より成る)である。
(10) is a film thickness monitor (consisting of a crystal resonator) for measuring the film thickness of the 84G film.

実施例(1) ライタのダイアフラム形状にプレス成形した厚さ20μ
閣のチタンTiによる基材(4)をフロン溶剤で洗浄し
、第1図の装置のホルダー(5)に固定した後、基材(
4)を450°C迄加熱してチャンバー(1)内を1×
1O−5Torrまで脱気する。次に、Arガスを8 
X 10−’Torrまで導入し1に−の高周波電源に
よりプラズマ化して10分間ボンバード・クリーニング
を行う。
Example (1) Press-molded into lighter diaphragm shape with thickness of 20μ
After cleaning the base material (4) made of titanium in the cabinet with a fluorocarbon solvent and fixing it in the holder (5) of the device shown in Figure 1, the base material (
4) to 450°C and heat the inside of chamber (1) 1x.
Degas to 10-5 Torr. Next, add Ar gas to 8
The plasma was introduced to a temperature of 10-' Torr, turned into plasma by a high-frequency power source of 1-1, and bombarded for 10 minutes.

Arガスを止め、再びl X 1O−5Torrの高真
空度とする。基材(4)の温度は450℃に保つ。次に
、耐熱セラミックのるつぼ(3)中のボロン元素(99
,9%)(2)に5四の電子ビーム(6)を照射し、同
時にガス導入部+71を通してアセチレン((1;28
2 )ガスを導入して2 X 10−’ Torrとし
、電極(B)によりアセチレン・プラズマ雰囲気(11
)を作る。基材(4)には例えば−2kVの直流電圧を
印加する。そして、定常状態となってから、るつぼ(3
)上のシャッタ(図示せず)を開き、いわゆる活性化反
応性イオンブレーティングの方法により84C膜を基材
(4)上に被着させる。
The Ar gas is stopped, and the vacuum is set to a high degree of 1×1O−5 Torr again. The temperature of the base material (4) is maintained at 450°C. Next, boron element (99
, 9%) (2) is irradiated with 54 electron beams (6), and at the same time acetylene ((1; 28
2) Gas was introduced to make the pressure 2 x 10-' Torr, and an acetylene plasma atmosphere (11
)make. For example, a DC voltage of -2 kV is applied to the base material (4). Then, after reaching a steady state, the crucible (3
) is opened and the 84C film is deposited on the substrate (4) by the method of so-called activated reactive ion blating.

即ち、電子ビーム照射により熔解し蒸発したボロン元素
(2′)がアセチレン・プラズマ雰囲気(11)中を通
過するときにボロン元素と炭素元素とが気相反応して8
4Cが合成され、この84Cが基材に印加された直流電
界により加速され高エネルギー分子として基材(4)上
に堆積される。12分間の反応により基材(4)上には
6.0μmの厚さの84C膜が被着された。次に基材(
4)を反転して裏側にも同様の方法で6.0μmの厚さ
の84C膜を被着した。第2図はこのようにしてチタン
Tiの基材(4)の表裏面に84C膜(12)を被着形
成して得たライタのダイアフラムである。この84G膜
(12)はX線回折による構造解析では結晶性をもたず
、完全な非晶質構造であった。これは音1[1i動材料
として見た場合、構造的な異方性をもたず、好ましい性
質である。第3図は上記活性化反応性イオンブレーティ
ングによりガラス基板上に被着した84C膜のX線回折
であり、B4C膜が非晶質膜であるのが認められる。
That is, when the boron element (2') melted and vaporized by electron beam irradiation passes through the acetylene plasma atmosphere (11), the boron element and the carbon element react in the gas phase to form 8.
4C is synthesized, and this 84C is accelerated by a DC electric field applied to the substrate and deposited on the substrate (4) as high-energy molecules. A 6.0 μm thick 84C film was deposited on the substrate (4) after 12 minutes of reaction. Next, the base material (
4) was reversed and a 6.0 μm thick 84C film was applied to the back side in the same manner. FIG. 2 shows a diaphragm of a lighter obtained by depositing the 84C film (12) on the front and back surfaces of the titanium base material (4) in this manner. Structural analysis of this 84G film (12) by X-ray diffraction revealed that it had no crystallinity and had a completely amorphous structure. When viewed as a sound 1[1i dynamic material, it has no structural anisotropy, which is a desirable property. FIG. 3 shows the X-ray diffraction of the 84C film deposited on the glass substrate by the activated reactive ion blasting, and it is confirmed that the B4C film is an amorphous film.

なお、基材(4)に堆積する84G膜(12)の結晶性
は基材温度に関係し、1000℃程度以下であれば非晶
質膜となり、高温(1000℃を越える温度)にすると
結晶化する。
The crystallinity of the 84G film (12) deposited on the base material (4) is related to the base material temperature; it becomes an amorphous film at temperatures below about 1000°C, and becomes crystalline at high temperatures (above 1000°C). become

実施例(2) 実施例(11と同様の方法によりチタンTi(10μ箔
)の基材(4)上にB(ボロン)−C(炭素)系の反応
生成物を被着した。この際アセチレン・プラズマの圧力
をI X IO−’ TorrからIOX 10−’ 
Torrの範囲で変化させた試料を作り、組成分析及び
音速の測定を行った。
Example (2) A B (boron)-C (carbon) based reaction product was deposited on a titanium Ti (10μ foil) substrate (4) by the same method as in Example (11). - Change the plasma pressure from IX IO-' Torr to IOX 10-'
Samples were prepared with varying Torr values, and compositional analysis and sound velocity measurements were performed.

第4図はそのB−C系の反応生成膜を定量分析した特性
図(但し、この測定では基材温度450℃、電子ビーム
出力5kW、ARE電圧+100v、基材電圧−1kV
一定とする)であり、アセチレン・プラズマ圧力の上昇
に従って炭素Cの含有量が増加してゆく関係を表わして
いる。この結果、電子ビーム出力5k)lのとき、アセ
チレン・プラズマ圧力が2 X 10−’ Torrで
丁度84Cが定量的に合成される。
Figure 4 is a characteristic diagram obtained by quantitatively analyzing the reaction product film of the B-C system.
(assumed to be constant), and represents a relationship in which the content of carbon C increases as the acetylene plasma pressure increases. As a result, when the electron beam output is 5k)l, exactly 84C is quantitatively synthesized at an acetylene plasma pressure of 2 x 10-' Torr.

即ち化学量論的組成に最も近い組成が合成される。That is, the composition closest to the stoichiometric composition is synthesized.

第5図は音速とアセチレン・プラズマ圧力の関係を示す
特性図で、この曲線(I[)からアセチレン・プラズマ
圧力2 X 10” Torrのときに音速が最も大き
くなることが判明した。尚、直線(III)はチタンT
i(10μ箔)の基材だけの値である。膜の構造はいず
れの場合も実施例(1)と同しく非晶質であった。
Figure 5 is a characteristic diagram showing the relationship between sound velocity and acetylene plasma pressure.From this curve (I[), it was found that the sound velocity is highest when the acetylene plasma pressure is 2 x 10” Torr. (III) is titanium T
The value is only for the base material of i (10μ foil). The structure of the film was amorphous in all cases as in Example (1).

実施例(3) 実施例(1)と同様の方法によりチタンTi1Oμの基
材上に84C膜を被着させた。この際基材温度を150
℃〜550℃の範囲で変化させた試料を作り、音速の測
定を行った。第6図はその基材温度と音速との関係を示
す特性図である。この結果、基材温度は低温側では音速
は上らず、450℃以上の温度では大きな値が得られる
Example (3) An 84C film was deposited on a titanium Ti1Oμ base material by the same method as in Example (1). At this time, the substrate temperature was set to 150
Samples were made at temperatures ranging from ℃ to 550 ℃, and the sound speed was measured. FIG. 6 is a characteristic diagram showing the relationship between the base material temperature and the speed of sound. As a result, the sound velocity does not increase when the base material temperature is low, but a large value is obtained at temperatures of 450° C. or higher.

実施例(4) 通常のイオンブレーティング法により20μのチタンT
i箔の絞り成形のダイアフラム両面にボロン単体を各々
 6.0μ厚被着した。この試料と、実施例(11によ
るB+C股を被着したダイアフラムとを同時に、JI5
2371に基づく塩水噴Wi環境試験を行った。この結
果、84C膜の被着されたダイアフラムは全く異常が認
められなかったが、ボロン単体膜の被着されたダイアフ
ラムでは変色、表面荒れの変質が認められ、84C膜被
着のダイアクラムの方が環境試験に強いことが判明した
Example (4) Titanium T of 20 μm was made using the normal ion blating method.
Boron alone was applied to a thickness of 6.0 μm on both sides of the i-foil draw-formed diaphragm. This sample and the diaphragm covered with the B+C crotch according to Example (11) were simultaneously tested at JI5
A salt water fountain Wi environmental test was conducted based on 2371. As a result, no abnormality was observed in the diaphragm coated with the 84C film, but discoloration and surface roughness were observed in the diaphragm coated with the single boron film. It was found to be resistant to environmental tests.

実施例(5) 実施例(4)に基づき、84C膜に耐環境保護層として
の意味をもたせ実験を行った。lOμのチタンTi箔上
にボロン単体を通常のイオンブレーティング法により被
着し、この上さらに84C−t−活性化反応性イオンブ
レーティング法により被着し、両層の和が6.0μにな
る様にした試料を3種類、厚みのバランスを変えて試作
した。この両層は勿論チタンTi箔の両面に被着した。
Example (5) Based on Example (4), an experiment was conducted in which the 84C film was given the meaning of an environmental protection layer. Boron alone was deposited on a titanium Ti foil with a thickness of 10μ by a normal ion blating method, and then further deposited by an 84C-t-activated reactive ion brazing method, so that the sum of both layers was 6.0μ. Three types of samples with different thickness balances were made. Both layers were of course applied to both sides of the titanium foil.

この3試料を実施例口)にもとづ<84C単体膜及び実
施例(4)にもとづくボロン単体膜と合わせて音速の測
定を行った。その結果、84CI!Ji厚の多い方が若
干音速が大きい傾向が認められたものの、その差はごく
わずかであった。また実施例(4)と同じ塩水噴霧試験
によると、ボロン単体膜を除いて84Cをボロン層上に
被着した3試料はいずれも全く変質が認められなかった
These three samples were combined with the <84C single film based on Example 1) and the boron single film based on Example (4) to measure the sound velocity. As a result, 84CI! Although it was observed that the sound velocity tended to be slightly higher when the Ji thickness was larger, the difference was very small. Further, according to the same salt spray test as in Example (4), no deterioration was observed in any of the three samples in which 84C was deposited on the boron layer, except for the boron single film.

この実験により、84C膜はボロン膜の保護膜として充
分な効果をもつことが認められた。
This experiment confirmed that the 84C film has a sufficient effect as a protective film for the boron film.

尚、上潮ではチタンTiの基材上にB4C膜を被着して
音響振動材料を構成したが、銅Cu、鉄Fe、アルミニ
ウムMあるいはステンレスSUS等のエンチング可能な
基材上に84Cを上記方法で被着し、その後基材をエツ
チング除去し、84C膜のみのダイアフッラム、カンチ
レバーとして使用することも可能である。
Incidentally, in Kamishio, the acoustic vibration material was constructed by depositing a B4C film on a titanium Ti base material, but the above-mentioned 84C was deposited on an etchingable base material such as copper Cu, iron Fe, aluminum M or stainless steel SUS. It is also possible to use the 84C film as a diaphragm or cantilever by depositing it by a method and then removing the base material by etching.

上述せる本発明によれば、ボロン元素を加熱蒸発または
スパッタリング等によって気体化し、炭化水素ガスのプ
ラズマ中でボロン元素と炭素元素を反応させることによ
り84Cを安定に製造することが可能となり、しかもイ
オンブレーティング法を併用して基材に印加した直流電
界により84Cを加速して高エネルギー分子として堆積
することにより密着性の良い84G膜を形成できるもの
である。
According to the present invention described above, it is possible to stably produce 84C by gasifying the boron element by thermal evaporation or sputtering, and reacting the boron element with the carbon element in a hydrocarbon gas plasma. An 84G film with good adhesion can be formed by accelerating 84C using a DC electric field applied to the base material and depositing it as high-energy molecules using a brating method.

従って、硬度が高く、音速の大きい84Gによる理想的
な音響振動材料の製品化が可能となるものである。特に
本発明に係る基材上に形成される84C膜は、非晶質構
造であるため、物理的性質が方向によって異なることが
ない。従って、スピーカの振動板としてみた場合、結晶
構造の場合には配向に対して90°の方向の強度が弱く
 (カンチレバーの場合は強度的に問題があるのは致命
的である)、部分的な共振を発したり、周波数特性的に
は、不要な共振ピークができたり、音質劣化の要因とな
る。これに対して、非晶質構造の場合には強度的なバラ
ツキがなく、従って周波数特性の劣化の要因となること
がないので音質的にも優れたものを得ることかできる。
Therefore, it is possible to commercialize an ideal acoustic vibration material using 84G, which has high hardness and high sound velocity. In particular, since the 84C film formed on the base material according to the present invention has an amorphous structure, its physical properties do not differ depending on the direction. Therefore, when viewed as a diaphragm for a speaker, in the case of a crystal structure, the strength in the direction 90° with respect to the orientation is weak (in the case of a cantilever, problems in strength are fatal), and partial This can cause resonance, create unnecessary resonance peaks in terms of frequency characteristics, and cause deterioration of sound quality. On the other hand, in the case of an amorphous structure, there is no variation in strength and therefore it does not cause deterioration of frequency characteristics, so it is possible to obtain excellent sound quality.

そして、カンチレバーとして見た場合には前述のような
強度の問題がなくなるほか、針先の振動を良好にマグネ
ット、アーマチュアまたはコイルに伝達することができ
、針先の振動帯域中に不感もしくは感度の低い部分がで
きたりするということはなくなる。
When viewed as a cantilever, in addition to eliminating the strength problem mentioned above, the vibration of the needle tip can be transmitted well to the magnet, armature, or coil, and there is no possibility of insensitivity or sensitivity during the vibration band of the needle tip. There will be no more low spots.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に通用される活性化反応性イオンブレー
ティング装置の概略図、第2図はチタン基材の両面に8
4G膜を被着したダイアフラムの断面図、第3図は本発
明で得られた84C膜のX線回折図、第4図はアセチレ
ン・プラズマ圧力を変化させた場合のB−C系反応膜の
組成分析の特性図第5図はB −C系反応膜におけるア
セチレン・プラズマ圧力と音速との関係を示す特性図、
第6図は基材温度と音速との関係を示す特性図である。 (1)は真空チャンバ、(2)はボロン単体元素、(3
)はるつぼ、(4)は基材、(5)はホルダー、(6)
は電子ビーム、(7)は炭化水素ガス導入部、(B)は
プラズマ化のための電極、(11)はプラズマ雰囲気で
ある。 −興諒×@qヰ材ボ腰
Fig. 1 is a schematic diagram of an activated reactive ion blating device applicable to the present invention, and Fig. 2 shows a
A cross-sectional view of a diaphragm coated with a 4G film, Fig. 3 is an X-ray diffraction diagram of an 84C film obtained by the present invention, and Fig. 4 shows a B-C reaction film when the acetylene plasma pressure is varied. Characteristic diagram of composition analysis Figure 5 is a characteristic diagram showing the relationship between acetylene plasma pressure and sound velocity in a B-C system reaction membrane.
FIG. 6 is a characteristic diagram showing the relationship between base material temperature and sound velocity. (1) is a vacuum chamber, (2) is an elemental boron element, (3
) Crucible, (4) is base material, (5) is holder, (6)
is an electron beam, (7) is a hydrocarbon gas introduction part, (B) is an electrode for plasma generation, and (11) is a plasma atmosphere. −Thank you

Claims (1)

【特許請求の範囲】 1、基材上に非晶質のボロンカーバイド膜を設けたこと
を特徴とする音響振動材料。 2、ボロン単体を気体化し、この気体化されたボロンを
炭化水素ガスのプラズマ中を通過させることにより、前
記炭化水素と気相反応させてボロンカーバイド(B_4
C)を合成し、このボロンカーバイドを所定の温度に加
熱された基材に印加された高電界により加速して、前記
基材上に非晶質のボロンカーバイド膜を被着形成するこ
とを特徴とする音響振動材料の製造方法。
[Claims] 1. An acoustic vibration material characterized in that an amorphous boron carbide film is provided on a base material. 2. Boron carbide (B_4
C) is synthesized and this boron carbide is accelerated by a high electric field applied to a base material heated to a predetermined temperature to form an amorphous boron carbide film on the base material. A method for manufacturing an acoustic vibration material.
JP3704887A 1987-02-20 1987-02-20 Acoustic vibrating material and its manufacture Pending JPS62271599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3704887A JPS62271599A (en) 1987-02-20 1987-02-20 Acoustic vibrating material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3704887A JPS62271599A (en) 1987-02-20 1987-02-20 Acoustic vibrating material and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13106980A Division JPS5755698A (en) 1980-09-20 1980-09-20 Manufacture of acoustic vibrating material

Publications (1)

Publication Number Publication Date
JPS62271599A true JPS62271599A (en) 1987-11-25

Family

ID=12486702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3704887A Pending JPS62271599A (en) 1987-02-20 1987-02-20 Acoustic vibrating material and its manufacture

Country Status (1)

Country Link
JP (1) JPS62271599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731483B1 (en) 2005-04-15 2007-06-21 삼성에스디아이 주식회사 Plasma display panel manufacturing equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265419A (en) * 1975-11-26 1977-05-30 Denki Kagaku Kogyo Kk Method of producing speaker vibrator plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265419A (en) * 1975-11-26 1977-05-30 Denki Kagaku Kogyo Kk Method of producing speaker vibrator plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731483B1 (en) 2005-04-15 2007-06-21 삼성에스디아이 주식회사 Plasma display panel manufacturing equipment

Similar Documents

Publication Publication Date Title
US4333962A (en) Method for producing gold color coatings
JPH0352433B2 (en)
JPH02500837A (en) Diamond film deposition method
JP3026425B2 (en) Method for producing hard thin film and hard thin film
Rother et al. Preparation and characterization of ion-plated boron nitride
JPS634628B2 (en)
JPS62271599A (en) Acoustic vibrating material and its manufacture
JPH0259862B2 (en)
JPS62271598A (en) Acoustic vibrating material
JP2006307251A (en) Method for producing diamond-like carbon thin film
JPS59232991A (en) Production of thin diamond film
Bourdon et al. Characterization of diamond-like films prepared by laser ablation of graphite
JPS5935092A (en) Vapor-phase synthesis of diamond
JPS60194067A (en) Formation of hard film
JPH05140744A (en) Formation of dlc-si film
JPS63238270A (en) Production of thin compound film
JPS6134173A (en) Production of high-hardness boron nitride film
Ishiwatari et al. The growth of boron films by physical vapour deposition
JP2611633B2 (en) Method for producing chromium nitride film-coated substrate
JPS61227163A (en) Production of high hardness boron nitride film
JPH04124272A (en) Cubic boron nitride coating member and its production
Kovách et al. Properties of high-density amorphous carbon films deposited by laser ablation
JP2587636B2 (en) Diamond synthesis method and equipment
JPS63107899A (en) Formation of thin film
JPH0259863B2 (en)