JPH0352433B2 - - Google Patents

Info

Publication number
JPH0352433B2
JPH0352433B2 JP59048251A JP4825184A JPH0352433B2 JP H0352433 B2 JPH0352433 B2 JP H0352433B2 JP 59048251 A JP59048251 A JP 59048251A JP 4825184 A JP4825184 A JP 4825184A JP H0352433 B2 JPH0352433 B2 JP H0352433B2
Authority
JP
Japan
Prior art keywords
carbon
substrate
diamond
ions
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59048251A
Other languages
Japanese (ja)
Other versions
JPS60195094A (en
Inventor
Mamoru Sato
Takeshi Sadahiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tungaloy Corp
Original Assignee
Agency of Industrial Science and Technology
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toshiba Tungaloy Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP59048251A priority Critical patent/JPS60195094A/en
Publication of JPS60195094A publication Critical patent/JPS60195094A/en
Publication of JPH0352433B2 publication Critical patent/JPH0352433B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は基体の表面をダイヤモンド薄膜で被覆
する方法に関し、更に詳しくは、イオン照射法と
蒸着法を組合わせることによつて、基体との付着
力が大きいダイヤモンド薄膜を基体の表面に形成
する方法に関する。 〔発明の技術的背景とその問題点〕 ダイヤモンドはその硬度が高く、電気絶縁体で
あり、しかもその熱伝導率は大きく耐摩耗性に優
れるという特異な特性を備えている。そのため、
ダイヤモンドは砥石の砥粒としてそのまま用いら
れたり又は焼結して各種の切削工具、耐摩耗工具
として用いられている。各種の基体の表面をダイ
ヤモンドの薄膜で被覆することができれば、この
ような材料ではダイヤモンドの有用な特性が生か
されて、その用途は飛躍的に拡大できる。例え
ば、ヒートシンク、半導体素材のような各種機能
材料の分野である。 そのため、基体上へのダイヤモンド薄膜の形成
に関しては、従来から、化学蒸着法、アーク放電
とスパツタリングとを組合わせたイオンビーム
法、グロー放電を利用した化学蒸着法又はマイク
ロ波、高周波による励起を利用した化学蒸着法な
ど種々の方法が試みられている。 しかしながら、これまで試みられている方法で
は、基体上に形成された薄膜はそのほとんどが黒
鉛、ダイヤモンド状炭素、非晶質炭素などであつ
て、たとえ真のダイヤモンド薄膜が形成されたと
しても、それは基体との付着力が小さく、例え
ば、基体との熱膨張差に起因する両相間の熱応力
の発生によつてダイヤモンド薄膜が損壊・剥離す
るなどの現象が起り、とうてい実用に供しうる状
態ではなかつた。 〔発明の目的〕 本発明は基体の表面に、該基体との付着力が大
きく、高密度、高硬度のダイヤモンド状カーボン
および/またはダイヤモンド薄膜を形成する方法
の提供を目的とする。 〔発明の概要〕 本発明者らは、上記した目的を達成すべく鋭意
研究を重ねた結果、蒸着法とイオン照射法とを組
合せた方法を適用し、しかもそのときに、蒸発源
から基体上に蒸着させた原子の数と照射するイオ
ンの電荷の数(つまりは照射されるイオンの電荷
の総数)、並びにイオン種のイオン加速エネルギ
ーを適宜に調整すれば、基体の表面に高密度、高
硬度で、かつ付着強度の高いダイヤモンド状カー
ボンおよび/またはダイヤモンドの薄膜を形成す
ることができるという事実を見出し本発明を完成
するに到つた。 すなわち、本発明方法は、基体上に、炭素を含
有する蒸発源から炭素を蒸着させその蒸着と同時
又は交互に加速されたイオン種を照射して、該基
体上にダイヤモンド状カーボンおよび/またはダ
イヤモンドからなる薄膜を形成する方法におい
て、前記基体上に蒸着された炭素原子の数と加速
された前記イオン種の電荷の数との比が0.1〜5
であり、かつ、該イオン種のイオン加速エネルギ
ーが原子当たり6〜60KeVの条件下で該薄膜を
形成することを特徴とする。 本発明方法にあつて、まず基体としては、セラ
ミツクス、超硬合金、サーメツト又は各種の金属
若しくは合金など何であつてもよく、その材質は
問わない。ただし、基体が電気絶縁体の場合に
は、荷電している場所と荷電していない場所とで
はそこに形成された蒸着膜の特性が異なり膜全体
の特性のバラツキが生じ易すくなるので、基体と
しては電気伝導体であることが好ましい。しか
し、基体が電気絶縁性の材料であつても、予め常
法により基体の表面に電気伝導体の薄膜を形成す
るか、又は、後述する本発明の方法において、ま
ず蒸着法により表面導通を可能にする蒸着膜を最
低限形成しておき、その後本発明方法を適用して
もよい。 炭素を含有する蒸発源としては、無定形炭素、
黒鉛、ダイヤモンドの1種又は2種以上のものが
あげられる。 イオン種としては、所定のイオン加速エネルギ
ーを有するイオン種であつて、炭素を含有する蒸
発源に作用してダイヤモンドの薄膜を形成するも
のであればよい。具体的には、水素原子イオン
(H+)、水素分子イオン(H2 +);メタンイオン
(CH4 +)、エタンイオン(C2H6 +)、ブタンイオン
(C4H10 +)、アセチレンイオン(C2H2 +)のよう
な炭化水素イオン;炭素イオン(C+);窒素原子
イオン(N+)、窒素分子イオン(N2 +);ヘリウ
ムイオン(He+)、アルゴンイオン(Ar+)、クリ
プトン(Kr+)のような不活性ガスイオンのいず
れか1種であることが好ましい。 このようなイオン種は、後述する装置によつて
創生され、質量分析用のマグネトロンを用いて磁
気的に選択されて供給される。 本発明方法では、基体の上に炭素を含有する蒸
発源を蒸着させると同時に又は炭素を含有する蒸
発源の蒸着膜が形成された後に、上記したイオン
種を照射する。前者の場合には、炭素を含有する
蒸発源は基体表面に蒸着すると、まさにそれと同
時に照射されたイオン種の作用を受けてそれはダ
イヤモンド状カーボンおよび/またはダイヤモン
ドになりそれがそのまま層形成されることにな
る。また、後者の場合には、既に蒸着層として存
在する、炭素を含有する蒸発源の層がそのあとか
ら照射されたイオン種の作用によりダイヤモンド
状カーボンおよび/またはダイヤモンドに変換さ
れる。したがつて、この後者の場合、炭素を含有
する蒸発源の蒸着層の形成とイオン照射を交互に
反復して行なえば順次ダイヤモンド状カーボンお
よび/またはダイヤモンド層が厚く成長していく
ことになる。 本発明方法にあつては、基体の表面において、
蒸発源から蒸着させた原子の数(n0とする)と照
射されるイオンの電荷の数(すなわち、イオンの
電荷の総数q0とする)との比(n0/q0)が0.1〜
5となるように制御すること、並びにイオン種の
イオン加速エネルギーを該イオン種を構成する原
子り6〜60KeVに制御することが望ましい。 n0/q0が5を超える場合には、基体表面に形成
された薄膜は高硬度なダイヤモンド状カーボンお
よび/またはダイヤモンドでなく低密度、低硬度
の非ダイヤモンドカーボン又はダイヤモンド状カ
ーボンの薄膜になる。逆に0.1未満の場合は、エ
ネルギーが大き過ぎて格子欠陥が多く生じ、低密
度、低硬度の薄膜になる。このためにn0/q0
0.1〜5と定めたが高硬度、高密度及び基体との
付着強度に優れた良質な薄膜の形成にはn0/q0
1〜3であることがとくに好ましい。 イオン種のイオン加速エネルギーが原子当り
6KeV未満の場合には、蒸着膜へのイオン種の注
入量が減少してスパツタ現象が支配的となる。こ
の値を原子当り6KeV以上に制御するとスパツタ
現象は抑制され、蒸着膜の原子は該照射イオン種
と衝突して反跳し基体の内部にまで侵入してそこ
で基体と蒸着膜原子との間に新しい層を形成す
る、いわゆるイオンミキシング(Ion mixing)
効果が高まつて基体表面とダイヤモンド薄膜との
付着力が向上する。しかし、その値が原子当り
60keVを超えると基体表面の蒸着膜よりも可成り
深くイオン種が注入されるのでイオンミキシング
効果は高まるが、しかし形成される薄膜は低密
度、低硬度となるために不都合である。 本発明方法は、図に例示した装置を用いて次の
ように行なわれる。 まず、イオン化されるべきガス例えばN2はリ
ークバルブ1を経てイオン源2に導入され、ここ
でイオン化されたのち、加速器3で加速されて所
定のイオン加速エネルギーが付与される。イオン
は次に分析マグネツト4に導入され、ここで必要
とするイオン種のみが磁気的に選択されて反応室
5に供給される。 反応室5は真空ポンプ(例えばターボ分子ポン
プ)6によつて10-4Torr以下の高真空に維持さ
れる。基体7は基体ホルダ8に固定され、ここに
上記したイオン種が照射される。照射に際して
は、基体に均一にイオン種を照射するために、収
束レンズ9にイオン種を通過させる。 10は、基体7の下に配置された蒸着装置であ
る。装置の加熱方法は、電子ビーム加熱、レーザ
線加熱など適宜な方法が用いられる。この中には
炭素を含有する蒸発源が収容されている。炭素を
含有する蒸発源の蒸着量及び蒸着速度は、基体ホ
ルダ8の横に配設した例えば石英板使用の振動型
膜厚計11によつて測定すればよい。 また、イオン種の電荷の数、すなわち、イオン
電流は、二次電子追返し電極12を付設した電流
積算計13によつて正確に測定することができ
る。 このような装置において、基体7を所定位置に
セツトし、反応室5内を所定の真空度に保ち、蒸
着装置10を作動して炭素を含有する蒸発源を基
体7に所定量蒸着させ、そこに所定のイオン種を
所定のイオン加速エネルギーで照射すれば、基体
表面にはダイヤモンド状カーボンおよび/または
ダイヤモンドの薄膜が形成される。 なお、このとき炭素を含有する蒸発源、イオン
種はいずれも基体の1方向からのみ蒸着又は照射
されるので、基体の全表面にダイヤモンド状カー
ボンおよび/またはダイヤモンド薄膜を形成する
場合にはこの基体に回転、揺動などの運動を与え
ればよい。 〔発明の実施例〕 実施例 1〜3 図に示した装置を用いて高純度N2ガスをリー
クバルブ1からPIG型イオン源2に導入した。発
生したイオンに加速器3で種々の加速エネルギー
を付与した。このイオンビームを分析マグネツト
4で質量分析しN2 +のみを磁気的に選択した。 他方、基体としてタンタル板を用い、これを基
体ホルダ8にセツトし反応室5内を650/secの
ターボ分子ポンプで1×10-5Torrの真空度に保
持した。 ついで、黒鉛を収容する電子ビーム蒸着装置1
0を作動して炭素を蒸発させ、N2 +イオンの照射
と同時にタンタル板7の上に蒸着させた。 炭素の蒸着量、蒸着速度は振動型膜厚計11で
測定し、N2 +イオンの個数は電流積算計13で測
定し、n0/q0を算出した。 N2 +イオンのイオン加速エネルギーを変え、炭
素蒸着量を変化させて薄膜形成を行なつた。その
結果を一括して第1表に示した。 次いで、ロツクウエル硬度計にて、ロツクウエ
ル硬さ測定用のダイヤモンド圧子(荷重60Kg)を
用いて、第1表に示した実施例1〜3ならびに比
較例1〜4のそれぞれの試料の薄膜面上から圧痕
を付けて、そのときの圧痕周辺に生じる薄膜の剥
離した面積を測定して第1表に併記した。
[Technical Field of the Invention] The present invention relates to a method for coating the surface of a substrate with a diamond thin film, and more specifically, the present invention relates to a method for coating the surface of a substrate with a diamond thin film, and more specifically, a method for coating a substrate with a diamond thin film that has a strong adhesion to the substrate by combining an ion irradiation method and a vapor deposition method. It relates to a method of forming on the surface of. [Technical background of the invention and its problems] Diamond has unique properties such as high hardness, being an electrical insulator, high thermal conductivity, and excellent wear resistance. Therefore,
Diamond is used as it is as abrasive grains for grinding wheels, or is sintered and used as various cutting tools and wear-resistant tools. If the surfaces of various substrates could be coated with a thin film of diamond, the useful properties of diamond could be utilized in such materials, and their uses could be expanded dramatically. For example, in the field of various functional materials such as heat sinks and semiconductor materials. Therefore, conventional techniques for forming a diamond thin film on a substrate include chemical vapor deposition, an ion beam method that combines arc discharge and sputtering, a chemical vapor deposition method that uses glow discharge, or excitation using microwaves or high frequencies. Various methods have been tried, including chemical vapor deposition. However, in the methods tried so far, the thin film formed on the substrate is mostly graphite, diamond-like carbon, amorphous carbon, etc., and even if a true diamond thin film is formed, it is The adhesion force with the substrate is small, and phenomena such as damage and peeling of the diamond thin film occur due to generation of thermal stress between the two phases due to the difference in thermal expansion with the substrate. Ta. [Object of the Invention] The object of the present invention is to provide a method for forming a diamond-like carbon and/or diamond thin film on the surface of a substrate, which has a strong adhesion to the substrate, and has high density and high hardness. [Summary of the Invention] As a result of extensive research to achieve the above-mentioned object, the present inventors have applied a method that combines a vapor deposition method and an ion irradiation method. By appropriately adjusting the number of atoms deposited on the substrate, the number of ion charges to be irradiated (in other words, the total number of ion charges to be irradiated), and the ion acceleration energy of the ion species, high density and high The present invention was completed based on the discovery that it is possible to form a thin film of diamond-like carbon and/or diamond that is hard and has high adhesion strength. That is, the method of the present invention deposits carbon from a carbon-containing evaporation source onto a substrate and irradiates accelerated ion species simultaneously or alternately with the vapor deposition to deposit diamond-like carbon and/or diamond onto the substrate. A method for forming a thin film comprising: a ratio of the number of carbon atoms deposited on the substrate to the number of charges of the accelerated ionic species of 0.1 to 5;
and the thin film is formed under conditions where the ion acceleration energy of the ion species is 6 to 60 KeV per atom. In the method of the present invention, the substrate may be made of any material, such as ceramics, cemented carbide, cermets, or various metals or alloys, and its material does not matter. However, if the substrate is an electrical insulator, the characteristics of the deposited film will differ between charged and uncharged areas, and variations in the properties of the entire film are likely to occur. Preferably, it is an electrical conductor. However, even if the substrate is made of an electrically insulating material, it is possible to first form a thin film of an electrical conductor on the surface of the substrate by a conventional method, or to first make the surface conductive by vapor deposition in the method of the present invention, which will be described later. The method of the present invention may be applied after forming a minimum amount of a vapor-deposited film. Evaporation sources containing carbon include amorphous carbon,
Examples include one or more of graphite and diamond. The ion species may be any ion species as long as it has a predetermined ion acceleration energy and acts on the carbon-containing evaporation source to form a diamond thin film. Specifically, hydrogen atom ions (H + ), hydrogen molecular ions (H 2 + ); methane ions (CH 4 + ), ethane ions (C 2 H 6 + ), butane ions (C 4 H 10 + ), Hydrocarbon ions such as acetylene ions (C 2 H 2 + ); carbon ions (C + ); nitrogen atomic ions (N + ), nitrogen molecular ions (N 2 + ); helium ions (He + ), argon ions ( It is preferable to use one of inert gas ions such as Ar + ) and krypton (Kr + ). Such ion species are created by an apparatus to be described later, and are magnetically selected and supplied using a magnetron for mass spectrometry. In the method of the present invention, the above-mentioned ion species are irradiated on the substrate at the same time as the carbon-containing evaporation source is deposited on the substrate or after the carbon-containing evaporation source is deposited. In the former case, when the carbon-containing evaporation source is deposited on the surface of the substrate, it becomes diamond-like carbon and/or diamond under the action of the irradiated ionic species at the same time, and forms a layer as it is. become. In the latter case, the carbon-containing evaporation source layer, already present as a deposited layer, is converted into diamond-like carbon and/or diamond by the action of the irradiated ionic species. Therefore, in the latter case, by alternately repeating the formation of a deposited layer of a carbon-containing evaporation source and ion irradiation, the diamond-like carbon and/or diamond layer will grow thicker. In the method of the present invention, on the surface of the substrate,
The ratio (n 0 /q 0 ) of the number of atoms deposited from the evaporation source (denoted as n 0 ) and the number of ion charges irradiated (i.e., the total number of ion charges q 0 ) is 0.1 to
It is desirable to control the ion acceleration energy of the ion species to 6 to 60 KeV for the atoms constituting the ion species. When n 0 /q 0 exceeds 5, the thin film formed on the substrate surface will be a thin film of low density, low hardness non-diamond carbon or diamond-like carbon instead of high hardness diamond-like carbon and/or diamond. . Conversely, if it is less than 0.1, the energy is too large and many lattice defects occur, resulting in a thin film with low density and low hardness. For this reason, n 0 /q 0 is
Although n 0 /q 0 is determined to be 0.1 to 5, it is particularly preferable that n 0 /q 0 is 1 to 3 in order to form a high-quality thin film with high hardness, high density, and excellent adhesion strength to the substrate. Ion acceleration energy of ionic species per atom
When the voltage is less than 6 KeV, the amount of ion species implanted into the deposited film decreases, and the spatter phenomenon becomes dominant. When this value is controlled to 6 KeV per atom or more, the spatter phenomenon is suppressed, and the atoms of the deposited film collide with the irradiated ion species, recoil, and penetrate into the interior of the substrate, where there is a gap between the substrate and the atoms of the deposited film. So-called ion mixing to form new layers
The effect is enhanced and the adhesion between the substrate surface and the diamond thin film is improved. However, the value is per atom
If it exceeds 60 keV, the ion species will be implanted much deeper than the deposited film on the substrate surface, increasing the ion mixing effect, but the formed thin film will have a low density and low hardness, which is disadvantageous. The method of the present invention is carried out as follows using the apparatus illustrated in the figures. First, a gas to be ionized, such as N 2 , is introduced into the ion source 2 via the leak valve 1 and is ionized there, then accelerated by the accelerator 3 and given a predetermined ion acceleration energy. The ions are then introduced into the analysis magnet 4, where only the desired ion species are magnetically selected and supplied to the reaction chamber 5. The reaction chamber 5 is maintained at a high vacuum of 10 -4 Torr or less by a vacuum pump (for example, a turbomolecular pump) 6. The substrate 7 is fixed to a substrate holder 8, and is irradiated with the above-mentioned ion species. During irradiation, the ion species are passed through a converging lens 9 in order to uniformly irradiate the substrate with the ion species. 10 is a vapor deposition device placed under the base 7. As a heating method for the device, an appropriate method such as electron beam heating or laser beam heating is used. This contains a carbon-containing evaporation source. The amount and rate of evaporation of the carbon-containing evaporation source may be measured by a vibrating film thickness meter 11 using, for example, a quartz plate, which is disposed next to the substrate holder 8. Further, the number of charges of the ion species, that is, the ion current can be accurately measured by the current integrator 13 equipped with the secondary electron repulsion electrode 12. In such an apparatus, the substrate 7 is set at a predetermined position, the interior of the reaction chamber 5 is maintained at a predetermined degree of vacuum, and the vapor deposition device 10 is operated to deposit a predetermined amount of an evaporation source containing carbon onto the substrate 7. When a predetermined ion species is irradiated with a predetermined ion acceleration energy, a thin film of diamond-like carbon and/or diamond is formed on the substrate surface. At this time, both the carbon-containing evaporation source and the ion species are evaporated or irradiated from only one direction of the substrate, so when forming a diamond-like carbon and/or diamond thin film on the entire surface of the substrate, It is sufficient to apply motion such as rotation or oscillation to. [Embodiments of the Invention] Examples 1 to 3 High purity N 2 gas was introduced into the PIG type ion source 2 through the leak valve 1 using the apparatus shown in the figure. Various acceleration energies were applied to the generated ions using an accelerator 3. This ion beam was subjected to mass analysis using an analysis magnet 4, and only N 2 + was magnetically selected. On the other hand, a tantalum plate was used as the substrate, which was set in the substrate holder 8, and the inside of the reaction chamber 5 was maintained at a vacuum of 1×10 -5 Torr by a turbo molecular pump at 650/sec. Next, an electron beam evaporation device 1 containing graphite is provided.
0 was operated to evaporate carbon, and it was deposited on the tantalum plate 7 at the same time as the N 2 + ion irradiation. The amount of carbon evaporated and the evaporation rate were measured with a vibrating film thickness meter 11, and the number of N 2 + ions was measured with a current integrator 13, and n 0 /q 0 was calculated. Thin films were formed by varying the ion acceleration energy of N 2 + ions and varying the amount of carbon deposited. The results are summarized in Table 1. Next, using a Rockwell hardness tester, using a diamond indenter (load 60 kg) for Rockwell hardness measurement, the thin film surface of each of the samples of Examples 1 to 3 and Comparative Examples 1 to 4 shown in Table 1 was measured. An indentation was made, and the peeled area of the thin film generated around the indentation was measured and is also listed in Table 1.

【表】 * 剥離なし
実施例 4〜6 基体としてWC−Co基超硬合金、Si3N4基セラ
ミツクス及びTiC−TiN基サーメツトを使用し
て、実施例1と同様の条件で薄膜形成を行なつ
た。その結果を第2表に示した。 次いで、実施例1〜3と同一の条件で薄膜の剥
離試験を行ない、その結果を第2表に併記した。
[Table] * Examples 4 to 6 without peeling Thin films were formed under the same conditions as in Example 1 using WC-Co-based cemented carbide, Si 3 N 4 -based ceramics, and TiC-TiN-based cermet as substrates. Summer. The results are shown in Table 2. Next, a peel test of the thin film was conducted under the same conditions as in Examples 1 to 3, and the results are also listed in Table 2.

【表】 * 剥離なし
〔発明の効果〕 本発明方法によれば、第1表、第2表の硬さ
(ヌープ)のデータから明らかなように、基体の
表面にはダイヤモンド状カーボン又はダイヤモン
ドから成る高硬度の薄膜を形成することができる
こと、そしてその薄膜はイオン照射によつて基体
との界面で楔効果を有するので基体との付着力が
大きいことなどの点で工業的に資するところ大で
ある。
[Table] * No peeling [Effect of the invention] According to the method of the present invention, as is clear from the hardness (Knoop) data in Tables 1 and 2, the surface of the substrate is free from diamond-like carbon or diamond. It has great industrial advantages in that it can form a thin film with high hardness, and the thin film has a wedge effect at the interface with the substrate by ion irradiation, so it has a strong adhesion to the substrate. be.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法を行なうに当り好適な装置の1
例を示すものである。 1……リークバルブ、2……イオン源、3……
加速器、4……分析マグネツト、5……反応室、
6……真空ポンプ、7……基体、8……基体ホル
ダ、9……イオン収束レンズ、10……蒸着装
置、11……石英板使用の振動型膜厚計、12…
…二次電子追い返し用電極、13……電流積算
計。
The figure shows one of the preferred apparatuses for carrying out the method of the present invention.
This is an example. 1...Leak valve, 2...Ion source, 3...
Accelerator, 4... Analysis magnet, 5... Reaction chamber,
6... Vacuum pump, 7... Substrate, 8... Substrate holder, 9... Ion focusing lens, 10... Vapor deposition device, 11... Vibrating film thickness gauge using quartz plate, 12...
...Secondary electron repulsion electrode, 13...Current integrator.

Claims (1)

【特許請求の範囲】 1 基体上に、炭素を含有する蒸発源から炭素を
蒸着させ、その蒸着と同時又は交互に加速された
イオン種を照射して、該基体上にダイヤモンド状
カーボン及び/又はダイヤモンドからなる薄膜を
形成する方法において、前記基体上に蒸着された
炭素原子の数と加速された前記イオン種の電荷の
数との比が0.1〜5であり、かつ、該イオン種の
イオン加速エネルギーが原子当たり6〜60KeV
の条件によるイオン注入法を用いて、該薄膜を形
成することを特徴とするダイヤモンド薄膜の制造
方法。 2 蒸発源が、無定形炭素、黒鉛、ダイヤモンド
の群から選ばれる少なくとも1種である特許請求
の範囲第1項記の方法。 3 イオン種が、水素イオン、水素分子イオン、
炭化水素イオン、炭素イオン、窒素イオン、窒素
分子イオン、不活性ガスイオンのいずれか1つで
ある特許請求の範囲第1項又は第2項のいずれか
に記載の方法。
[Claims] 1. Carbon is deposited on a substrate from an evaporation source containing carbon, and accelerated ionic species are irradiated simultaneously or alternately with the deposition to form diamond-like carbon and/or carbon on the substrate. In a method for forming a thin film made of diamond, the ratio of the number of carbon atoms deposited on the substrate to the number of charges of the accelerated ionic species is 0.1 to 5, and the ion acceleration of the ionic species is Energy is 6 to 60 KeV per atom
1. A method for producing a diamond thin film, characterized in that the thin film is formed using an ion implantation method under the following conditions. 2. The method according to claim 1, wherein the evaporation source is at least one selected from the group of amorphous carbon, graphite, and diamond. 3 The ion species are hydrogen ions, hydrogen molecular ions,
3. The method according to claim 1, wherein the ion is any one of hydrocarbon ions, carbon ions, nitrogen ions, nitrogen molecular ions, and inert gas ions.
JP59048251A 1984-03-15 1984-03-15 Production of diamond thin film Granted JPS60195094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59048251A JPS60195094A (en) 1984-03-15 1984-03-15 Production of diamond thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59048251A JPS60195094A (en) 1984-03-15 1984-03-15 Production of diamond thin film

Publications (2)

Publication Number Publication Date
JPS60195094A JPS60195094A (en) 1985-10-03
JPH0352433B2 true JPH0352433B2 (en) 1991-08-09

Family

ID=12798219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59048251A Granted JPS60195094A (en) 1984-03-15 1984-03-15 Production of diamond thin film

Country Status (1)

Country Link
JP (1) JPS60195094A (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874596A (en) * 1957-06-27 1989-10-17 Lemelson Jerome H Production of crystalline structures
US5462772A (en) * 1957-06-27 1995-10-31 Lemelson; Jerome H. Methods for forming artificial diamond
JPH0679963B2 (en) * 1985-03-25 1994-10-12 並木精密宝石株式会社 Method for producing diamond-like carbon
JP2512898B2 (en) * 1986-04-28 1996-07-03 日新電機株式会社 Insulating substrate and manufacturing method thereof
JPS62256794A (en) * 1986-04-28 1987-11-09 Nissin Electric Co Ltd Formation of thin diamond film
US5275798A (en) * 1986-07-11 1994-01-04 Kyocera Corporation Method for producing diamond films
US5225275A (en) * 1986-07-11 1993-07-06 Kyocera Corporation Method of producing diamond films
US5270029A (en) * 1987-02-24 1993-12-14 Semiconductor Energy Laboratory Co., Ltd. Carbon substance and its manufacturing method
JP2535886B2 (en) * 1987-03-11 1996-09-18 日新電機株式会社 Carbon-based film coating method
US4882138A (en) * 1987-03-30 1989-11-21 Crystallume Method for preparation of diamond ceramics
US5075095A (en) * 1987-03-30 1991-12-24 Crystallume Method for preparation of diamond ceramics
US5332348A (en) * 1987-03-31 1994-07-26 Lemelson Jerome H Fastening devices
US6083570A (en) * 1987-03-31 2000-07-04 Lemelson; Jerome H. Synthetic diamond coatings with intermediate amorphous metal bonding layers and methods of applying such coatings
US5096352A (en) * 1987-03-31 1992-03-17 Lemelson Jerome H Diamond coated fasteners
US5067826A (en) * 1987-03-31 1991-11-26 Lemelson Jerome H Ball and roller bearings and bearing components
US5190824A (en) 1988-03-07 1993-03-02 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
JPH01294599A (en) * 1988-05-20 1989-11-28 Honda Motor Co Ltd Synthesis of diamond
WO1992001827A1 (en) * 1988-06-03 1992-02-06 Massachusetts Institute Of Technology Oriented diamond crystals
IL93399A (en) * 1989-02-16 1994-06-24 De Beers Ind Diamond Epitaxy of diamond or diamond-like layer
US5334453A (en) * 1989-12-28 1994-08-02 Ngk Spark Plug Company Limited Diamond-coated bodies and process for preparation thereof
US5740941A (en) * 1993-08-16 1998-04-21 Lemelson; Jerome Sheet material with coating
US5714202A (en) * 1995-06-07 1998-02-03 Lemelson; Jerome H. Synthetic diamond overlays for gas turbine engine parts having thermal barrier coatings
US5688557A (en) * 1995-06-07 1997-11-18 Lemelson; Jerome H. Method of depositing synthetic diamond coatings with intermediates bonding layers
US5616372A (en) * 1995-06-07 1997-04-01 Syndia Corporation Method of applying a wear-resistant diamond coating to a substrate
US5871805A (en) * 1996-04-08 1999-02-16 Lemelson; Jerome Computer controlled vapor deposition processes
US8555921B2 (en) 2002-12-18 2013-10-15 Vapor Technologies Inc. Faucet component with coating
US6904935B2 (en) 2002-12-18 2005-06-14 Masco Corporation Of Indiana Valve component with multiple surface layers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622616A (en) * 1979-08-03 1981-03-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of diamondlike carbon film
JPS5761644A (en) * 1980-10-02 1982-04-14 Seiko Epson Corp Cover glass having diamond coating layer and its preparation
JPS5855319A (en) * 1981-09-30 1983-04-01 Nippon Telegr & Teleph Corp <Ntt> Formation of diamondlike carbon film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622616A (en) * 1979-08-03 1981-03-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of diamondlike carbon film
JPS5761644A (en) * 1980-10-02 1982-04-14 Seiko Epson Corp Cover glass having diamond coating layer and its preparation
JPS5855319A (en) * 1981-09-30 1983-04-01 Nippon Telegr & Teleph Corp <Ntt> Formation of diamondlike carbon film

Also Published As

Publication number Publication date
JPS60195094A (en) 1985-10-03

Similar Documents

Publication Publication Date Title
JPH0352433B2 (en)
US4657774A (en) Method for thin film formation
EP0583736A1 (en) Plasma-enhanced magnetron-sputtered deposition of materials
Haberland et al. Energetic cluster impact (ECI): A new method for thin-film formation.
JP2005305632A (en) Abrasive for precision surface treatment and its manufacturing method
WO1988010321A1 (en) Process for the deposition of diamond films
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
Ding et al. Low-temperature deposition of nanocrystalline Al2O3 films by ion source-assisted magnetron sputtering
EP0474369B1 (en) Diamond-like carbon coatings
US20050136656A1 (en) Process for depositing composite coating on a surface
Lu et al. Microstructure and nanomechanical properties of nitrogenated amorphous carbon thin films synthesized by reactive radio frequency sputtering
Kubart et al. High power impulse magnetron sputtering of diamond-like carbon coatings
JPH0351787B2 (en)
JPH0259862B2 (en)
JP3649873B2 (en) Thin film formation method by CVD and thin film and sliding parts
JPS5855319A (en) Formation of diamondlike carbon film
JPH0259864B2 (en)
JPH04337064A (en) Boron nitride coating member
Hahn et al. Plasma conditions for the deposition of TiN by biased activated reactive evaporation and dependence of the resistivity on preferred orientation
JP2535886B2 (en) Carbon-based film coating method
JPS61288069A (en) Diamond-like carbon film forming device
JP2003013200A (en) Hard carbon film and manufacturing method therefor
JPH0259863B2 (en)
JP2840335B2 (en) Method of forming highly functional coating
Liu et al. Growth processes and surface properties of diamondlike carbon films

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term