JPH01294599A - Synthesis of diamond - Google Patents

Synthesis of diamond

Info

Publication number
JPH01294599A
JPH01294599A JP12457688A JP12457688A JPH01294599A JP H01294599 A JPH01294599 A JP H01294599A JP 12457688 A JP12457688 A JP 12457688A JP 12457688 A JP12457688 A JP 12457688A JP H01294599 A JPH01294599 A JP H01294599A
Authority
JP
Japan
Prior art keywords
diamond
carbon
density energy
electrode
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12457688A
Other languages
Japanese (ja)
Inventor
Mitsuo Kuwabara
光雄 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12457688A priority Critical patent/JPH01294599A/en
Publication of JPH01294599A publication Critical patent/JPH01294599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To synthesize diamond at high rate using a simple unit by irradiating carbon or a carbon-contg. material with high-density energy beams to convert the structure of the raw material into that of diamond followed by quenching to normal temperature. CONSTITUTION:An electrode 2 generating high-density energy beame (e.g., direct current arc) is set up on a raw material 1 consisting of or containing carbonaceous matter such as graphite or carbon black. This electrode 2 is moved and the surface of the raw material 1 is scanned by high-density energy beams to bring the material 1 to a high-temperature state to convert the bonds between carbon atoms in the material 1 from SP<2> to SP<3> along with change of the crystal structure from hexagonal to cubic system, thus converting the structure into diamond one. Thence, a cooling gas (e.g., N2 gas) is introduced via a cooling gas feed pipe 3 to quench the product to normal temperature, thereby obtaining the objective diamond.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はダイヤモンドの合成法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for synthesizing diamond.

(従来の技術) 研磨材等として用いるダイヤモンドの合成法として従来
から高圧法と低圧法が知られている。
(Prior Art) High-pressure methods and low-pressure methods have been known as methods for synthesizing diamonds used as abrasives and the like.

高圧法は1500℃以上且つ6万気圧以上の条件下にお
いて行う方法であり、低圧法は特開昭62−23529
5号或いは特開昭83−20479号に開示されるよう
に、炭素を含むガスをプラズマ化するとともに高温に加
熱された基板上で合成する方法である。そして、最近で
は設備等の関係から低圧法が主として利用されている。
The high pressure method is a method carried out under conditions of 1,500°C or higher and 60,000 atmospheres or higher, and the low pressure method is based on Japanese Patent Application Laid-Open No. 62-23529.
As disclosed in No. 5 or Japanese Unexamined Patent Publication No. 83-20479, this is a method in which carbon-containing gas is turned into plasma and synthesized on a substrate heated to a high temperature. Recently, the low pressure method has been mainly used due to equipment limitations.

(発明が解決しようとする課題) 上述した低圧法によってダイヤモンドを合成するには、
炭化水素を導入し減圧下でプラズマを発生するための容
器が必要となる。
(Problem to be solved by the invention) To synthesize diamond by the above-mentioned low pressure method,
A container is required to introduce hydrocarbons and generate plasma under reduced pressure.

このように容器を用いた閉鎖系の合成装置は装置自体が
複雑になるとともに原料ガスを容器内に多量に導入する
と所定の真空度を保てずプラズマを発生できないので、
原料ガスの導入量も少なくせざるを得す、合成効率を向
上することができない。
In a closed-system synthesis apparatus using a container as described above, the apparatus itself becomes complicated, and if a large amount of raw material gas is introduced into the container, a predetermined degree of vacuum cannot be maintained and plasma cannot be generated.
The amount of raw material gas introduced must also be reduced, and the synthesis efficiency cannot be improved.

(課題を解決するための手段) 上記課題を解決すべく本発明は、炭素又は炭素を含む素
材に直流アーク、プラズマアーク或いはレーザビーム等
の高密度エネルギービームを照射して素材の構造をダイ
ヤモンドの構造に転化し、これを急冷することでダイヤ
モンド構造のまま常温に戻すようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention irradiates carbon or a material containing carbon with a high-density energy beam such as a direct current arc, plasma arc, or laser beam to change the structure of the material to that of diamond. By rapidly cooling this, the diamond structure was returned to room temperature.

(作用) 高密度エネルギービームを六方晶で電子配置がsp2構
造の炭素素材に照射して高温状態とすると、素材は立方
晶でSP3構造のダイヤモンドとなり、これを急冷する
ことで開放系で目的とするダイヤモンドが得られる。
(Function) When a high-density energy beam is irradiated onto a carbon material with a hexagonal crystal structure and an electron configuration of sp2 to bring it into a high temperature state, the material becomes a diamond with a cubic crystal structure and an SP3 structure.By rapidly cooling this, it can be used as an open system to achieve the intended purpose. You can get diamonds that

(実施例) 以下に本発明の実施例を添付図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は高密度エネルギービームとして直流アークを用
いた合成方法の概略図であり、図中1は素材、2はアー
クを発生する電極、3は冷却ガスの導入バイブであり、
素材1としては焼結黒鉛、未焼結黒鉛、黒鉛粉、カーボ
ンブラックなどの炭素単体の他に、炭素を含有する化合
物を用いるか、これらの素材をペースト状にして基板等
に塗布するか、更には炭素鋼や鋳鉄等のように炭素を含
む金属材料でもよい。
Figure 1 is a schematic diagram of a synthesis method using a DC arc as a high-density energy beam, in which 1 is a material, 2 is an electrode that generates an arc, 3 is a cooling gas introduction vibe,
As the material 1, in addition to simple carbon such as sintered graphite, unsintered graphite, graphite powder, and carbon black, compounds containing carbon may be used, or these materials may be made into a paste and applied to the substrate, etc. Furthermore, a metal material containing carbon such as carbon steel or cast iron may be used.

また、電8i2としては一般的な金属電極でもよいが、
黒鉛電極を用いるのが好ましく、冷却ガスとしてはAr
、N2.Co2.H,、NHs又はこれらの混合ガス等
を用いる。
In addition, a general metal electrode may be used as the electrode 8i2, but
It is preferable to use graphite electrodes, and the cooling gas is Ar.
, N2. Co2. A gas such as H, NHs or a mixture thereof is used.

以上の直流アークを用いてダイヤモンドを合成するには
、電圧を30〜220Vで電流を50〜300A例えば
70vで15OAの条件テアーク径を3mm程度とし、
電極2を0.1〜1.0m/secの速度で穆動せしめ
、アークによって組材1表面を走査する。
To synthesize diamond using the above DC arc, the voltage is 30 to 220V, the current is 50 to 300A, for example, 70V and 15OA, and the diameter of the tear arc is about 3mm.
The electrode 2 is moved at a speed of 0.1 to 1.0 m/sec, and the surface of the assembly 1 is scanned by an arc.

このように直流アークによって組材1表面を走査するこ
とで、素材が高温状態となる。そして素材が高温状態と
なると、炭素原子同士の結合がSF3からS23へと転
化し、これに伴フて結晶構造が六法晶から立方晶へ変化
し、ダイヤモンド構造になる。
By scanning the surface of the assembly 1 with the DC arc in this manner, the material becomes hot. When the material reaches a high temperature, the bonds between carbon atoms convert from SF3 to S23, and as a result, the crystal structure changes from hexagonal crystal to cubic crystal, resulting in a diamond structure.

そして、上記の高温状態で安定なダイヤモンド構造は急
冷されることで、SF3及び立方晶を保ったまま常温に
なり、多結晶ダイヤモンドが得られる。ここで冷却速度
としては103℃/sec以上とするのが好ましく、こ
の冷却速度以下であると、グラファイトが多量に生成さ
れる。
The diamond structure, which is stable at high temperatures, is then rapidly cooled to room temperature while maintaining the SF3 and cubic crystal structure, yielding polycrystalline diamond. Here, the cooling rate is preferably 103° C./sec or more, and if the cooling rate is less than this, a large amount of graphite will be produced.

第2図は高密度エネルギービームとしてレーザビームを
用いた合成方法を示す概略図であり、ビーム径を3mm
以下(例えば0.5mm)とし、0 、 1〜1 、0
m/secmの速度で素材1表面を走査し、同時に急冷
する。尚、レーザビームを用いる場合には、レーザ出力
を130〜170wattとして、エネルギー密度が1
00〜200 kcal/cm2となるようにする。こ
れは100 kcal、7cm2未満であるとSF3か
らS23への転化が起こりにくくダイヤモンドの生成が
できず、200 kcal/cm”を超えると、素材が
高温になり過ぎ冷却速度が遅くなり、却って転化効率が
低下することによる。
Figure 2 is a schematic diagram showing a synthesis method using a laser beam as a high-density energy beam, with a beam diameter of 3 mm.
or less (for example, 0.5 mm), 0, 1 to 1, 0
The surface of the material 1 is scanned at a speed of m/sec and simultaneously rapidly cooled. In addition, when using a laser beam, the laser output is 130 to 170 watts, and the energy density is 1.
00 to 200 kcal/cm2. If this is less than 100 kcal/cm2, the conversion from SF3 to S23 will be difficult to occur, and diamond formation will not be possible.If it exceeds 200 kcal/cm, the material will become too hot and the cooling rate will slow down, which will actually reduce the conversion efficiency. This is due to a decrease in

また、レーザビームを用いる場合には、素材1を負極又
は正極に接続しておくのが好ましい。即ち、炭素原子の
結合をsp’からSF3に転化させるには熱的な励起の
他に、電子的な励起も有効であり、素材1を一方の電極
に接続することで一種のコンデンサーが形成され、レー
ザビームを照射することで静電話導により電子励起が生
じ、その結果、熱的励起との相乗効果によってダイヤモ
ンドの合成効率が大巾に向上する。
Moreover, when using a laser beam, it is preferable to connect the material 1 to a negative electrode or a positive electrode. In other words, in addition to thermal excitation, electronic excitation is also effective in converting the carbon atom bond from sp' to SF3, and by connecting material 1 to one electrode, a kind of capacitor is formed. By irradiating the laser beam, electronic excitation occurs due to electrostatic conduction, and as a result, the synergistic effect with thermal excitation greatly improves the efficiency of diamond synthesis.

(発明の効果) 以上に説明した如く本発明方法によれば、常圧且つ開放
系でダイヤモンドの合成を行うため、従来法に比べ気密
なチャンバー(容器)や吸引装置が不要となり装置の簡
略化が達成でき、また本発明方法によれば数μmから1
mm厚程度のダイヤモンドまで合成でき、従来法による
合成速度が約180μm/hであるのに対し    程
度の速度で合成でき、飛躍的に合成速度が向上する。
(Effects of the Invention) As explained above, according to the method of the present invention, diamond is synthesized under normal pressure and in an open system, which eliminates the need for an airtight chamber (container) or suction device compared to the conventional method, simplifying the equipment. can be achieved, and according to the method of the present invention, from several μm to 1
It is possible to synthesize diamonds up to millimeters thick, and compared to the conventional method's synthesis speed of about 180 μm/h, it can be synthesized at a speed of about 100 μm/h, dramatically improving the synthesis speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はいずれも本発明方法の概略を示す図
である。 尚、図面中1は素材、2は電極、3は冷却パイプである
1 and 2 are diagrams schematically showing the method of the present invention. In the drawings, 1 is a material, 2 is an electrode, and 3 is a cooling pipe.

Claims (1)

【特許請求の範囲】[Claims] 炭素又は炭素を含む素材に高密度エネルギービームを照
射することで素材の構造をダイヤモンド構造に転化し、
次いで常温まで急冷するようにしたことを特徴とするダ
イヤモンドの合成法。
By irradiating carbon or a material containing carbon with a high-density energy beam, the structure of the material is transformed into a diamond structure.
A diamond synthesis method characterized by rapidly cooling the diamond to room temperature.
JP12457688A 1988-05-20 1988-05-20 Synthesis of diamond Pending JPH01294599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12457688A JPH01294599A (en) 1988-05-20 1988-05-20 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12457688A JPH01294599A (en) 1988-05-20 1988-05-20 Synthesis of diamond

Publications (1)

Publication Number Publication Date
JPH01294599A true JPH01294599A (en) 1989-11-28

Family

ID=14888894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12457688A Pending JPH01294599A (en) 1988-05-20 1988-05-20 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPH01294599A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973490A (en) * 1982-10-19 1984-04-25 Matsushita Electric Ind Co Ltd Preparation of crystal
JPS60195094A (en) * 1984-03-15 1985-10-03 Agency Of Ind Science & Technol Production of diamond thin film
JPS60251199A (en) * 1984-05-25 1985-12-11 Matsushita Electric Ind Co Ltd Preparation of diamond single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973490A (en) * 1982-10-19 1984-04-25 Matsushita Electric Ind Co Ltd Preparation of crystal
JPS60195094A (en) * 1984-03-15 1985-10-03 Agency Of Ind Science & Technol Production of diamond thin film
JPS60251199A (en) * 1984-05-25 1985-12-11 Matsushita Electric Ind Co Ltd Preparation of diamond single crystal

Similar Documents

Publication Publication Date Title
US4769064A (en) Method for synthesizing ultrafine powder materials
Johnston et al. Reactive laser ablation synthesis of nanosize alumina powder
NO176885C (en) Use of pure carbon in the form of carbon particles as anode material for aluminum production
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
JP4256012B2 (en) Method for producing BN, AlN or Si3N4 by combustion synthesis reaction
JPH0649634B2 (en) Synthesis of hexagonal diamond using hydrogen plasma jet
JPH01294599A (en) Synthesis of diamond
JP3500423B2 (en) Nanodiamond and its manufacturing method
US4889665A (en) Process for producing ultrafine particles of ceramics
Kikuchi et al. Diamond synthesis by CO2 laser irradiation
CN108946733B (en) Method for preparing nano titanium carbide powder by plasma room temperature induced self-propagating reaction
JPH089519B2 (en) High-pressure phase boron nitride vapor phase synthesis method
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
JPS6042164B2 (en) Powder manufacturing method
JP4354566B2 (en) Process for producing inorganic compounds by combustion synthesis reaction
JP2561866B2 (en) Method for producing fine particles of boron carbide
JPH0341435B2 (en)
JPH01201098A (en) Synthesis of diamond
JPS60246208A (en) Preparation of boron nitride
JP2774439B2 (en) Diamond synthesis method
JPH03208893A (en) Method and device for synthesizing diamond film
JPH01290594A (en) High-speed synthesizing method for diamond utilizing co, co2 as carbon source
JPH04304377A (en) Method and device for forming diamond thin film
JP2633620B2 (en) Method for producing silicon carbide whiskers
JPS62100500A (en) Production of single crystal titanium carbonitride