JPH03208893A - Method and device for synthesizing diamond film - Google Patents

Method and device for synthesizing diamond film

Info

Publication number
JPH03208893A
JPH03208893A JP533990A JP533990A JPH03208893A JP H03208893 A JPH03208893 A JP H03208893A JP 533990 A JP533990 A JP 533990A JP 533990 A JP533990 A JP 533990A JP H03208893 A JPH03208893 A JP H03208893A
Authority
JP
Japan
Prior art keywords
substrate
processed
gas
laser
diamond film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP533990A
Other languages
Japanese (ja)
Other versions
JP2770520B2 (en
Inventor
Kazuaki Kurihara
和明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005339A priority Critical patent/JP2770520B2/en
Publication of JPH03208893A publication Critical patent/JPH03208893A/en
Application granted granted Critical
Publication of JP2770520B2 publication Critical patent/JP2770520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a high-purity diamond which does not contain impurities with a low temp. of a substrate by irradiating the substrate to be treated which is placed in an atmosphere contg. a carbon compd. with a condensed IR laser beam of a large output. CONSTITUTION:A base plate 10 which is movable in a horizontal direction and a vertical direction is provided in a vacuum chamber 9 having a window 11 in the upper part and the substrate 4 to be treated is fixed onto this base plate 10. A gaseous mixture composed of the gaseous carbon compd. and a gaseous atmosphere is introduced from cylinders 12, 13 via a supply pipe 14 into the vacuum chamber 9 and thereafter, the IR laser beam 1 of the large output from a laser light source 15 is condensed by a lens 2 and is projected to the substrate 4 to induce a laser breakdown, by which the gaseous plasma of the carbon compd. is generated and the diamond film is formed on the substrate 4.

Description

【発明の詳細な説明】 〔概要〕 被処理基板へのダイヤモンド膜の合成方法と装置に関し
、 不純物を含まない高純度のダイヤモンドを低い基板温度
で合成する方法および装置を提供することを目的とし、 炭素化合物ガスを含む雰囲気中に被処理基板(4)を置
き、大出力の赤外レーザ光(1)をレンズ(2)により
被処理基板(4)の直上に集光し、レーザブレークダウ
ンを起こさせて炭素化合物のガスプラズマを発生せしめ
、前記被処理基板(4ンの上にダイヤモンド膜(5)を
形成することを特徴としてダイヤモンド膜の合成方法を
構成し、また、大出力の赤外レーザ光(1)を集光して
被処理基板(4)の直上でレーザブレークダウンを起こ
させる手段と、被処理基板(4)を垂直方向および水平
方向に移動可能の基板台OIに固定し、レーザブレーク
ダウンの発生位置に調整する手段と、所定量の炭素化合
物ガスQ2)と雰囲気ガスQ31とを被処理基板(4)
が固定されている真空室(9)に供給する手段と、レー
ザブレークダウンの終わったガスを排気する手段とを少
なくとも含んで構成されていることを特徴としてダイヤ
モンド膜の合成装置を構成する。
[Detailed Description of the Invention] [Summary] Regarding a method and apparatus for synthesizing a diamond film on a substrate to be processed, the present invention aims to provide a method and apparatus for synthesizing high-purity diamond containing no impurities at a low substrate temperature. A substrate to be processed (4) is placed in an atmosphere containing carbon compound gas, and a high-output infrared laser beam (1) is focused directly above the substrate to be processed (4) using a lens (2) to cause laser breakdown. The diamond film synthesis method is characterized in that a diamond film (5) is formed on the substrate to be processed (4) by generating a carbon compound gas plasma. A means for condensing a laser beam (1) to cause laser breakdown directly above a substrate to be processed (4), and a means for fixing the substrate to be processed (4) to a substrate stand OI that is movable in vertical and horizontal directions. , a means for adjusting the position where laser breakdown occurs, and a predetermined amount of carbon compound gas Q2) and atmospheric gas Q31 to the substrate to be processed (4).
The apparatus for synthesizing a diamond film is characterized in that it includes at least a means for supplying gas to a vacuum chamber (9) in which a gas is fixed, and a means for exhausting gas after laser breakdown.

〔産業上の利用分野〕[Industrial application field]

本発明は低い基板温度で良質のダイヤモンド膜を合成す
る方法と装置に関する。
The present invention relates to a method and apparatus for synthesizing high quality diamond films at low substrate temperatures.

ダイヤモンドは炭素(C)の同素体であり、所謂るダイ
ヤモンド構造を示し、モース(Mohs)硬度は10と
大きく、また熱伝導度は2000W/vaKと他の材料
に較べて格段に優れており、またバルクを伝播する音速
は18,000 m/sと他の材料に較べて格段に速い
などの特徴をもっている。
Diamond is an allotrope of carbon (C), exhibits a so-called diamond structure, has a high Mohs hardness of 10, and has a thermal conductivity of 2000 W/vaK, which is significantly superior to other materials. The speed of sound propagating through the bulk is 18,000 m/s, which is much faster than other materials.

そのため、この性質を利用して各種の用途が検討されて
いる。
Therefore, various uses are being considered using this property.

すなわち、硬度の高いのを利用してドリルの刃やバイト
への使用が検討されているが、ダイヤモンド膜としては
硬度が高いのを利用して耐摩耗性コーティング、熱伝導
度の高いのを利用して半導体素子のヒートシンク(le
at−sink)の構成材、また音速が速いことを利用
してスピーカーの振動板などへの実用化が進められてい
る。
In other words, diamond film is being considered for use in drill bits and cutting tools due to its high hardness, but diamond film is also being used for wear-resistant coating and high thermal conductivity due to its high hardness. and the heat sink of the semiconductor element (le
At-sink) is being put to practical use in speaker diaphragms, etc., taking advantage of its high speed of sound.

〔従来の技術〕[Conventional technology]

ダイヤモンド膜の合成法としては低圧合成法にはマイク
ロ波プラズマ気相成長法(略してマイクロ波プラズマC
VD法)があり、被処理基板上に微結晶の形で製膜でき
る点に特徴がある。
As a diamond film synthesis method, microwave plasma vapor deposition method (abbreviated as microwave plasma C) is a low-pressure synthesis method.
VD method), which is unique in that it can form a film in the form of microcrystals on the substrate to be processed.

然し、気相成長法(CVD法)で成長させたダイヤモン
ド膜は製膜速度が0.1〜1Op−7時と小さいことが
問題であった。
However, a problem with diamond films grown by vapor phase growth (CVD) is that the film forming rate is as low as 0.1 to 1 Op-7.

そこで、発明者等はDCプラズマジェットCvD法を開
発し、新しいダイヤモンドの合成方法を提供している。
Therefore, the inventors have developed a DC plasma jet CVD method to provide a new method for synthesizing diamond.

(特願昭62−083318.特開平1−33096)
そして、この方法を使用すれば、製膜速度が200μI
I1時と大きく、然も核発生密度が高いために微細な凹
凸を伴う表面上に均一なダイヤモンド膜を高速に被覆す
ることができる。
(Patent application No. 1983-083318. Japanese Patent Application No. 1-33096)
If this method is used, the film forming rate is 200 μI.
Since the nucleation density is as large as I1 and the nucleation density is high, a uniform diamond film can be coated quickly on a surface with fine irregularities.

然し、この方法はDCアーク放電を利用するために、僅
かではあるが電極材料が合成されたダイヤモンドの中に
不純物として混入す、ると云う問題がある。
However, since this method utilizes DC arc discharge, there is a problem in that the electrode material is mixed into the synthesized diamond as an impurity, albeit in a small amount.

また、従来のCVD法による場合、被処理基板温度の温
度は少なくとも600°C以上になることから、耐熱性
の低い材料には膜形成することができず、また製膜温度
が高いために熱膨張係数の違いが大きく影響し、製膜後
に剥離し易いなどの問題があった。
In addition, when using the conventional CVD method, the temperature of the substrate to be processed is at least 600°C or higher, making it impossible to form a film on materials with low heat resistance. Differences in expansion coefficients have a large effect, and there have been problems such as easy peeling after film formation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ダイヤモンド膜の形成法として先に記したように各種の
方法が提案されているが、何れも高温で行われている。
As described above, various methods have been proposed for forming a diamond film, but all of them are performed at high temperatures.

そのため、先に記したようにダイヤモンド膜を被覆する
被処理基板材料が限られ、また製膜後に剥離が生じ易い
ことが問題で、この解決が課題である。
Therefore, as described above, there are problems in that the substrate materials to be treated that can be coated with the diamond film are limited, and peeling tends to occur after the film is formed, and the problem is to solve this problem.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、炭素化合物ガスを倉む雰囲気中に被処理
基板を置き、大出力の赤外レーザ光をレンズにより被処
理基板の直上に集光し、レーザブレークダウンを起こさ
せて炭素化合物のガスプラズマを発生せしめ、被処理基
板上にダイヤモンドを膜形成することを特徴としてダイ
ヤモンド膜の合成方法を構成し、また大出力の赤外レー
ザ光を集光して被処理基板の直上でレーザブレークダウ
ンを起こさせる手段と、被処理基板を垂直方向および水
平方向に移動可能の基板台に固定し、レーザブレークダ
ウンの発生位置に調整する手段と、所定量の炭素化合物
と雰囲気ガスとを被処理基板が固定されている真空室に
供給した後にレーザブレークダウンの終わったガスを排
気する手段とを少なくとも含んで構成されていることを
特徴としてダイヤモンド膜の合成装置を構成することに
より解決することができる。
To solve the above problem, the substrate to be processed is placed in an atmosphere containing carbon compound gas, and a high-output infrared laser beam is focused directly above the substrate to be processed using a lens, causing laser breakdown and releasing carbon compounds. The diamond film synthesis method is characterized by generating gas plasma and forming a diamond film on the substrate to be processed, and also focuses a high-output infrared laser beam to create a laser break directly above the substrate to be processed. means for fixing the substrate to be processed on a vertically and horizontally movable substrate stand and adjusting it to a position where laser breakdown occurs; The problem can be solved by configuring a diamond film synthesis apparatus characterized by comprising at least a means for exhausting gas after laser breakdown after supplying it to a vacuum chamber to which a substrate is fixed. can.

〔作用〕[Effect]

本発明はレーザブレークダウンに際して生ずるガスプラ
ズマにより高度に活性化した炭素化合物ラジカルが生ず
るのを利用して低温でダイヤモンドを合成するものであ
る。
The present invention utilizes the generation of highly activated carbon compound radicals by the gas plasma generated during laser breakdown to synthesize diamond at low temperatures.

こ−で、レーザブレークダウンとは、レーザ光のエネル
ギー密度が膨大な場合は、高い輝度と鋭い音を発して気
体の分子の誘電破壊が生じてプラズマが発生する現象を
云う。
Here, laser breakdown refers to a phenomenon in which when the energy density of laser light is enormous, high brightness and sharp sound are emitted, dielectric breakdown of gas molecules occurs, and plasma is generated.

本発明は炭素化合物ガスの雰囲気中で、大出力の赤外レ
ーザ光を短焦点レンズで集光して焦点を結ばせることに
より、炭素化合物ガスのレーザブレークダウンを起こさ
せ、この直下に被処理基板をおくことによりダイヤモン
ド膜を形成するものである。
In the present invention, in an atmosphere of carbon compound gas, a high-output infrared laser beam is condensed and focused by a short focal length lens, thereby causing laser breakdown of the carbon compound gas, and directly below the infrared laser beam to be processed. A diamond film is formed by placing a substrate.

なお、大出力を得るにはQスイッチ・レーザを使用すれ
ばよ<、50μs程度のパルス幅で数10MW程度の出
力は容易に得ることができ、ジャイアント・パルスと呼
ばれている。
Note that to obtain a large output, a Q-switched laser can be used. An output of several tens of MW can be easily obtained with a pulse width of about 50 μs, and is called a giant pulse.

第1図は本発明の原理を示すものであり、また第2図は
効率よくダイヤモンド膜を合成する方法の説明図である
FIG. 1 shows the principle of the present invention, and FIG. 2 is an explanatory diagram of a method for efficiently synthesizing a diamond film.

すなわち、炭酸ガス(CO□)レーザのように大出力が
出せる赤外レーザ光1を赤外光を透過する材料からなる
レンズ2を用いて集光し、炭素化合物ガスの雰囲気中で
焦点3を結ばせてレーザブレークダウンを起こさせる。
That is, an infrared laser beam 1 that can produce high output, such as a carbon dioxide (CO□) laser, is focused using a lens 2 made of a material that transmits infrared light, and a focal point 3 is focused in an atmosphere of carbon compound gas. Tie them together to cause laser breakdown.

そして、この焦点の直下に被処理基板4があると、プラ
ズマの発生により生じた活性度の高い炭素化合物ラジカ
ルが被処理基板4の上で急冷する結果、ダイヤモンドに
変性するものである。
If the substrate 4 to be processed is located directly below this focal point, the highly active carbon compound radicals generated by the generation of plasma are rapidly cooled on the substrate 4 to be processed, and as a result are denatured into diamond.

また、第2図は実用的な合成方法であって、従来からダ
イヤモンドのCVD成長に使用されているガス例えばメ
タン(CH4)ガスと水素(H2)の混合ガスを給気口
6より導入してノズル7から噴出させ、その出口にレー
ザの焦点3を結ばせるものである。
FIG. 2 shows a practical synthesis method in which a gas conventionally used for diamond CVD growth, such as a mixed gas of methane (CH4) gas and hydrogen (H2), is introduced from the air supply port 6. The laser is ejected from a nozzle 7, and the laser is focused at its exit.

そして、被処理基板4を焦点3の直下に位置決めし、前
後左右に移動させることにより、被処理基板4の全面に
亙ってダイヤモンド膜5を形成することができる。
The diamond film 5 can be formed over the entire surface of the substrate 4 by positioning the substrate 4 directly below the focal point 3 and moving it back and forth and left and right.

なお、レーザ光源としてはCO□レーザのようなQスイ
ッチ・レーザを用いるために、基板表面の掻く限られた
領域だけが瞬間的に加熱されるだけなので、室温でもダ
イヤモンド膜を作ることができる。
Note that since a Q-switched laser such as a CO□ laser is used as the laser light source, only a limited area of the substrate surface is heated momentarily, so a diamond film can be formed even at room temperature.

〔実施例〕〔Example〕

実施例1: 被処理基板4として(111)面を表面にもつシリコン
(Si)基板を用い、これを排気系を備えた真空室9の
中に設けられており水平方向と垂直方向に移動が可能な
基板台lOの上に固定した。
Example 1: A silicon (Si) substrate with a (111) plane on the surface was used as the substrate 4 to be processed, and this was placed in a vacuum chamber 9 equipped with an exhaust system, so that it could be moved in the horizontal and vertical directions. It was fixed on a possible substrate stand lO.

この真空室9の上部にはセレン化亜鉛(Zn5e)より
なる窓11があり、また、真空室の上部には炭素化合物
ガス12と雰囲気ガス13のボンベからの供給管14が
開口している。
There is a window 11 made of zinc selenide (Zn5e) in the upper part of the vacuum chamber 9, and a supply pipe 14 from a cylinder for carbon compound gas 12 and atmospheric gas 13 is opened in the upper part of the vacuum chamber.

また、窓11の上にはTE^−CO□レーザ光源15が
あり、出射された波長1O06μIの赤外レーザ光1は
Zn5eよりなり焦点距離が70amのレンズ2により
集光されるが、被処理基板4はこの焦点の直下にくるよ
う基板台10を調節した。
Further, there is a TE^-CO□ laser light source 15 above the window 11, and the emitted infrared laser light 1 with a wavelength of 1006 μI is focused by a lens 2 made of Zn5e and having a focal length of 70 am. The substrate stand 10 was adjusted so that the substrate 4 was directly under this focal point.

そして、真空室9の中に3%のメタン(CH4)を含む
H2ガスを導入すると共に排気系を動作させて真空室9
の気圧を200 Torrに保った。
Then, H2 gas containing 3% methane (CH4) is introduced into the vacuum chamber 9, and the exhaust system is operated to
The air pressure was maintained at 200 Torr.

そして、被処理基板(Siウェハ)4を室温に保ったま
−1lOパルス/秒の速度で60分間に亙ってレーザ照
射を行い、合成物を走査電子顕微鏡(SEM)とラマン
分光法で調べた。
Then, the substrate to be processed (Si wafer) 4 was kept at room temperature and irradiated with laser at a rate of -1 lO pulse/sec for 60 minutes, and the composite was examined using a scanning electron microscope (SEM) and Raman spectroscopy. .

その結果、合成物は厚さが5μmの多結晶膜であり、ま
たラマン分光では1332cm−’にダイヤモンド特有
のシャープなピークが検出できた。
As a result, the composite was a polycrystalline film with a thickness of 5 μm, and a sharp peak unique to diamond was detected at 1332 cm −′ in Raman spectroscopy.

実施例2: 第4図は別の装置構成を示すもので、炭素化合物ガス1
2と雰囲気ガス13からなる混合ガスを真空室9に設け
たノズル16を通しで被処理基板4の方向に噴出させ、
ノズル16の先端部にレーザ光1の焦点を結ばせてレー
ザブレークダウンを起こさせた点のみ実施例1と異なっ
ている。
Example 2: Figure 4 shows another device configuration, in which carbon compound gas 1
A mixed gas consisting of 2 and an atmospheric gas 13 is ejected through a nozzle 16 provided in the vacuum chamber 9 in the direction of the substrate 4 to be processed,
The only difference from Example 1 is that the laser beam 1 is focused on the tip of the nozzle 16 to cause laser breakdown.

本実施例においては炭素化合物ガスとしてCH4ガスを
2.5 SCCM(Standard Cubic C
entimeter PerMinute) +雰囲気
ガスとしてH2ガスを505CCHの流量で供給し、気
圧を50 Torrに保ちながら60分に亙ってレーザ
照射を行った。
In this example, CH4 gas was used as the carbon compound gas at 2.5 SCCM (Standard Cubic C
H2 gas was supplied as an atmospheric gas at a flow rate of 505 CCH, and laser irradiation was performed for 60 minutes while maintaining the atmospheric pressure at 50 Torr.

その結果、厚さ20μ園のダイヤモンド多結晶膜を合成
することができた。
As a result, it was possible to synthesize a diamond polycrystalline film with a thickness of about 20 μm.

実施例3: 第4図の装置を用い、CH,ガスの流量を5 SCC阿
とし、雰囲気ガスを0□にかえ、10 SCCMの流量
で真空室9のノズル16から噴出させ、真空室の気圧を
50 Torrに保ちながら60分に亙ってレーザ照射
を行った。
Example 3: Using the apparatus shown in Fig. 4, the flow rate of CH gas was set to 5 SCC, the atmospheric gas was changed to 0□, and a flow rate of 10 SCCM was ejected from the nozzle 16 of the vacuum chamber 9, and the pressure in the vacuum chamber was lowered. Laser irradiation was performed for 60 minutes while maintaining the pressure at 50 Torr.

なお、この場合はC1,ガスに対する02ガスの混合比
を等量比よりも少なくし、CH4ガスが総て酸化してC
O□とならないようにする必要がある。
In this case, the mixing ratio of 02 gas to C1 gas is lower than the equivalent ratio, so that all CH4 gas is oxidized and becomes C
It is necessary to avoid O□.

本実験の結果、厚さが3μ鋼のダイヤモンド多結晶膜を
合成することができた。
As a result of this experiment, we were able to synthesize a diamond polycrystalline film with a thickness of 3 μm.

〔発明の効果〕〔Effect of the invention〕

従来のダイヤモンド合成法においては、合成温度の下限
は約600°Cであったが、本発明の実施により常温近
くまで下げることができ、これにより半導体素子のパッ
シベーション膜やアルミニウム合金への耐摩耗性コーテ
ィングなどへの利用が可能となった。
In the conventional diamond synthesis method, the lower limit of synthesis temperature was approximately 600°C, but by implementing the present invention, it can be lowered to near room temperature, which improves the wear resistance of passivation films of semiconductor devices and aluminum alloys. It can now be used for coatings, etc.

また、製膜時の熱歪による剥離や割れを無くすことが可
能になった。
Furthermore, it has become possible to eliminate peeling and cracking due to thermal strain during film formation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、 第2図は実用的な合成方法の説明図、 第3図は本発明に係るダイヤモンド合成装置の構成図、 第4図は本発明に係る別のダイヤモンド合成装置の構成
図、 である。 図において、 1は赤外レーザ光、 3は焦点、 5はダイヤモンド膜、 9は真空室、 11は窓、 13は雰囲気ガス、 である。
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is an explanatory diagram of a practical synthesis method, Fig. 3 is a block diagram of a diamond synthesis apparatus according to the present invention, and Fig. 4 is another diamond synthesis method according to the present invention. This is a configuration diagram of the device. In the figure, 1 is an infrared laser beam, 3 is a focal point, 5 is a diamond film, 9 is a vacuum chamber, 11 is a window, and 13 is an atmospheric gas.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素化合物ガスを含む雰囲気中に被処理基板(4
)を置き、大出力の赤外レーザ光(1)をレンズ(2)
により被処理基板(4)の直上に集光し、レーザブレー
クダウンを起こさせて炭素化合物のガスプラズマを発生
せしめ、前記被処理基板(4)の上にダイヤモンド膜(
5)を形成することを特徴とするダイヤモンド膜の合成
方法。
(1) The substrate to be processed (4
), and place a high-output infrared laser beam (1) on the lens (2).
The light is focused directly above the substrate to be processed (4), causing laser breakdown to generate a carbon compound gas plasma, and depositing a diamond film on the substrate to be processed (4).
5) A method for synthesizing a diamond film, characterized by forming the following.
(2)大出力の赤外レーザ光(1)を集光して被処理基
板(4)の直上でレーザブレークダウンを起こさせる手
段と、 被処理基板(4)を垂直方向および水平方向に移動可能
の基板台(10)に固定し、レーザブレークダウンの発
生位置に調整する手段と、 所定量の炭素化合物ガス(12)と雰囲気ガス(13)
とを被処理基板(4)が固定されている真空室(9)に
供給する手段と、 レーザブレークダウンの終わったガスを排気する手段と
、 を少なくとも含んで構成されていることを特徴とするダ
イヤモンド膜の合成装置。
(2) A means for condensing a high-output infrared laser beam (1) to cause laser breakdown directly above the substrate to be processed (4), and moving the substrate to be processed (4) in vertical and horizontal directions. a means for fixing the substrate to a substrate stand (10) and adjusting it to a position where laser breakdown occurs; and a predetermined amount of carbon compound gas (12) and atmospheric gas (13).
and a means for supplying gas to a vacuum chamber (9) to which a substrate to be processed (4) is fixed; and a means for exhausting gas after laser breakdown. Diamond film synthesis equipment.
JP2005339A 1990-01-12 1990-01-12 Method and apparatus for synthesizing diamond film Expired - Fee Related JP2770520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339A JP2770520B2 (en) 1990-01-12 1990-01-12 Method and apparatus for synthesizing diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339A JP2770520B2 (en) 1990-01-12 1990-01-12 Method and apparatus for synthesizing diamond film

Publications (2)

Publication Number Publication Date
JPH03208893A true JPH03208893A (en) 1991-09-12
JP2770520B2 JP2770520B2 (en) 1998-07-02

Family

ID=11608469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339A Expired - Fee Related JP2770520B2 (en) 1990-01-12 1990-01-12 Method and apparatus for synthesizing diamond film

Country Status (1)

Country Link
JP (1) JP2770520B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177575A (en) * 1989-02-24 1991-08-01 Mcdonnell Douglas Corp Diamond-like coating and its formation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177575A (en) * 1989-02-24 1991-08-01 Mcdonnell Douglas Corp Diamond-like coating and its formation

Also Published As

Publication number Publication date
JP2770520B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
US5368897A (en) Method for arc discharge plasma vapor deposition of diamond
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
JPH04157177A (en) Method and device for producing coating film
JPH06293593A (en) Synthesis method by plasma cvd method and epitaxial aln synthesized by the method
JPH03208893A (en) Method and device for synthesizing diamond film
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JPS6054996A (en) Synthesis of diamond
JPH0226895A (en) Method and device for synthesizing diamond in vapor phase
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPH0449520B2 (en)
JPH089519B2 (en) High-pressure phase boron nitride vapor phase synthesis method
JPH0226894A (en) Method and device for synthesizing diamond in vapor phase
JP2947036B2 (en) Vapor-grown diamond production equipment
JPH0341435B2 (en)
JPH06199595A (en) Method for synthesizing diamond
JPH01201481A (en) Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride
JPH0660411B2 (en) Optical plasma vapor phase synthesis method and apparatus
JPH03208892A (en) Method and device for synthesizing diamond film
JPS63282200A (en) Method of chemical vapor growth for diamond
JPH10236898A (en) Diamond synthesizing method and device therefor
JPH01100092A (en) Diamond vapor-phase synthesis and device therefor
WO2019039533A1 (en) Method for manufacturing diamond substrate
JPH04119982A (en) Production of boron nitride film
JPH01290594A (en) High-speed synthesizing method for diamond utilizing co, co2 as carbon source
JPH07300677A (en) Film formation and apparatus therefor by photo-cvd

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees