JPS5973490A - Preparation of crystal - Google Patents

Preparation of crystal

Info

Publication number
JPS5973490A
JPS5973490A JP57183959A JP18395982A JPS5973490A JP S5973490 A JPS5973490 A JP S5973490A JP 57183959 A JP57183959 A JP 57183959A JP 18395982 A JP18395982 A JP 18395982A JP S5973490 A JPS5973490 A JP S5973490A
Authority
JP
Japan
Prior art keywords
crystal
raw material
windows
sphere
concave mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57183959A
Other languages
Japanese (ja)
Other versions
JPH0135798B2 (en
Inventor
Kazufumi Ogawa
一文 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57183959A priority Critical patent/JPS5973490A/en
Priority to US06/485,506 priority patent/US4522680A/en
Priority to DE8383302154T priority patent/DE3364653D1/en
Priority to EP83302154A priority patent/EP0092405B1/en
Publication of JPS5973490A publication Critical patent/JPS5973490A/en
Publication of JPH0135798B2 publication Critical patent/JPH0135798B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/005Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method by irradiation or electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prepare a crystal with a low-power laser beam in high efficiency, by covering the raw material of crystal with an optically transparent covering material in a spherical form, enclosing the sphere with concave mirrors provided with windows at definite intervals, and heating and melting the crystal raw material with laser beams introduced through the windows. CONSTITUTION:The raw material of crystal 1 is covered with a covering material 2 made of a transparent substance such as glass in the form of a sphere, which is enclosed with concave mirrors 6 provided with windows at definite intervals. The material 1 is heated and molten by introducing laser beams 3 through the windows 5. The radiant heat emitting from the sphere in the form of heat ray 4 by the heating of the material 1 is mostly reflected by the concave mirror 6 and focused again to the material 1. Accordingly, the radiation loss can be remarkably suppressed, and the power of the laser beam 3 can be considerably lowered by this method. After melting, the radiation of the light 3 is stopped, and the material 1 is cooled to obtain a crystal such as diamond crystal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は結晶製造方法に関するものであり、結晶体を人
工的に製造する場合に、超高温、高圧条件を必要とする
ような物質2例えば、ダイヤモンド等の宝石や金属結晶
等を低コストに製造する方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a crystal manufacturing method, and relates to a crystal manufacturing method, and relates to a method for manufacturing crystals using materials such as diamond, etc., which require ultra-high temperature and high pressure conditions when artificially manufacturing crystals. The present invention provides a method for manufacturing gemstones, metal crystals, etc. at low cost.

従来例の構成と問題点 本発明者が以前特願昭57−63744号にて提案した
外包材料及びレーザーを用いた結晶製造方法では、第1
図に示すように結晶原材料1を包むように外包材料2と
なる透明材料の球体((例えば石英やガラス等))に封
入し、外部よシ集光したレーザー光3を照射し、核とな
って結晶原材料1を主として加熱、溶融させて、冷却後
、外包材料を除去して結晶を取り出す方法が用いられて
いたが、この方法では結晶原材料1を高温にすればする
和結晶原材料より熱′a4として放出される輻射エネル
ギーが大きくなる。すなわち、エネルギーロスが大きく
なる欠点があった。
Structure and Problems of the Conventional Example In the crystal manufacturing method using an outer packaging material and a laser, which the present inventor previously proposed in Japanese Patent Application No. 57-63744,
As shown in the figure, a crystal raw material 1 is enclosed in a transparent material sphere (such as quartz or glass) that will become the outer packaging material 2, and a laser beam 3 focused from the outside is irradiated to form a core. A method has been used in which the crystal raw material 1 is mainly heated and melted, and after cooling, the outer packaging material is removed to take out the crystals, but in this method, the crystal raw material 1 is heated to a high temperature and the crystal raw material 1 is heated to a higher temperature than the crystal raw material. The amount of radiant energy emitted increases. That is, there was a drawback that energy loss was large.

例えば、ダイヤモンドを製造する場合には、触媒を用い
ない場合、30万気圧、30000に程度の条件を必要
とするが、グラフアイ)10gを結晶原材料として用い
た場合、パワー約10KWのYAGレーザーを必要とし
た。これは、30000にともなると、熱輻射が、46
0 V’i / etlにもなるためである。つまり、
レーザー照射の大部分は、結晶原材料よシ放出される輻
射熱としてむだになってしまっていた。
For example, when manufacturing diamond, if a catalyst is not used, conditions of about 300,000 atmospheres and 30,000 degrees Celsius are required; I needed it. This means that when the temperature increases to 30,000, the thermal radiation increases to 46
This is because it also becomes 0 V'i/etl. In other words,
Most of the laser radiation was wasted as radiant heat emitted by the crystal raw material.

発明の目的 以上述べて来た先に提案した方法の欠点に鑑み、本発明
の目的は、結晶原材料加熱時の輻射によるエネルギーロ
スヲ少くシ、低パワーのレーザーで高効率に結晶原材料
を溶融することを目的とする。
Purpose of the Invention In view of the drawbacks of the previously proposed methods described above, an object of the present invention is to melt the crystalline raw material with high efficiency using a low-power laser while reducing energy loss due to radiation during heating of the crystalline raw material. The purpose is to

発明の構成 本発明は、人造結晶を製造する方法であり、あらかじめ
、結晶原材料および前記結晶原材料を包囲する光学的に
透明な外包材料よシなる球体を、所定の間隔で窓を設け
た凹面鏡で包囲し、前記窓よりレーザー光を照射するこ
とにより、加熱昇温された結晶原材料から輻射熱として
放出される熱線を、再び凹面鏡で集光して結晶原料を照
射すること、さらに好ましくは前記凹面鏡と外包材料の
間隙に冷却ガスを流すことにより、外包材料表面及び凹
面鏡の昇温を防止することを特徴とするものである。
Structure of the Invention The present invention is a method for producing an artificial crystal, in which a crystal raw material and a sphere made of an optically transparent outer envelope material surrounding the crystal raw material are in advance formed using a concave mirror provided with windows at predetermined intervals. By enclosing the crystal raw material and irradiating it with a laser beam through the window, the heat rays emitted as radiant heat from the crystal raw material heated and heated are again focused by a concave mirror and irradiated with the crystal raw material, more preferably, the concave mirror and The feature is that the temperature of the surface of the outer envelope material and the concave mirror is prevented from rising by flowing cooling gas into the gap between the outer envelope materials.

実施例の説明 以下、実施例を第2図を用いて詳細に説明する。Description of examples Hereinafter, an embodiment will be described in detail using FIG. 2.

あらかじめ、結晶原材料1を包囲するように、ガラス等
の透明物質よシなる外包材料2で封入された球体を、所
定の間隔で窓6を設けた凹面鏡6で包み込み、窓5よシ
レーブー光3を照射し、核となってbる結晶原材料を加
熱溶融させた。このとき、結晶原材料1の昇温に供い、
球体外部へ熱線4として放出される輻射熱は、前記凹面
鏡で大部分内部に向って反射され、再び結晶原材料に集
光された0従って、本発明の方法を用いると、球体外部
へ放出されるエネルギーロスがほとんど無いため、レー
ザー光のパワーを大幅に削減できた0次にレーザー光の
照射を停止し、冷却すると、原材料は、高温、高圧下で
除去されることになり、ダイヤモンドの結晶が形成され
る。なお、このとき、外包材料は、熱線をほとんで吸収
せず、主として昇温された結晶原材料との接触による熱
伝導で昇温する程度であり、短時間(数分間)の場合に
は、外面はほと昇温しなかった0また、凹面鏡は熱線を
ほとんど反射するため、これまた、あまり昇温すること
がなかった。なお、長時間のレーザー照射を必要とする
場合には、どうしても外包体材料表面及び凹面鏡も昇温
してくるので、その場合には、外包体材料と凹面鏡の間
隙に冷却ガスを流すことにより、昇温を防止することが
できた。
In advance, a sphere encapsulated with an outer packaging material 2 such as a transparent material such as glass so as to surround the crystal raw material 1 is wrapped with a concave mirror 6 having windows 6 at predetermined intervals, and the sillage light 3 is transmitted through the window 5. Irradiation was performed to heat and melt the crystalline raw material that served as a nucleus. At this time, as the crystal raw material 1 is heated,
Most of the radiant heat emitted as heat rays 4 to the outside of the sphere is reflected inward by the concave mirror and concentrated on the crystal raw material again. Therefore, when the method of the present invention is used, the energy emitted to the outside of the sphere is Since there is almost no loss, the power of the laser beam can be significantly reduced.When the 0-order laser beam irradiation is stopped and cooled, the raw material is removed at high temperature and high pressure, forming diamond crystals. be done. At this time, the outer packaging material hardly absorbs the heat rays, and the temperature rises mainly due to heat conduction due to contact with the heated crystal raw material, and in the case of a short time (several minutes), the outer surface The temperature did not rise very much. Also, since the concave mirror reflects most of the heat rays, the temperature did not rise much. In addition, if long-term laser irradiation is required, the surface of the outer envelope material and the concave mirror will inevitably rise in temperature, so in that case, by flowing cooling gas into the gap between the outer envelope material and the concave mirror, It was possible to prevent temperature rise.

例えば、ダイヤモンドを製造する場合には、触媒を用い
ない場合、30万気圧、3000°に程度の条件を必要
とするが、まず、原材料1として球状に加圧成形したグ
ラフアイ)10qを粉末ガラスで被覆し、全体を加熱し
て外包材料となる前記ガラス粉末を溶融・硬化して、内
部にグラファイトを核とする透明ガラス球体を形成した
。あるいはあらかじめ、溶融したガラス中にグラファイ
トを挿入して、除冷硬化させても良い。なお、このとき
、グラファイト核の直径はおよそ2cmとなるので、透
明ガラスよりなる外包体の直径を20cm以上にした。
For example, when manufacturing diamonds, conditions of about 300,000 atmospheres and 3000 degrees are required if a catalyst is not used. The entire glass powder was heated to melt and harden the glass powder serving as the outer packaging material, thereby forming a transparent glass sphere with graphite as the core inside. Alternatively, graphite may be inserted into molten glass in advance and allowed to slowly cool and harden. At this time, since the diameter of the graphite core was approximately 2 cm, the diameter of the outer envelope made of transparent glass was set to 20 cm or more.

次に、この球体に凹面鏡をかぶせ、窓よりパワー1〜2
KWのYAGレーザーを照射すると、数十秒でグラフフ
ィトは3000’C以上になり、溶融された。なお、こ
のとき、外包材料はガラスでできており、熱伝導が悪く
、数分程度では球体外部は熱膨張は生じず、その結果グ
ラファイトは高温、高圧で保持されることになる。また
、外包体のガラスも破損しなかった。これは、グラファ
イト直径2cmに対し、ガラス直径を20(7)以上(
(約10倍))にしたため、内部圧が60万気圧になっ
ても、ガラス表面にかかる圧力は、6000気圧程度と
なり、ガラスのヤング率6〜8X 103Ky/crI
  を考慮すると、ガラスが破壊されることはなかった
ことがわかる。その後、レーザー照射を停止して、冷却
すれば、球体は外部より冷却され溶融結晶原材料は高圧
に保持された状態で冷却された結果、ダイヤモンド結晶
が得られる。
Next, cover this sphere with a concave mirror and use the power 1 to 2 from the window.
When irradiated with KW's YAG laser, the graphite reached a temperature of over 3000'C in several tens of seconds and was melted. At this time, the outer envelope material is made of glass, which has poor thermal conductivity, and no thermal expansion occurs on the outside of the sphere for about a few minutes, resulting in the graphite being held at high temperature and high pressure. Moreover, the glass of the outer package was not damaged. This means that the graphite diameter is 2cm, while the glass diameter is 20(7) or more (
(approximately 10 times)), even if the internal pressure reaches 600,000 atm, the pressure on the glass surface will be around 6,000 atm, and the Young's modulus of the glass will be 6 to 8 x 103 Ky/crI.
Considering this, it can be seen that the glass was not destroyed. Thereafter, the laser irradiation is stopped and the sphere is cooled from the outside, and the molten crystal raw material is cooled while being held at high pressure, and as a result, a diamond crystal is obtained.

なお、本実施例では、レーザー光3を2方向から照射し
ている図を示したが、これは一方向からでも良いし、も
っと多くのレーザー光を照射しても良いことは明らかで
ある。
Although the present embodiment shows the laser beam 3 being irradiated from two directions, it is clear that the laser beam 3 may be irradiated from one direction or more laser beams may be irradiated from one direction.

発明の効果 本発明の方法を用いることによシ、結晶の製造における
エネルギーロスを大幅に低減できるので、レーザーを小
型化でき、エネルギー効率を向上することかできる。ま
た、レーザー照射時間を長くする必要がある場合でも、
外包材料表面及び凹面鏡を容易に冷却することができる
Effects of the Invention By using the method of the present invention, it is possible to significantly reduce energy loss during the production of crystals, thereby making it possible to downsize lasers and improve energy efficiency. In addition, even if it is necessary to increase the laser irradiation time,
The surface of the outer packaging material and the concave mirror can be easily cooled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明者が以前提案したレーザーを用いた結晶
製造方法を説明するだめの概略図、第2図は本発明の一
実施例にかかる窓付き凹面鏡を用いた結晶製造方法を説
明するための概略断面構成図である。 1・・・・・・結晶原材料、2・・・・・・外包材材料
、計・・・・・レーザー、4・・・・・・熱線、6・・
・・・・窓、6・・・・・凹面鏡代理人の氏名 弁理士
 中 尾 敏 男 ほか1名第 1 @
FIG. 1 is a schematic diagram illustrating a crystal manufacturing method using a laser that the inventor previously proposed, and FIG. 2 illustrates a crystal manufacturing method using a windowed concave mirror according to an embodiment of the present invention. FIG. 1...Crystal raw material, 2...Outer packaging material, total...Laser, 4...Heat ray, 6...
...Window, 6...Concave mirror Name of agent Patent attorney Toshio Nakao and 1 other person No. 1 @

Claims (2)

【特許請求の範囲】[Claims] (1)結晶原材料および前記結晶原材料を包囲する光学
的に透明な外包材料よりなる球体を、所定の間隔で窓を
設けた凹面鏡で包囲し、前記窓よりレーザー光を照射し
て、前記結晶原材料を加熱、溶融、冷却することを特徴
とした結晶製造方法。
(1) A sphere made of a crystalline raw material and an optically transparent outer packaging material surrounding the crystalline raw material is surrounded by a concave mirror provided with windows at predetermined intervals, and a laser beam is irradiated through the window to illuminate the crystalline raw material. A crystal manufacturing method characterized by heating, melting, and cooling.
(2)凹面鏡と外包材料の間隙に冷却ガスを流すことを
特徴とする特許請求の範囲第1項に記載の結晶製造方法
(2) The crystal manufacturing method according to claim 1, characterized in that cooling gas is caused to flow through the gap between the concave mirror and the outer envelope material.
JP57183959A 1982-04-15 1982-10-19 Preparation of crystal Granted JPS5973490A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57183959A JPS5973490A (en) 1982-10-19 1982-10-19 Preparation of crystal
US06/485,506 US4522680A (en) 1982-04-15 1983-04-15 Method for producing crystals
DE8383302154T DE3364653D1 (en) 1982-04-15 1983-04-15 Method for producing crystals
EP83302154A EP0092405B1 (en) 1982-04-15 1983-04-15 Method for producing crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57183959A JPS5973490A (en) 1982-10-19 1982-10-19 Preparation of crystal

Publications (2)

Publication Number Publication Date
JPS5973490A true JPS5973490A (en) 1984-04-25
JPH0135798B2 JPH0135798B2 (en) 1989-07-27

Family

ID=16144808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57183959A Granted JPS5973490A (en) 1982-04-15 1982-10-19 Preparation of crystal

Country Status (1)

Country Link
JP (1) JPS5973490A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623095A (en) * 1985-06-07 1987-01-09 モリソン・パンプス・エスエイ・(プロプライアタリ−)・リミテツド Crystal growth
JPH01294599A (en) * 1988-05-20 1989-11-28 Honda Motor Co Ltd Synthesis of diamond
JPH0255212A (en) * 1988-08-18 1990-02-23 Mitsubishi Metal Corp Production of artificial diamond powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511605A (en) * 1978-07-11 1980-01-26 Tamura Electric Works Ltd Regeneration system for intermediate gradation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511605A (en) * 1978-07-11 1980-01-26 Tamura Electric Works Ltd Regeneration system for intermediate gradation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623095A (en) * 1985-06-07 1987-01-09 モリソン・パンプス・エスエイ・(プロプライアタリ−)・リミテツド Crystal growth
JPH01294599A (en) * 1988-05-20 1989-11-28 Honda Motor Co Ltd Synthesis of diamond
JPH0255212A (en) * 1988-08-18 1990-02-23 Mitsubishi Metal Corp Production of artificial diamond powder

Also Published As

Publication number Publication date
JPH0135798B2 (en) 1989-07-27

Similar Documents

Publication Publication Date Title
JPS58223320A (en) Diffusing method for impurity
US4659422A (en) Process for producing monocrystalline layer on insulator
CN104570199A (en) Selentellurium single crystal compound optical fiber and manufacturing method thereof
JP2008210999A (en) White light exciting laser device
US4522680A (en) Method for producing crystals
JPS5973490A (en) Preparation of crystal
JPH07187890A (en) Laser annealing method
JP2550344B2 (en) Infrared heating single crystal manufacturing equipment
JPH0776673B2 (en) Image heating device
JPH0521339A (en) Thin film semiconductor device and manufacture thereof
JP2558659B2 (en) Infrared heating single crystal manufacturing equipment
EP0032920A4 (en) Photo-induced temperature gradient zone melting.
JPH0541557A (en) Laser crystal temperature regulator
US3715684A (en) Window for a laser tube end piece
JPH07315979A (en) Infrared-heated single crystal producing device
SU1403941A1 (en) Method of producing tray of laser radiation converter
JPH025295B2 (en)
JPS6341212B2 (en)
JPS6032126Y2 (en) Single crystal manufacturing equipment
JPS6170713A (en) Recrystallizing method of silicon film
JPH0388790A (en) Infrared-heated single crystal producing device
JPS6251179A (en) Lamp for infrared concentrated heating furnace
JPS6170714A (en) Recrystallizing method of silicon film
JPS62194611A (en) Beam-annealing method
JPS62194613A (en) Beam annealing method