JPS60251199A - Preparation of diamond single crystal - Google Patents

Preparation of diamond single crystal

Info

Publication number
JPS60251199A
JPS60251199A JP59107256A JP10725684A JPS60251199A JP S60251199 A JPS60251199 A JP S60251199A JP 59107256 A JP59107256 A JP 59107256A JP 10725684 A JP10725684 A JP 10725684A JP S60251199 A JPS60251199 A JP S60251199A
Authority
JP
Japan
Prior art keywords
diamond
substrate
sintered
sintered body
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59107256A
Other languages
Japanese (ja)
Inventor
Takeshi Hirota
健 廣田
Koji Nitta
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59107256A priority Critical patent/JPS60251199A/en
Publication of JPS60251199A publication Critical patent/JPS60251199A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prepare single crystals of inexpensive diamond suited to mass production by forming a sintered body of diamond having high density from diamond powder using Co as a sintering aid and treating the sintered product by heating. CONSTITUTION:For example, a mixture of diamond powder with powdery Co as a sintering aid is formed to a sheet or to a shape of a substrate, which is then sintered in a non-oxidizing atmosphere to prepare a sintered body having high density. Then, the surface of the sintered body (i.e. a substrate) is heated in a non-oxidizing atmosphere using laser beam or electron beam. Thus, Co is melted and separated, and crystal particles of diamond on the surface of the sintered substrate are allowed to contact with each other, and the particles are further grown by welding to form single crystals, such as a single crystal substrate. Since, by this method, diamond single crystals are obtd. from diamond powder without using superhigh pressure device in a short time, the method is suited to inexpensive mass production of diamond.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ダイヤモンド粉体から電子部品或は装飾用に
使用されるダイヤモンドの単結晶を製造する製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a manufacturing method for manufacturing diamond single crystals used for electronic parts or decoration from diamond powder.

従来の技術とその問題点 ダイヤモンド単結晶は、従来超高圧高温(圧力50 K
bar以上、温度1500〜200013)下で合成さ
れており、大きさが数調程度のものを作成する場合でも
、この圧力温度条件下で数10〜数100時間を要した
Conventional technology and its problems Diamond single crystals have traditionally been produced under ultra-high pressure and high temperature (pressure of 50 K).
It is synthesized at a temperature of 1,500 to 200,013 bar or higher, and even when creating a product with a size of several scales, it takes several tens to several hundreds of hours under these pressure and temperature conditions.

それ故ダイヤモンド合成装置は、数1000〜10,0
00トンの油圧プレスを用い、その加圧中心部には、2
000′cに耐える反応容器を設置しなければならず、
且つこれらの装置を一定条件下で長時間操作するには、
高度な制御技術を必要としている。従ってびのような装
置で合成されたダイヤモンド単結晶は、コストが高く、
量産性が低いため高価となり、電気或は電子部品として
使用するには不適当であった。
Therefore, a diamond synthesis device can contain several thousand to 10,000 diamonds.
A 00 ton hydraulic press is used, and the pressurizing center has 2
A reaction vessel that can withstand 000'c must be installed.
In addition, in order to operate these devices for a long time under certain conditions,
Requires advanced control technology. Diamond single crystals synthesized using equipment such as Sobi are expensive and
It was expensive due to its low mass productivity and was unsuitable for use as electrical or electronic components.

発明の目的 木発F!Aは、従来の人工ダイヤモンド合成法の欠点を
除き、低コストで、量産に適したダイヤモンド単結晶を
製造する方法を提供し、併せて電気或は電子部品用素材
として利用し易い形状のダイヤモンド単結晶を製造する
方法を提供することを目的とするものである。
Purpose of inventionKihatsu F! A method eliminates the drawbacks of conventional artificial diamond synthesis methods, provides a low-cost method for manufacturing diamond single crystals suitable for mass production, and also provides a diamond single crystal in a shape that is easy to use as a material for electrical or electronic parts. The object of the present invention is to provide a method for producing crystals.

発明の構成 本発明は、ダイヤモンド粉体を、コパル)(Co)を焼
結助剤として非酸化性雰囲気下で焼結させて高密度焼結
体公修成し、この焼結体を非酸化性雰囲気中で加熱・熱
処理することによりコバルトを溶融・分離し、焼結体中
のダイヤモンド結晶粒同士を接触・更に融着・粒成長さ
せて単結晶のダイヤモンドを製造するものである。又、
上記製造方法において、ダイヤモンド粉体とコバルト粉
体の混合物をシー ト状或は板状に成形し、これを非酸
化性雰囲気下で焼結させて板状の高密度焼結基板を作成
し、この焼結基板の表面をレーザービーム或は電子ビー
ムを用いて非酸化性雰囲気中で加熱・熱処理することに
より、コバルトを溶融・分離し、焼結体基板表面のダイ
ヤモンド結晶粒同士を接触、更に融着・粒成長させて板
状のダイヤモンドの単結晶を作ることができるものであ
る。
Structure of the Invention The present invention involves sintering diamond powder in a non-oxidizing atmosphere using copal (Co) as a sintering aid to form a high-density sintered body, and converting this sintered body into a non-oxidizing Cobalt is melted and separated by heating and heat treatment in an atmosphere, and the diamond crystal grains in the sintered body are brought into contact with each other and further fused and grown to produce single-crystal diamond. or,
In the above manufacturing method, a mixture of diamond powder and cobalt powder is formed into a sheet or plate, and this is sintered in a non-oxidizing atmosphere to create a plate-shaped high-density sintered substrate. By heating and heat-treating the surface of this sintered substrate in a non-oxidizing atmosphere using a laser beam or an electron beam, the cobalt is melted and separated, and the diamond crystal grains on the surface of the sintered substrate are brought into contact with each other. It is possible to create a plate-shaped diamond single crystal by fusion and grain growth.

実施例の説明 実施例1゜ 平均粒径5〜10μmのダイヤモンド粉体20yと、平
均粒径1〜2μmのコバルト粉体10yとを、トルエン
を分散剤として混合し、この混合物を湿式成形し、成形
体を作成する。次にトルエンを100Y3以下の温度で
真空加熱することにより除去した後、この成形体をアル
ゴン(Ar )雰囲気中で、1400υの温度範囲で2
〜14時間焼結させ、高密度のダイヤモンド焼結体を作
成する。この焼結体は、模式的に描くと、第1図のよう
な微細構造を持つことが走査電子顕微鏡で観察すること
ができる。図中、(a)はダイヤモンド粒子、(b)は
コバルト粒子である。
Description of Examples Example 1 Diamond powder 20y with an average particle size of 5 to 10 μm and cobalt powder 10y with an average particle size of 1 to 2 μm are mixed using toluene as a dispersant, and this mixture is wet-molded, Create a molded object. Next, toluene was removed by vacuum heating at a temperature of 100Y3 or less, and the molded body was heated for 2 hours in a temperature range of 1400υ in an argon (Ar) atmosphere.
Sinter for ~14 hours to create a high-density diamond sintered body. When this sintered body is schematically drawn, it can be observed with a scanning electron microscope that it has a fine structure as shown in FIG. In the figure, (a) is a diamond particle, and (b) is a cobalt particle.

次にこの焼結体を更にアルゴン雰囲気中で1500〜1
600υの温度で加熱すると、コバルトは溶解し、焼結
体を保持したグラファイト製のるつほの底にたまり、焼
結体から分離される。このコバルトを分離したダイヤモ
ンド焼結体の様子を模式的に示すと第2図のようになる
。ここで(c)は一部融着が生じているダイヤモンド結
晶粒である。更にこのダイヤモンド焼結体を温度170
0〜2000υで、アルゴン雰囲気中で、5〜10時間
熱処理すると、ダイヤモンド焼結体中のダイヤモンド結
晶粒は第3図の模式図に示すように、数咽径の単結晶と
なる。このようにして得られた単結晶(d)は、X線解
析及び硬度を調べた結果、ダイヤモンドであることが確
認された。
Next, this sintered body was further heated to a temperature of 1,500 to 1
When heated at a temperature of 600 υ, the cobalt melts, collects at the bottom of the graphite crucible holding the sintered body, and is separated from the sintered body. FIG. 2 schematically shows the state of the diamond sintered body from which cobalt has been separated. Here, (c) is a diamond crystal grain partially fused. Furthermore, this diamond sintered body was heated to a temperature of 170
When heat treated for 5 to 10 hours at 0 to 2000 υ in an argon atmosphere, the diamond crystal grains in the diamond sintered body become single crystals with several diameters, as shown in the schematic diagram of FIG. The thus obtained single crystal (d) was confirmed to be diamond as a result of X-ray analysis and hardness examination.

実施例2゜ 平均粒径1−3μmのダイヤモンド粉体30りと、平均
粒径1〜2μmのコバルト粉体10ノとを、トルエンを
分散剤として混合し、更に有機バインダ、分散剤、界面
活性剤等をこの混合物に添加し、ボールミルにて16時
間混合し、スラリーを調整し、こめスラリーを、ドクタ
ーブレード法によりシート状に成形し、厚さ0.5mm
のグリーンシートを作成する。このグリーンシート’を
窒素(N2)ガス雰囲気中でl+OOυまで100%で
加熱昇温し、この温度で2時間保持して後、1300υ
まで3003で加熱昇温し、更に1300υで4時間焼
成して、高密度のダイヤモンド焼結体基板を作成する。
Example 2 30 pieces of diamond powder with an average particle size of 1-3 μm and 10 pieces of cobalt powder with an average particle size of 1-2 μm are mixed with toluene as a dispersant, and an organic binder, a dispersant, and a surfactant are added. Add agents, etc. to this mixture, mix in a ball mill for 16 hours to prepare a slurry, and form the rice slurry into a sheet shape using a doctor blade method to a thickness of 0.5 mm.
Create a green sheet. This green sheet' was heated to 100% in a nitrogen (N2) gas atmosphere to l + OOυ, held at this temperature for 2 hours, and then heated to 1300υ
The diamond sintered body substrate is heated to 3003 m and then fired at 1300 υ for 4 hours to produce a high-density diamond sintered body substrate.

このように作った焼結体基板を透明石英管に真空封入し
、この真空封入した石英管を1000υに加熱しながら
、焼結体基板をC02ガスレーザービームで局所的に加
熱し、加熱部分を1の速度で走査する。このようにして
熱処理後、200屋で降温し、石英管内部の基板を取り
出すと、石英管内部には、金属コバルトの溶解析出物が
認められ、又熱処理後の基板表面は、ダイヤモンド単結
晶となっていることが顕微鋳観察及びX線解析の結果か
ら確認することができた。
The sintered substrate thus produced was vacuum-sealed in a transparent quartz tube, and while the vacuum-sealed quartz tube was heated to 1000υ, the sintered substrate was locally heated with a CO2 gas laser beam, and the heated portion was heated. Scan at a speed of 1. After heat treatment in this way, the temperature was lowered at 200℃, and when the substrate inside the quartz tube was taken out, molten metal cobalt precipitates were found inside the quartz tube, and the surface of the substrate after heat treatment was a diamond single crystal. This was confirmed from the results of microscopic casting observation and X-ray analysis.

なお、焼結体基板の表面熱処理は、上述のレーデビーム
によるだけでなく、電子ビームその地表面を加熱できる
熱処理法によって行なえば、単結晶基板を得ることがで
きる。
Incidentally, the surface heat treatment of the sintered body substrate can be performed not only by the above-mentioned Lede beam but also by a heat treatment method capable of heating the ground surface with an electron beam, thereby making it possible to obtain a single-crystal substrate.

発明の効果 以上のように木発8Aは、超高圧装置を使用することな
く短時間にダイヤモンド粉体からダイヤモンド単結晶を
得ることができるもので、低コストで量産に適するもの
である。又、焼結体を予めシート状或は板状に作ること
により、電子部品の素材として使用に便利なダイヤモン
ド単結晶基板を容易に作ることができる、等の効果が得
られる。
Effects of the Invention As described above, Kippatsu 8A can obtain diamond single crystals from diamond powder in a short time without using ultra-high pressure equipment, and is suitable for mass production at low cost. Further, by forming the sintered body in advance into a sheet or plate shape, effects such as the ability to easily produce a diamond single crystal substrate convenient for use as a material for electronic parts can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の製造法によりダイヤモンド単結晶を製造す
る際の各工程における素材の構成状態を示す模式図で、
第1図はダイヤモンド粉体とCo粉体から成る焼結体の
様子を示し、第2図はこれを熱処理した後のダイヤモン
ドのみの結晶粒から成る焼結体を示し、第5図は、第2
図の焼結体をさらに高温で熱処理した時のダイヤモンド
結晶粒が#Jし巨大な単結晶となった時の様子を示す。 (a)・−・ダイヤモンド粉体、(b)・−・Co粉体
、(c)・・・ダイヤモンド結晶粒、(d)・・・ダイ
ヤモンド単結晶。 代理人の氏名 弁理士 吉崎悦治 第1図 第2図 第3図
The figure is a schematic diagram showing the composition of the material in each step of manufacturing a diamond single crystal using the manufacturing method of the present invention.
Figure 1 shows a sintered body made of diamond powder and Co powder, Figure 2 shows a sintered body made of only diamond crystal grains after heat treatment, and Figure 5 shows a sintered body made of diamond grains only. 2
This figure shows how the sintered body shown in the figure is heat-treated at a higher temperature and the diamond crystal grains become #J and become huge single crystals. (a) --- Diamond powder, (b) --- Co powder, (c) --- Diamond crystal grain, (d) --- Diamond single crystal. Name of agent Patent attorney Etsuji Yoshizaki Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、ダイヤモンド粉体をコバルトを焼結助剤として非酸
化性雰囲気下で焼結させて高密度焼結体を作成し、この
焼結体を非酸化性雰囲気中で加熱・熱処理することによ
り、コバルトを溶融・分離し、焼結体中のダイヤモンド
結晶粒同士を接触・更に融着・粒成長させて単結晶と外
すことを特徴とするダイヤモンド単結晶の製造法。 2、ダイヤモンド粉体とコバルト粉体の混合物をシート
状又は基板形状に成形し、これを非酸化性雰囲気下で焼
結させて高密度焼結体基板を作成し、この焼結体基板の
表面をレーザービーム或は電子ビームを用いて非酸化性
雰囲気中で加熱・熱処理することにより、コバルトを溶
融・分離し、焼結体基板表面のダイヤモンド結晶粒同士
を接触・更に融着・粒成長させて単結晶基板となすこと
を特徴とする特許M才の範囲第1項記載のダイヤモンド
単結晶の製造法。
[Claims] 1. A high-density sintered body is created by sintering diamond powder in a non-oxidizing atmosphere using cobalt as a sintering aid, and this sintered body is heated in a non-oxidizing atmosphere.・A method for producing a diamond single crystal, which is characterized by melting and separating cobalt through heat treatment, bringing the diamond crystal grains in the sintered body into contact with each other, and further fusing and growing the grains to separate them from the single crystal. 2. A mixture of diamond powder and cobalt powder is formed into a sheet or substrate shape, and this is sintered in a non-oxidizing atmosphere to create a high-density sintered substrate, and the surface of this sintered substrate is By heating and heat-treating the cobalt in a non-oxidizing atmosphere using a laser beam or an electron beam, the cobalt is melted and separated, and the diamond crystal grains on the surface of the sintered substrate are brought into contact with each other, and further fused and grown. 1. A method for producing a diamond single crystal according to item 1 of the scope of the patent, characterized in that a single crystal substrate is obtained by using a single crystal substrate.
JP59107256A 1984-05-25 1984-05-25 Preparation of diamond single crystal Pending JPS60251199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107256A JPS60251199A (en) 1984-05-25 1984-05-25 Preparation of diamond single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107256A JPS60251199A (en) 1984-05-25 1984-05-25 Preparation of diamond single crystal

Publications (1)

Publication Number Publication Date
JPS60251199A true JPS60251199A (en) 1985-12-11

Family

ID=14454437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107256A Pending JPS60251199A (en) 1984-05-25 1984-05-25 Preparation of diamond single crystal

Country Status (1)

Country Link
JP (1) JPS60251199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294599A (en) * 1988-05-20 1989-11-28 Honda Motor Co Ltd Synthesis of diamond
JP2017520499A (en) * 2014-06-20 2017-07-27 ハリバートン エナジー サヴィシーズ インコーポレイテッド Laser-eluting polycrystalline diamond and laser elution method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294599A (en) * 1988-05-20 1989-11-28 Honda Motor Co Ltd Synthesis of diamond
JP2017520499A (en) * 2014-06-20 2017-07-27 ハリバートン エナジー サヴィシーズ インコーポレイテッド Laser-eluting polycrystalline diamond and laser elution method and apparatus
US10718166B2 (en) 2014-06-20 2020-07-21 Halliburton Energy Services, Inc. Laser-leached polycrystalline diamond and laser-leaching methods and devices

Similar Documents

Publication Publication Date Title
JP2911862B2 (en) Crucible for growing single crystal, method for producing the same and use thereof
KR102646469B1 (en) Cr-Si based sintered body
KR920003029B1 (en) High toughness silicon nitride sintered body and process for producing the same
CN110355367A (en) A kind of Al3The increasing material manufacturing method of Ti/316L stainless steel composite material
JPS60251199A (en) Preparation of diamond single crystal
EP0000720A1 (en) Process for producing single crystal of yttrium-iron garnet solid solution
CN107876763B (en) Preparation method of Nb-Si alloy with directional solidification structure characteristic
US4485080A (en) Process for the production of diamond powder
JP3069656B1 (en) Method for producing spherical metallic titanium and titanium compound
JPS638292A (en) Production of black phosphorus single crystal
JPH01246342A (en) Supermagnetostrictive material and its manufacture
JPS5812239B2 (en) Method for manufacturing zirconium carbide crystals
JPS638293A (en) Production of black phosphorus single crystal
Faeghinia et al. Microstructural design of phlogopite glass-ceramics
CN112978684B (en) Intra-crystalline porous high-performance skutterudite thermoelectric material and preparation method thereof
US4684401A (en) Chromium-cobalt fine alloy powder and process for producing same
JP3944700B2 (en) Rare earth alloy melting crucible and rare earth alloy
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor
JPS5812240B2 (en) Method for producing hafnium carbide crystals
JP3569743B2 (en) Skutterudite single crystal and method for producing the same
JPS6046908A (en) Production of sic powder
JP2022131258A (en) Manufacturing method of iron aluminum alloy
JPS6347344A (en) Production of low oxygen alloy molding
JPH05238889A (en) Production of crystal substance of yttrium hexacontahexaboride for soft x-ray spectroscopy
JPS60226496A (en) Production of zirconium single crystal by f.z. process