JPS6227096A - Microorganism holding body - Google Patents

Microorganism holding body

Info

Publication number
JPS6227096A
JPS6227096A JP60167224A JP16722485A JPS6227096A JP S6227096 A JPS6227096 A JP S6227096A JP 60167224 A JP60167224 A JP 60167224A JP 16722485 A JP16722485 A JP 16722485A JP S6227096 A JPS6227096 A JP S6227096A
Authority
JP
Japan
Prior art keywords
microorganisms
microorganism
parts
holding body
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60167224A
Other languages
Japanese (ja)
Inventor
Keiji Nagamatsu
永松 啓至
Kaname Iwasaki
岩崎 要
Masao Maita
毎田 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP60167224A priority Critical patent/JPS6227096A/en
Publication of JPS6227096A publication Critical patent/JPS6227096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To obtain a microorganism holding body which improves the adherence of microorganisms having weak adhesive activity and can efficiently and stably attain a waste water treatment by mixing a nutrient, microorganisms, enzyme, coenzyme, foaming agent and surface active agent, etc. with a plastic material. CONSTITUTION:<=1 kinds among the nutrient (e.g., glucose), microorganisms (e.g., nitrifying bacteria), enzyme (e.g., catalase), coenzyme (e.g., thiamine), foaming agent (e.g., sodim carbonate) and surface active agent (e.g., sodium alkyl sulfate) are mixed with the plastic material. The mixing ratio of the compound agents is preferably 1-10pts.wt. by 100pts.wt. The resultant microorganism holding body provides the high rate of the initial adhesion and growth of the microorganism films, the high density of the microorganism films, the strong and stable adhesive force of the microorganisms and the high activity of the microorganism films. Namely, said body contributes to the improvement of the adherence of the microoganisms having the weak adhesive activity and to the efficient and stable execution of the waste water treatment.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、微生物保持体、一層詳しくは排水の生物化
学的処理に用いて有用な微生物保持体に係わるものぐあ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a microbial support, and more particularly to a microbial support useful for biochemical treatment of wastewater.

(従来技術) 従来、排水の生物化学的処理における散水ろ床法、接触
酸化法、回転円板法等、生物躾法技術の機能の中心とな
る微生物保持体(充填材、接触材など)には、生物学的
、化学的に安定(耐水性、耐蝕性に優れている)してお
り、軽量で機械的強度にすぐれ、所望の形状に容易に成
形できるなど多くのすぐれた性質を有し、かつ廉価であ
るという特徴に塁いてプラスチック製の板、シート、フ
ィルム等が多用されている。
(Prior technology) Conventionally, microbial retainers (filling materials, contact materials, etc.), which are the core of the functions of biological sanitation methods, such as the trickling filter method, contact oxidation method, and rotating disk method in the biochemical treatment of wastewater, have been used. It has many excellent properties such as being biologically and chemically stable (excellent in water resistance and corrosion resistance), being lightweight, having excellent mechanical strength, and being easily molded into desired shapes. Plastic plates, sheets, films, etc. are often used because of their low cost and low cost.

(発明が解決しようとする問題点) 排水の好気性処理で、BOD濃度の高い排水の場合や、
生物分解速度の速い排水の場合には、発生ザるバクテリ
ヤ、原生動物等の微生物は活性が大であり、微生物保持
体に対する付着力も大きくプラスチック製の微生物保持
体の使用で特に大きな問題はない。 しかしながら、B
ODI11度の低い排水(BOD約50 ppm以下)
や、化学工業排水、又は晴気性処理におけるメタン醗酵
処理等の場合には、処理に関与するバクテリψ等の微生
物の増殖速度が遅いこと、微生物の付谷活性力が弱いこ
となどにより安定して効率的な処理を行うことが難しく
、また処理機能の立ち上りが遅いなど、多くの問題点が
あった。
(Problems to be solved by the invention) In aerobic treatment of wastewater, in the case of wastewater with high BOD concentration,
In the case of wastewater with a high rate of biodegradation, microorganisms such as bacteria and protozoa are highly active and have a strong adhesion to the microbial support, so there are no particular problems with using plastic microbial support. . However, B.
Wastewater with a low ODI of 11 degrees (BOD approximately 50 ppm or less)
In the case of methane fermentation treatment, chemical industrial wastewater, or aerobic treatment, the growth rate of microorganisms such as bacteria ψ involved in the treatment is slow, and the activity of the microorganisms is weak. There were many problems, such as difficulty in performing efficient processing and slow start-up of processing functions.

(問題点を解決するための手段) 本発明は上記のような従来の微生物の付着、生育に関す
る問題点を解決し、プラスチックの有する優れた性質を
失うことなく、低i9度B OD打1水を始めとする、
通常微生物増殖速度の遅い、かつ微生物の付着活性力の
低い排水の処理に用いて有用な、即ち付着活性力の弱い
微生物の付着性を向上させ、効率よく安定して排水処理
を達成し得る微生物保持体を提供することを目的とする
ものである。
(Means for Solving the Problems) The present invention solves the conventional problems regarding the adhesion and growth of microorganisms as described above, and allows for low i9 degree BOD per water application without losing the excellent properties of plastics. Starting with,
A microorganism that is useful for treating wastewater that normally has a slow microbial growth rate and low microbial adhesion activity, that is, it can improve the adhesion of microorganisms with weak adhesion activity and achieve efficient and stable wastewater treatment. The object is to provide a holding body.

かかる目的を達成する本発明の要旨どするところはプラ
スチック材料に栄養剤、微生物、酵素、補酵素、発泡剤
及び界面活性剤のうち、1秤以上を混合してなる微生物
保持体に存する。
The gist of the present invention which achieves the above object resides in a microorganism carrier comprising a plastic material mixed with one or more of nutrients, microorganisms, enzymes, coenzymes, blowing agents, and surfactants.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の保持体は板状、シート状、フィルム状、棒状、
塊状、チップ状など各種の形状をなしていてしよい。 
そして板状、シート状、フィルム状をなすものは単純な
平坦状のもののほか、波板状をなしていてもよく、その
他、凹凸部を有するものなど、微生物保持体として知ら
れている神々の複雑な表面形態をなしていてもよい。 
棒状のものも凹部、凸部を有するなどの表面構造をなし
ていてもよい。
The holding body of the present invention can be plate-shaped, sheet-shaped, film-shaped, rod-shaped,
It may be in various shapes such as lumps and chips.
The plates, sheets, and films that are shaped like a plate, sheet, or film may be in the form of a corrugated plate, as well as a simple flat one, or those with uneven parts, which are known as microbial carriers. It may have a complex surface morphology.
The rod-shaped material may also have a surface structure such as a concave portion or a convex portion.

本発明の保持体は上述のようなプラスナック材料に栄養
剤、微生物、酵素、補酵素、発泡剤及び界面活性剤のう
ち111以上を機械攪拌により均一に混合したものを用
いる。
The holder of the present invention uses a material in which at least 111 of nutrients, microorganisms, enzymes, coenzymes, foaming agents, and surfactants are uniformly mixed with the above-mentioned plus snack material by mechanical stirring.

プラスチック材料に対する上記配合剤の混合比率は10
0重川部用以下、部は重量部を表わす)に対し1〜10
部が好ましい範囲である。 10部を超えると微生物保
持体の物性低下をきたす虞れがあり、また不経済である
。 また1部未満では排水処理効果が少くなる。
The mixing ratio of the above compounding agent to the plastic material is 10
1 to 10 for 0 (hereinafter, parts represent parts by weight)
part is a preferred range. If it exceeds 10 parts, there is a risk that the physical properties of the microorganism carrier will deteriorate, and it is also uneconomical. Moreover, if it is less than 1 part, the wastewater treatment effect will be reduced.

上記混合物を押出成形、射出成形、カレンダー成形、真
空成形など通常のプラスチック成形方法に準じ成形すれ
ばよい。
The above mixture may be molded according to conventional plastic molding methods such as extrusion molding, injection molding, calendar molding, and vacuum molding.

本発明の微生物保持体の基材となるプラスチック材料は
ポリ塩化ビニル、ポリエチレン、ボリア0ピレン、ポリ
塩化ビニリデン、ポリアミド、ポリウレタン等である。
Plastic materials serving as the base material of the microorganism carrier of the present invention include polyvinyl chloride, polyethylene, boria pyrene, polyvinylidene chloride, polyamide, polyurethane, and the like.

本発明で用いる栄養剤は、本発明の保持体を排水の処理
に使用するとき、この保持体に付着して排水中の汚染物
を生物化学的に分解する微生物に対して栄養剤になるも
のであって、具体的にはグルコース、グルタミン酸、酢
酸ソーダ、クエン酸など微生物による分解性の大きい物
質、微生物の代謝サイクルを円滑に行わせる物質が用い
られるが、成形加工温度で容易に分解し難いものがよい
The nutrient used in the present invention is one that becomes a nutrient for microorganisms that adhere to the holder of the present invention and biochemically decompose pollutants in the wastewater when the holder of the present invention is used to treat wastewater. Specifically, substances that are highly degradable by microorganisms, such as glucose, glutamic acid, sodium acetate, and citric acid, and substances that facilitate the metabolic cycle of microorganisms are used, but they are difficult to decompose at the molding temperature. Things are good.

次に本発明で用いる微生物は、本発明の保持体を排水処
理に用いる場合、これに付着して排水中の汚染物を生物
化学的に浄化する微生物と同種のものが用いられ、排水
処理時、核となって微生物の繁殖を活性化させると共に
付着繁殖する微生物の栄養源ともなる。 酵素、補酵素
も同様付着する微生物の栄養源となる。
Next, when the holder of the present invention is used for wastewater treatment, the microorganisms used in the present invention are of the same type as the microorganisms that adhere to it and biochemically purify pollutants in the wastewater. , which acts as a core and activates the reproduction of microorganisms, and also serves as a nutrient source for the microorganisms that adhere and propagate. Enzymes and coenzymes also serve as nutritional sources for attached microorganisms.

−F記微生物、酵素、補酵素は、成形加工温度で分解し
難いものが好ましいが、分解しても栄養剤に転化され利
用される。
-F Microorganisms, enzymes, and coenzymes are preferably those that are difficult to decompose at molding temperatures, but even if they decompose, they can be converted into nutrients and used.

微生物の具体的例としてはBODM化菌、硝化菌、メタ
ン生成菌等の乾燥菌体が挙げられ、酵素の例としては、
α−グルコシダーゼ、サッカラーゼ、フォスファターゼ
、カタラーゼ等が挙げられる。
Specific examples of microorganisms include dried bacterial cells such as BODM bacteria, nitrifying bacteria, and methanogenic bacteria, and examples of enzymes include:
Examples include α-glucosidase, saccharase, phosphatase, catalase and the like.

また補酵素としては、リボフラビン、ナイアシン、チア
ミン、ピリドキシン、ビオチン、パントテン酸、葉酸、
コバラミン等のビタミンB類が挙げられる。
Coenzymes include riboflavin, niacin, thiamin, pyridoxine, biotin, pantothenic acid, folic acid,
Examples include B vitamins such as cobalamin.

次に本発明で用いる発泡剤は、本発明保持体の表面積を
増大し、排水の生物化学的処理時における微生物の付着
性を向上させるものである。
Next, the foaming agent used in the present invention increases the surface area of the holder of the present invention and improves the adhesion of microorganisms during biochemical treatment of wastewater.

使用される発泡剤としては無機発泡剤、有機発泡剤何れ
でもよく、成形加工温度で発泡するものが選ばれる。
The blowing agent used may be either an inorganic blowing agent or an organic blowing agent, and one that foams at the molding temperature is selected.

また、必要に応じて発泡助剤を併用してもよい。Further, a foaming aid may be used in combination, if necessary.

発泡剤を具体的に例示するど、無機発泡剤としては炭酸
水素ナトリウム、アジド類(カルシウムアジド等)、有
機発泡剤としてはアゾ系(アゾビスイソブチルニトリル
、アゾジカルボンアミド等)、ヒドラジン系(ジフェニ
ルスルホン−3,3′−ジスルホヒドラジン等)、トリ
アゾール系(5−モルホリル−1,2,3,4−チアト
リアゾール等)、N−ニトロソ系(N、N−−ジニトロ
ソペンタメチレンテトラミン等)などが挙げられる。
Specific examples of blowing agents include inorganic blowing agents such as sodium hydrogen carbonate and azides (calcium azide, etc.), organic blowing agents such as azo-type (azobisisobutylnitrile, azodicarbonamide, etc.), and hydrazine-type (diphenyl). sulfone-3,3'-disulfohydrazine, etc.), triazole-based (5-morpholyl-1,2,3,4-thiatriazole, etc.), N-nitroso-based (N,N--dinitrosopentamethylenetetramine, etc.) Examples include.

さらに本発明で用いられる界面活性剤は、本発明の保持
体を排水処理に用いる場合、微生物の付着性を向上さゼ
るためであり、付着する微生物に対して毒性の少ないも
のが使用され、例えばアニオン系、非イオン系の界面活
性剤が適している。
Furthermore, the surfactant used in the present invention is to improve the adhesion of microorganisms when the holder of the present invention is used for wastewater treatment, and a surfactant that is less toxic to the attached microorganisms is used. For example, anionic and nonionic surfactants are suitable.

具体的に例示すると、アニオン系界面活性剤としては硫
酸アルキルナトリウム、硫酸第2アルキルナトリウム、
2−スルホ琥珀酸ジアルキルアミドなどが選挙げられ、
非イオン系界面活性剤としてはアルキルポリオキシエチ
レンエーテル、脂肪酸多価アルコールエステル、脂肪酸
多価アルコールポリオキシエチレン、脂肪酸庶糖エステ
ルなどが挙げられる。
Specifically, examples of anionic surfactants include alkyl sodium sulfate, secondary alkyl sodium sulfate,
2-sulfosuccinic acid dialkylamide etc. are selected,
Examples of the nonionic surfactant include alkyl polyoxyethylene ether, fatty acid polyhydric alcohol ester, fatty acid polyhydric alcohol polyoxyethylene, fatty acid sucrose ester, and the like.

(実施例1) 平均重合度800のポリ塩化ビニル樹脂粉末100部、
(:、a−Zn系安定剤2部、滑剤2部に栄養剤として
グルタミン酸微細粉末3部を加えて充分混和し、これを
カレンダー成形加工によりシート状に成形した。
(Example 1) 100 parts of polyvinyl chloride resin powder with an average degree of polymerization of 800,
(:, 3 parts of glutamic acid fine powder as a nutritional agent was added to 2 parts of a-Zn stabilizer and 2 parts of lubricant and thoroughly mixed, and this was formed into a sheet by calendering.

かくして得られた本発明の保持体を用い硝化菌培養槽で
、硝化菌を主とする微生物付着性試験を行った。
Using the thus obtained holder of the present invention, a microbial adhesion test mainly consisting of nitrifying bacteria was conducted in a nitrifying bacteria culture tank.

被処理水としては塩化アンモニウムを主とした人工排水
を用い、窒素濃度を200 ppmに調製した。 培養
条イ1は、上記人工排水を20℃、p 1−17〜8に
調整しておき、試験方法としては、処理槽の下部に硝化
菌培養のための通常の充填材を入れて馴致を行い、硝化
菌が充填材に充分に増殖付者し、処理性能も安定した状
態のところで、上記本発明の保持体を処理槽の上部に浸
漬の後、15日目と30日目に保持体を引き上げ、それ
ぞれ1分後に各保持体の微生物保持量(湿重量)を測定
した。 その結果を第1図の符号1で示す。
Artificial wastewater containing mainly ammonium chloride was used as the water to be treated, and the nitrogen concentration was adjusted to 200 ppm. For culture strip A1, the artificial wastewater was adjusted to 20°C and p 1-17 to 8, and the test method was to add a regular filler for culturing nitrifying bacteria to the bottom of the treatment tank and acclimatize it. When the nitrifying bacteria have sufficiently grown on the filler and the treatment performance is stable, the holder of the present invention is immersed in the upper part of the treatment tank, and on the 15th and 30th day, the holder is was lifted, and the amount of microorganisms retained (wet weight) on each holder was measured 1 minute later. The results are indicated by reference numeral 1 in FIG.

(実施例2) 平均重合度800のポリ塩化ビニル樹脂粉末100部、
Ca−Zn系安定剤2部、滑剤2部に配合剤として微生
物菌体く硝化菌の乾燥菌体)2部及び補酵素(ビタミン
B)1部を添加混合した後、これをカレンダー成形法に
よりシート状に成形加工した。
(Example 2) 100 parts of polyvinyl chloride resin powder with an average degree of polymerization of 800,
After adding and mixing 2 parts of a Ca-Zn stabilizer and 2 parts of a lubricant with 2 parts of dried bacterial cells of microorganisms (nitrifying bacteria) and 1 part of a coenzyme (vitamin B), the mixture was molded using a calendar method. It was molded into a sheet.

得られたシート状物を用いて、実施例1同様の供試原水
、試験条件により微生物付着性試験を行い、その結果を
第1図の符号2で示す。
Using the obtained sheet-like material, a microbial adhesion test was conducted under the same raw water and test conditions as in Example 1, and the results are shown by reference numeral 2 in FIG.

(実施例3) 平均1合度800のポリ塩化ビニル樹脂粉末100部、
Ca−7n系安定剤2部、滑剤2部に配合剤として非イ
オン界面活性剤(アルキルポリオキシエチレンエーテル
と脂肪酸多価アルコールエステルの等昂混合物)2部を
添加混合した後、これをカレンダー成形法によりシート
状に成形加工した。
(Example 3) 100 parts of polyvinyl chloride resin powder with an average degree of 800,
After adding and mixing 2 parts of a nonionic surfactant (equal mixture of alkyl polyoxyethylene ether and fatty acid polyhydric alcohol ester) as a compounding agent to 2 parts of Ca-7n stabilizer and 2 parts of lubricant, this was calendered. It was molded into a sheet by the method.

1qられたシート状物を用いて、実施例1同様の供試原
水、試験条件により微生物付着性試験を行い、その結果
を第1図の符号3で示す。
A microbial adhesion test was conducted using the 1q sheet-like material using the same test raw water and test conditions as in Example 1, and the results are shown by reference numeral 3 in FIG.

(実施例4) 平均重合度1,300のポリ塩化ビニル樹脂粉末100
部、可塑剤50部、Ca−Zn系安定剤3部に配合剤と
して発泡剤(アゾジカルボンアミド)3部を添加混合し
、加熱発泡さけて軟質フィルムを作製した。
(Example 4) Polyvinyl chloride resin powder 100 with an average degree of polymerization of 1,300
3 parts of a foaming agent (azodicarbonamide) was added as a compounding agent to 50 parts of a plasticizer, 3 parts of a Ca-Zn stabilizer, and heated and foamed to prepare a soft film.

得られた発泡フィルムを用いて、実施例1同様の供試原
水、試験条件により微生物付着性試験を行い、その結果
を第1図の符号4で示す。
Using the obtained foamed film, a microbial adhesion test was conducted using the same test raw water and test conditions as in Example 1, and the results are shown by reference numeral 4 in FIG.

(比較例) 本発明の保持体と比較するため、上記実施例1で用いた
平均重合度800のポリ塩化ビニル樹脂粉末100部に
、Ca−Zn系安定剤2部、滑剤2部を添加混合し、こ
れをカレンダー成形法によりシート状に加工したものを
用いた。
(Comparative Example) For comparison with the holder of the present invention, 2 parts of Ca-Zn stabilizer and 2 parts of lubricant were added and mixed to 100 parts of the polyvinyl chloride resin powder with an average degree of polymerization of 800 used in Example 1 above. This was then processed into a sheet using a calendar molding method.

供試原水、試験条件は実施例1〜4と同様に設定して試
験した結果を第1図の符号5で示す。
The sample raw water and test conditions were set in the same manner as in Examples 1 to 4, and the test results are shown by reference numeral 5 in FIG.

第1図において、縦軸は微生物保持量(湿重1?ra/
m2)、横軸は浸漬日数(日)である。
In Figure 1, the vertical axis is the amount of microorganisms retained (wet weight 1?ra/
m2), and the horizontal axis is the number of immersion days (days).

この結果から、本発明の微生物保持体は何れも比較例の
ものよりも微生物保持量が極めて多いことが明らかであ
る。
From these results, it is clear that the microorganism carriers of the present invention all have a significantly larger amount of microorganisms retained than those of the comparative examples.

(発明の効果) 本発明の微生物保持体は下記の効果を奏する。(Effect of the invention) The microorganism carrier of the present invention has the following effects.

(1) 微生物膜の初期付着生育法[身が早い。(1) Initial adhesion growth method of microbial film [fast.

(2) 微生物膜の密度が高い。(2) High density of microbial membrane.

(3) 微生物の何着力が強く、安定している。(3) The adhesion of microorganisms is strong and stable.

(4) 微生物膜が活性に富んでいる。(4) The microbial membrane is highly active.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例並びに比較例について、微生物
保持体による浸漬日数(日)と、微生物保持量(湿ff
lfig /rn 2 )との関係を示す図表である。
Figure 1 shows the number of days (days) of immersion in the microorganism carrier and the amount of microorganisms retained (wet ff
FIG. 1 is a chart showing the relationship between

Claims (1)

【特許請求の範囲】[Claims] プラスチック材料に栄養剤、微生物、酵素、補酵素、発
泡剤及び界面活性剤のうち、1種以上を混合してなる微
生物保持体。
A microorganism carrier made of a plastic material mixed with one or more of nutrients, microorganisms, enzymes, coenzymes, foaming agents, and surfactants.
JP60167224A 1985-07-29 1985-07-29 Microorganism holding body Pending JPS6227096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167224A JPS6227096A (en) 1985-07-29 1985-07-29 Microorganism holding body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167224A JPS6227096A (en) 1985-07-29 1985-07-29 Microorganism holding body

Publications (1)

Publication Number Publication Date
JPS6227096A true JPS6227096A (en) 1987-02-05

Family

ID=15845743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167224A Pending JPS6227096A (en) 1985-07-29 1985-07-29 Microorganism holding body

Country Status (1)

Country Link
JP (1) JPS6227096A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196897A (en) * 1989-12-26 1991-08-28 Matsushita Electric Ind Co Ltd Water purifier
US5248559A (en) * 1990-05-11 1993-09-28 Honda Giken Kogyo Kabushiki Kaisha Bonded structure of aluminum alloy pressed plate
EP0685432A1 (en) * 1994-06-03 1995-12-06 Peter Dr. Ott Buoyant fluidisable carrier material for biotechnological processes
US7083727B2 (en) 2002-05-23 2006-08-01 Minaki Advance Co., Ltd. Water clarifying agent inducing catalytic reaction and method of clarifying water through activation of microorganism
JP7082360B1 (en) * 2022-03-03 2022-06-08 有限会社クリーンエコ Environmental pollution purification aid, manufacturing method and its spraying device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111895A (en) * 1979-02-20 1980-08-28 Achilles Corp Filter material for waste liquid treating apparatus
JPS5730596A (en) * 1980-08-01 1982-02-18 Kayaba Ind Co Ltd Bacteria-carrier for sewage disposal
JPS58159894A (en) * 1982-03-17 1983-09-22 Unitika Ltd Treatment of sewage by fluidized bed type apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111895A (en) * 1979-02-20 1980-08-28 Achilles Corp Filter material for waste liquid treating apparatus
JPS5730596A (en) * 1980-08-01 1982-02-18 Kayaba Ind Co Ltd Bacteria-carrier for sewage disposal
JPS58159894A (en) * 1982-03-17 1983-09-22 Unitika Ltd Treatment of sewage by fluidized bed type apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196897A (en) * 1989-12-26 1991-08-28 Matsushita Electric Ind Co Ltd Water purifier
US5248559A (en) * 1990-05-11 1993-09-28 Honda Giken Kogyo Kabushiki Kaisha Bonded structure of aluminum alloy pressed plate
EP0685432A1 (en) * 1994-06-03 1995-12-06 Peter Dr. Ott Buoyant fluidisable carrier material for biotechnological processes
WO1995033695A1 (en) * 1994-06-03 1995-12-14 Peter Ott Buoyant, swirlable substrate material for biotechnological processes
US7083727B2 (en) 2002-05-23 2006-08-01 Minaki Advance Co., Ltd. Water clarifying agent inducing catalytic reaction and method of clarifying water through activation of microorganism
JP7082360B1 (en) * 2022-03-03 2022-06-08 有限会社クリーンエコ Environmental pollution purification aid, manufacturing method and its spraying device

Similar Documents

Publication Publication Date Title
CN109775860B (en) Immobilized microorganism carrier filler and preparation method thereof
Lozinsky et al. Poly (vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments
CN110482715A (en) A method of synchronous nitration denitrification denitrogenation is realized using immobilized microorganism technique
US6214619B1 (en) Water swellable thermoplastic polyurethane gel bioreactor carrier containing a nutrient substance
Chen et al. Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface
Chen et al. Nitrogen removal performance and microbial community of an enhanced multistage A/O biofilm reactor treating low-strength domestic wastewater
JP2887737B2 (en) Bioreactor
CN103951039A (en) Preparation and application of nitrifying bacteria immobilized bioactive filler based on polyurethane carrier
KR20060043555A (en) Method for producing immobilized microorganism, immobilized microorganism produced therefrom and a reaction apparatus using the same
Tramper et al. Characterization of Nitrobacter agilis immobilized in calcium alginate
CN109019833A (en) A kind of biologic packing material, the preparation method of biologic packing material, sewage disposal system
JPS6227096A (en) Microorganism holding body
CN103524648A (en) Foaming polyvinyl formal microbial carrier and preparation method thereof
Kotlar et al. The nature of interaction between immobilized nitrification and denitrification bacteria
CN108148828A (en) It is a kind of using gypsum as the method for carrier immobilized Nitrite bacteria
CN1105084C (en) Buoyant, swirlable substrate material for biotechnological processes
WO2001081442A1 (en) Aqueous polyurethane gel, process for producing the same, and use thereof
JPS61197095A (en) Microbe carrier
JPS63202382A (en) Immobilized microorganism group
CN103951040A (en) Preparation and application of ammonia oxidizing bacteria immobilized bioactive filler based on polyurethane carrier
JPS6029559B2 (en) wastewater treatment equipment
CN209010222U (en) A kind of sewage disposal system
CN114806022B (en) Positively charged biological filler and preparation method thereof
JPS61100193A (en) Preparation of immobilized enzyme, immobilized microorganism and group of immobilized microorganism
Nakamura et al. Mathematical modeling for diauxic growth in immobilized cell culture