JPS61100193A - Preparation of immobilized enzyme, immobilized microorganism and group of immobilized microorganism - Google Patents

Preparation of immobilized enzyme, immobilized microorganism and group of immobilized microorganism

Info

Publication number
JPS61100193A
JPS61100193A JP22283284A JP22283284A JPS61100193A JP S61100193 A JPS61100193 A JP S61100193A JP 22283284 A JP22283284 A JP 22283284A JP 22283284 A JP22283284 A JP 22283284A JP S61100193 A JPS61100193 A JP S61100193A
Authority
JP
Japan
Prior art keywords
immobilized
microorganism
microorganisms
polyvinyl alcohol
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22283284A
Other languages
Japanese (ja)
Other versions
JPS635073B2 (en
Inventor
Susumu Hashimoto
奨 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22283284A priority Critical patent/JPS61100193A/en
Publication of JPS61100193A publication Critical patent/JPS61100193A/en
Publication of JPS635073B2 publication Critical patent/JPS635073B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce an immobilized product resistant to the attack of microorganisms, having high gel strength, and formable to an arbitrary form, at a low cost, by gelatinizing a mixture of an aqueous solution of polyvinyl alcohol and an enzyme or microorganism, etc. in a saturated aqueous solution of boric acid. CONSTITUTION:One or more kinds of enzymes, microorganisms or microbial groups are mixed with an aqueous solution of polyvinyl alcohol, and the mixture is gelatinized in saturated aqueous solution of boric acid to obtain the enzymes, etc. included and immobilized in the monodeol lattice of polyvinyl alcohol-H3 BO3. The polyvinyl alcohol is preferably a partially saponified polyvinyl alcohol having a polymerization degree of 1,000-2,000 and a saponification degree of 87-89%, or a completely saponified polyvinyl alcohol having a saponification degree of >=98%.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、固定化酵素、固定化微生物並びに固定化微
生物群の製造法、特に、酵素、微生物並びに微生物群を
ポリビニルアルコール−)13803のモツプオール型
の高分子格子中に固定化させる方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing an immobilized enzyme, an immobilized microorganism, and an immobilized microorganism group, and in particular, a method for producing an immobilized enzyme, an immobilized microorganism, and an immobilized microorganism group. The present invention relates to a method of immobilization in a type of polymer lattice.

(従来の技術) 1950年代前半から、酵素を担体結合法、架橋法。(Conventional technology) Since the early 1950s, enzymes have been bonded to carriers and cross-linked.

包括法等で固定化する研究が盛んになされ、その一部は
すでに実用化されている。 1975年以降、酵素では
なく、微生物そのものを高分子材料中に包括固定化する
いわゆる“%1hole Ce1l Entrapme
nt ”(以下WCEと略す)が注目されるようになり
There has been a lot of research into fixing it using comprehensive methods, and some of it has already been put into practical use. Since 1975, so-called "%1hole Ce1l Entrapme" has been developed, which entraps microorganisms themselves instead of enzymes into polymeric materials.
nt” (hereinafter abbreviated as WCE) has started to attract attention.

種々の高分子材料によるWCEが報告されている。WCE using various polymer materials has been reported.

これまでに報告されているWCEに用いることのできる
代表的な高分子材料としては、アクリルアミド、に−カ
ラギーナン、アルギン酸ソーダおよ 5び寒天がある。
Typical polymeric materials that have been reported so far that can be used for WCE include acrylamide, carrageenan, sodium alginate, and agar.

アクリルアミドは、他の高分子材料に比較してコストが
安いために、多くの研究でとり上げられている。しかし
、連続処理に有利な球形に成形できないこと、アクリル
アミドモノマーが微生物に対し毒性を示すので迅速な固
定化が要求されること等の欠点を有する。に−カラギー
ナンは微生物に対する毒性が少なく5球形に成形できる
ため、エタノール醗酵の実験プラントでの酵母の固定化
高分子材料として使用されている。
Acrylamide has been featured in many studies due to its low cost compared to other polymeric materials. However, it has disadvantages such as not being able to be formed into a spherical shape which is advantageous for continuous processing, and requiring rapid immobilization because the acrylamide monomer is toxic to microorganisms. -Carrageenan is used as a polymeric material for immobilizing yeast in experimental plants for ethanol fermentation because it has low toxicity to microorganisms and can be formed into spherical shapes.

しかし、天然のカラギーナンにはゲル強度を弱めるλ−
カラギーナンが含まれているのでこれを分離する必要が
あり、そのためにコストが高くなるという欠点がある。
However, natural carrageenan has a λ−
Since it contains carrageenan, it must be separated, which has the disadvantage of increasing costs.

アルギン酸ソーダは9価格が安くしかも球形に成形でき
るという利点があるものの、リン酸緩衝液や+ Ng”
+  K+のような微生物に必須のカチオンの存在下で
ゲル強度が不安定となる欠点がある。さらに、寒天は1
球形に成形できるものの、ゲル強度が弱いという欠点が
ある。
Sodium alginate has the advantage of being cheap and can be formed into a spherical shape, but it has the advantage of being cheap and can be formed into a spherical shape, but it
+ There is a drawback that the gel strength becomes unstable in the presence of cations essential for microorganisms such as K+. Furthermore, agar is 1
Although it can be molded into a spherical shape, it has the disadvantage of weak gel strength.

このように、これまでに開発され、報告されているWC
E用の高分子材料にはいづれも致命的欠点がある0価格
が安<、*生物に対する毒性が少なく、シかもゲル強度
の強い高分子材料の開発が待たれる所以である。
In this way, the WC that has been developed and reported so far
All of the polymer materials for E use have fatal drawbacks, such as low price, * This is why the development of polymer materials that are less toxic to living things and have strong gel strength is awaited.

(発明が解決しようとする問題点) 本発明は上記従来の問題点を解決するものであり、その
目的とするところは、安価で、微生物に対し毒性のない
、しかも任意の形状に成形されうるWCE用高背高分子
材料いて固定化酵素、固定化微生物並びに固定化微生物
群の製法を提供することにある。本発明の他の目的は、
ゲル強度が強(迅速な固定化を達成しうるWCE用高背
高分子材料いて温和な条件下で簡単に酵素、微生物およ
び微生物群を固定化する方法を提供することにある。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional problems, and aims to be inexpensive, non-toxic to microorganisms, and capable of being molded into any shape. An object of the present invention is to provide a high polymer material for WCE, an immobilized enzyme, an immobilized microorganism, and a method for producing an immobilized microorganism group. Another object of the invention is to
The purpose of the present invention is to provide a method for easily immobilizing enzymes, microorganisms, and microorganism groups under mild conditions using a high-profile polymer material for WCE that has strong gel strength (and can achieve rapid immobilization).

(問題点を解決するための手段) 本発明の固定化酵素、固定化微生物並びに固定化微生物
群の製造法は、酵素、微生物および微生物群のうちの少
なくとも一種とポリビニルアルコール水溶液とを混合し
それを飽和ホウ酸水溶液中でゲル化させることにより、
酵素、微生物および微生物群のうちの少なくとも一種を
ポリビニルアルコール−H5BOsのモツプオール格子
中に包括固定化させてなり、そのことにより上記目的が
達成される。
(Means for Solving the Problems) The method for producing an immobilized enzyme, an immobilized microorganism, and an immobilized group of microorganisms of the present invention includes mixing at least one of the enzyme, the microorganism, and the group of microorganisms with an aqueous polyvinyl alcohol solution. By gelling in a saturated boric acid aqueous solution,
The above object is achieved by entrapping and immobilizing at least one of an enzyme, a microorganism, and a group of microorganisms in the motupur lattice of polyvinyl alcohol-H5BOs.

本発明に使用されるポリビニルアルコール(PVA)は
1重合度がsoo 〜a、ooo、好ましくは1,00
0〜2,000.でかつケン化度が70%以上、好まし
くは87%〜89%の部分ケン化ポバールおよび/もし
くはケン化度が98%以上の完全ケン化ポバールである
0重合度が過度に低いとゲル化に時間がかかりすぎ、過
度に高いと粘度が高まり取り扱いの上で問題が出てくる
。このようなPVAの3〜40容量%、好ましくは10
〜20容量%と、このPVAに対し50重量%以下の酵
素、微生物および/もしくは微生物群の適宜量とを均一
に混合攪拌し、この混合物を飽和tisaos溶液中で
9球状、糸状あるいは板状にゲル化し成形する。このゲ
ルを1時間〜48時間飽和ustsos溶液に保持する
ことにより所望の耐水性の固定化酵素、固定化微生物お
よび/もしくは固定化微生物群が得られる。処理温度に
は特に制限はな(、その酵素、微生物および微生物群に
有利な温度が適用される。酵素、微生物および微生物群
は格別である必要はな(、その使用目的に応じて公知の
あらゆる活性を有するものが適用される0例えば1本発
明方法により得られる系を下廃水の処理に適用する場合
には、酵素または微生物としてフェノール分解活性を有
するものが使用される。微生物群としては9例えば、活
性汚泥微生物群や嫌気性消化細菌群、光合成細菌群等が
用いられる。その他、酵素としてアミラーゼ、β−グル
コシダーゼ、セルラーゼ、プロテアーゼ。
The polyvinyl alcohol (PVA) used in the present invention has a degree of polymerization of soo to a, ooo, preferably 1,00.
0-2,000. Partially saponified poval with a saponification degree of 70% or more, preferably 87% to 89% and/or completely saponified poval with a saponification degree of 98% or more. It takes too much time, and if the temperature is too high, the viscosity will increase, causing problems in handling. 3-40% by volume of such PVA, preferably 10
~20% by volume and an appropriate amount of enzymes, microorganisms, and/or microorganisms of 50% by weight or less based on the PVA are uniformly mixed and stirred, and this mixture is shaped into 9 spheres, threads, or plates in a saturated tisaos solution. Gel and shape. By maintaining this gel in a saturated ustsos solution for 1 to 48 hours, the desired water-resistant immobilized enzyme, immobilized microorganism, and/or group of immobilized microorganisms can be obtained. There is no particular restriction on the processing temperature (a temperature that is advantageous for the enzyme, microorganism, and microorganism group is applied. The enzyme, microorganism, and microorganism group need not be particularly special (although any known temperature may be applied depending on the purpose of use). For example, when the system obtained by the method of the present invention is applied to the treatment of wastewater, enzymes or microorganisms that have phenol decomposition activity are used. For example, activated sludge microorganisms, anaerobic digestive bacteria, photosynthetic bacteria, etc. are used.Other enzymes include amylase, β-glucosidase, cellulase, and protease.

その他の酵素等、微生物としてアルコール醗酵酵母、硝
化細菌、脱窒細菌等、そして微生物群として活性汚泥、
嫌気メタン醗酵、繊維醗酵、上下水・工業廃水処理微生
物群等、極めて多数の微生物群が用いられうる。
Other enzymes, etc., alcohol fermentation yeast, nitrifying bacteria, denitrifying bacteria, etc. as microorganisms, and activated sludge as microorganisms,
A very large number of microbial groups can be used, such as anaerobic methane fermentation, fiber fermentation, water/sewage/industrial wastewater treatment microbial groups, etc.

以上のようにして得られるH3BOsによるゲル化PV
A高分子は非常に安定かつ強固で、半年間にわたる連続
使用後でも、固定化微生物、固定化酵素および固定化微
生物群の活性が低下しないことはもちろんのこと、ゲル
強度は低下しない、PvAに少量のカゼイン、アルミニ
ウム塩、 Cu塩、チタンイオンなどを混在させておけ
ば、これがPvA分子と結合を起こすので、より一層ゲ
ル強度の大きいゲル化PVA高分子を得ることができる
Gelled PV with H3BOs obtained as above
Polymer A is extremely stable and strong, and even after continuous use for half a year, the activity of immobilized microorganisms, immobilized enzymes, and immobilized microorganism groups does not decrease, and the gel strength does not decrease. If a small amount of casein, aluminum salt, Cu salt, titanium ion, etc. are mixed in, these will cause a bond with PvA molecules, so that a gelled PVA polymer with even higher gel strength can be obtained.

本発明方法によれば、何ら格別の過酷な処理条件が課せ
られないため、既知のほとんどの酵素。
According to the method of the present invention, no particularly harsh treatment conditions are imposed, and therefore most known enzymes can be used.

微生物、好気、嫌気の活性汚泥のような微生物群を、活
性をほとんど低下させることなく安価に固定化すること
ができ、その活性を長期間にわたって維持することがで
きる。
Microorganisms, aerobic and anaerobic activated sludge, and other microbial groups can be immobilized at low cost with almost no reduction in activity, and the activity can be maintained for a long period of time.

(実施例) 以下に1本発明を実施例について説明する。(Example) One embodiment of the present invention will be described below.

大止貫上 PVA (ケン化度98〜99%1重合度1700) 
(7)20容量%溶液166gと、 fill and
 drawの全酸化処理方式で培養して得られた活性汚
泥の濃縮混合液(汚泥濃度10g/l)55gとを充分
に混合攪拌し。
Daitome Kanjo PVA (degree of saponification 98-99% 1 degree of polymerization 1700)
(7) 166g of 20% by volume solution, fill and
Thoroughly mix and stir 55 g of a concentrated mixed solution (sludge concentration 10 g/l) of activated sludge obtained by culturing using the draw total oxidation treatment method.

この混合物に約300〜400ccの飽和ホウ酸(83
803)溶液を加えた。こうしてPVA−活性汚泥混合
液をゲル化させる。得られたゲルを2龍厚の板状に引き
のばし、これを飽和ホウ酸溶液中で5時間放置した。板
状ゲルを5 tm X 5龍×2龍の小片に裁断した後
、水道水で放ち洗浄した。このようにして得られたPV
A固定化活性汚泥を用い、肉エキス・ペプトンを主体と
する合成下水を図に示すような、下水処理装置で処理し
た。この装置は、上方からの流入下水を上記固定化活性
汚泥100を配置した曝気反応部(容量0.61)1に
て曝気し。
Add approximately 300 to 400 cc of saturated boric acid (83
803) Added solution. In this way, the PVA-activated sludge mixture is gelled. The obtained gel was stretched into a plate shape with a thickness of 2 mm, and this was left in a saturated boric acid solution for 5 hours. The plate-shaped gel was cut into small pieces of 5 tm x 5 dragons x 2 dragons, and then washed with tap water. The PV obtained in this way
Using A-immobilized activated sludge, synthetic sewage mainly containing meat extract and peptone was treated in a sewage treatment device as shown in the figure. In this device, sewage flowing in from above is aerated in an aeration reaction section (capacity 0.61) 1 in which the fixed activated sludge 100 is arranged.

曝気処理水は沈澱池2を得て処理水出口3から系外へ流
出する構成になっている。曝気は圧縮空気をフローメー
ター11を介し散気法10から曝気反応部1内へ吹き込
むことにより行われる。その運転条件を表1に示す。表
2には、定常状態における処理成績を示す。
The aerated water passes through a settling tank 2 and flows out of the system from a treated water outlet 3. Aeration is performed by blowing compressed air into the aeration reaction section 1 via a flow meter 11 from an aeration method 10. The operating conditions are shown in Table 1. Table 2 shows the processing results in steady state.

表1 TOC(全有機炭素)−容積負荷の変動にもかかわらず
ほぼ90%程度の安定したTOC除去を達成することが
できた。供試汚泥中に硝化細菌が含まれていることから
硝化反応がかなりの程度で高負荷液においても起こるこ
とが予想されたが処理水中にはN03−Nが5■/2以
下しか検出されず。
Table 1 TOC (Total Organic Carbon) - Stable TOC removal of approximately 90% could be achieved despite fluctuations in volume loading. Since the sample sludge contained nitrifying bacteria, it was expected that the nitrification reaction would occur to a considerable extent even in highly loaded liquids, but only less than 5■/2 of N03-N was detected in the treated water. .

むしろ、 T−N (全窒素)が43〜50%もの高効
率で除去された。これは、固定化活性汚泥内部の嫌気域
で脱窒反応が起こったことによるものである。
Rather, TN (total nitrogen) was removed with a high efficiency of 43-50%. This is due to the denitrification reaction occurring in the anaerobic region inside the immobilized activated sludge.

活性汚泥を固定化することにより、そこに含まれる硝化
細菌による硝化反応とこの固定化活性汚泥内部において
生じる脱窒反応とがバランスして窒素除去が効率良くな
されうろことが理解される。
It is understood that by immobilizing the activated sludge, the nitrification reaction by the nitrifying bacteria contained therein and the denitrification reaction occurring inside the immobilized activated sludge are balanced, and nitrogen removal can be performed efficiently.

以上の結果、活性汚泥をP V A−H3BO3モノデ
ィオール高分子格子中に包括固定化することにより、■
高負荷域での連続運転が可能である;■TOCは90%
程度除去できる:■T−Nは、40〜50%除去できる
;そして■沈澱池での固液分離上の問題点が少ない1等
の固定化による種々の利点が明らかとなった。
As a result, by entrapping and immobilizing activated sludge in the PVA-H3BO3 monodiol polymer lattice,
Continuous operation in high load range is possible; TOC is 90%
It has become clear that 40 to 50% of TN can be removed; and 2) there are fewer problems in solid-liquid separation in a sedimentation tank.

U−例」− PVA (ケン化度98〜99%9重合度1 、700
)の10%溶液10gとフェノール分解菌アシネトバク
タ(Acinetobacter sp、) (10g
 / j!の細胞濃度)3.3gとを充分に混合攪拌し
、これを、緩速攪拌されている飽和HJO:+溶液1!
中に滴下して球形ゲル(直径3〜4鶴)を得た。この球
形ゲルを飽和H,BOj中で24時間にわたって緩速攪
拌して後。
U-Example - PVA (Saponification degree 98-99% 9 Polymerization degree 1, 700
) and 10 g of a 10% solution of Acinetobacter sp.
/ j! Cell concentration) 3.3g was thoroughly mixed and stirred, and this was added to the slowly stirred saturated HJO: + solution 1!
A spherical gel (3 to 4 cranes in diameter) was obtained. After slowly stirring this spherical gel in saturated H, BOj for 24 hours.

水道水で洗浄した。このようにして得られたPVA−微
生物ゲルをフェノールを含む無機塩培地で5日間活性化
し、そのフェノール分解能を検討した。
Washed with tap water. The PVA-microorganism gel thus obtained was activated in an inorganic salt medium containing phenol for 5 days, and its ability to decompose phenol was examined.

この固定化 Ac1netobacterをフェノール
濃度が1000■/lの培地200ccに投入し、曝気
を行いフェノールの分解試験を行った。 1000■/
l濃度のフェノールは、2.6時間でこの固定化Ac1
netobactersp、により完全に分解された。
This immobilized Aclnetobacter was placed in 200 cc of a medium with a phenol concentration of 1000 μ/l, and aeration was performed to perform a phenol decomposition test. 1000■/
l concentration of phenol reduced this immobilized Ac1 in 2.6 h.
netobactersp.

このフェノール番解活性は、活性化の時間を長くとる程
高まることが判った。PVAゲル内部でAc1neto
bacter sp。
It was found that this phenol decomposition activity increases as the activation time increases. Ac1neto inside PVA gel
bacter sp.

が生育するためである。また、固定化Ac1netob
actersp、と非固定化Ac1netobacte
r sp、とのフェノール分解活性の比較を行ったとこ
ろ、固定化Ac1neto−bac terの約50%
が固定化ゲル内で有効に働いていることが判った。
This is for the purpose of growing. Additionally, immobilized Ac1netob
Actersp, and non-immobilized Aclnetobacterium
When the phenol decomposition activity was compared with that of the immobilized Ac1neto-bacter, approximately 50%
was found to work effectively within the immobilization gel.

叉皇■主 フェノール分解菌Ac1netobacterの培養菌
体をフレンチプレスで破砕して得た菌体抽出液を硫安塩
析により濃縮した。この粗酵素液3gを実施例2と同じ
PVAの10%溶液10gと混ぜ実施例2と同じ処理を
行ってフェノール分解菌Ac1netobacterの
固定化酵素を得た。これに30℃にて1000■/1濃
度のフェノール200ccを接触させたところ、4時間
後にフェノールは完全に分解された。
Cultured cells of Aclnetobacter, a major phenol-degrading bacterium, were crushed in a French press, and a cell extract obtained was concentrated by salting out ammonium sulfate. 3 g of this crude enzyme solution was mixed with 10 g of the same 10% PVA solution as in Example 2, and the same treatment as in Example 2 was carried out to obtain an immobilized enzyme of the phenol-degrading bacterium Aclnetobacter. When this was brought into contact with 200 cc of phenol at a concentration of 1000 .mu./1 at 30.degree. C., the phenol was completely decomposed after 4 hours.

(発明の効果) 本発明は、このように、酵素、微生物および微生物群を
安価なP V A  H3BOiのモツプオール型高分
子中に温和な条件で包括させ容易かつ迅速に固定化する
方法であるため、得られる固定化酵素。
(Effects of the Invention) As described above, the present invention is a method for easily and quickly immobilizing enzymes, microorganisms, and microorganism groups by incorporating them into inexpensive PVA H3BOi motupur-type polymers under mild conditions. , the resulting immobilized enzyme.

固定化微生物および固定化微生物群は酵素や微生物の所
望の活性を長期間にわたって維持しうる。
Immobilized microorganisms and groups of immobilized microorganisms can maintain desired activities of enzymes and microorganisms for long periods of time.

固定化用高分子材料はP V A  H3BO3であり
The immobilizing polymer material is PVAH3BO3.

かつ固定化条件も温和で何ら格別ではないため。Moreover, the immobilization conditions are mild and nothing special.

固定されるべき酵素や微生物並びに微生物群も格別であ
る必要はなく既知のあらゆる種類の酵素。
The enzymes, microorganisms, and microorganism groups to be immobilized do not need to be special; they can be any known enzyme.

微生物および微生物群が適用されうる。Microorganisms and groups of microorganisms may be applied.

4、 ゛  の  ′な量゛■ 図は本発明方法により得られた固定化活性汚泥を用いた
下水処理実験用装置を示す模式図である。
4. The figure is a schematic diagram showing a sewage treatment experimental apparatus using immobilized activated sludge obtained by the method of the present invention.

1・・・曝気反応部、2・・・沈澱部、3・・・処理水
出口。
1... Aeration reaction section, 2... Sedimentation section, 3... Treated water outlet.

10・・・散気法、100・・・固定化活性汚泥。10... Diffusion method, 100... Fixed activated sludge.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] 1、酵素、微生物および微生物群のうちの少なくとも一
種とポリビニルアルコール水溶液とを混合しそれを飽和
ホウ酸水溶液中でゲル化させることにより、酵素、微生
物および微生物群のうちの少なくとも一種をポリビニル
アルコール−H_3BO_3のモノデオール格子中に包
括固定化させることを特徴とする固定化酵素、固定化微
生物並びに固定化微生物群の製造法。
1. At least one of the enzyme, microorganism, and microorganism group is mixed with a polyvinyl alcohol aqueous solution and gelled in a saturated boric acid aqueous solution, so that at least one of the enzyme, microorganism, and microorganism group is mixed with polyvinyl alcohol. A method for producing an immobilized enzyme, an immobilized microorganism, and a group of immobilized microorganisms, which comprises entrapping immobilization in the monodeol lattice of H_3BO_3.
JP22283284A 1984-10-22 1984-10-22 Preparation of immobilized enzyme, immobilized microorganism and group of immobilized microorganism Granted JPS61100193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22283284A JPS61100193A (en) 1984-10-22 1984-10-22 Preparation of immobilized enzyme, immobilized microorganism and group of immobilized microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22283284A JPS61100193A (en) 1984-10-22 1984-10-22 Preparation of immobilized enzyme, immobilized microorganism and group of immobilized microorganism

Publications (2)

Publication Number Publication Date
JPS61100193A true JPS61100193A (en) 1986-05-19
JPS635073B2 JPS635073B2 (en) 1988-02-02

Family

ID=16788606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22283284A Granted JPS61100193A (en) 1984-10-22 1984-10-22 Preparation of immobilized enzyme, immobilized microorganism and group of immobilized microorganism

Country Status (1)

Country Link
JP (1) JPS61100193A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303122A2 (en) * 1987-08-10 1989-02-15 Kuraray Co., Ltd. Process for manufacturing spherical hydrated gel containing microorganism immobilized therein
JPH01281195A (en) * 1988-04-30 1989-11-13 Akua Runesansu Gijutsu Kenkyu Kumiai Pva high water content gel having fine reticulated structure and purification of waste water
JP2003053385A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Biological denitrification equipment
JP2009247279A (en) * 2008-04-07 2009-10-29 Hokkaido Univ New waterweed rhizosphere microorganism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303122A2 (en) * 1987-08-10 1989-02-15 Kuraray Co., Ltd. Process for manufacturing spherical hydrated gel containing microorganism immobilized therein
JPH01281195A (en) * 1988-04-30 1989-11-13 Akua Runesansu Gijutsu Kenkyu Kumiai Pva high water content gel having fine reticulated structure and purification of waste water
JP2003053385A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Biological denitrification equipment
JP2009247279A (en) * 2008-04-07 2009-10-29 Hokkaido Univ New waterweed rhizosphere microorganism

Also Published As

Publication number Publication date
JPS635073B2 (en) 1988-02-02

Similar Documents

Publication Publication Date Title
Mujtaba et al. Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris
Schwarzenbeck et al. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter
Kim et al. Removal of ammonium-N from a recirculation aquacultural system using an immobilized nitrifier
Kuroda et al. Methanogenic bacteria adhered to solid supports
CN101812440A (en) Nitrifying bacteria vector for degrading ammonia nitrogen and preparation method thereof
Chen et al. Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface
Rezaee et al. Microbial cellulose as support material for the immobilization of denitrifying bacteria.
Zhu et al. Nitrogen removal performance of anaerobic ammonia oxidation co-culture immobilized in different gel carriers
Xiao et al. Removal of ammonium-N from ammonium-rich sewage using an immobilized Bacillus subtilis AYC bioreactor system
JPS6329997B2 (en)
CN100334008C (en) Method for treaing uaste water containing aminopolycanboxylic acid
Zhang et al. Effects of size and spacing of basalt fiber carrier media on performance, extracellular polymeric substances and microbial community of hybrid biological reactors
TWI759755B (en) Gel and gel beads containing polyvinyl alcohol, polyurethane and immobilized substances
Liu et al. A systemic evaluation of aerobic granular sludge among granulation, operation, storage, and reactivation processes in an SBR
JPS61100193A (en) Preparation of immobilized enzyme, immobilized microorganism and group of immobilized microorganism
CN114835267B (en) Microbial activity promoting method for biological wastewater treatment
CN111349626A (en) Immobilized microorganism for sewage treatment and preparation method and application thereof
Su et al. Ammonium reduction from piggery wastewater using immobilized ammonium-reducing bacteria with a full-scale sequencing batch reactor on farm
CN101367580A (en) Method for accelerating biotransformation of organic matter hard-to-degrade with co-immobilized amboceptor and thalli
CN111573831A (en) Preparation method of denitrifying embedded bacteria particles for sewage treatment
JPS61139385A (en) Production of immobilized microorganism and/or immobilized microorganism group
CN113604388A (en) Preparation method and application of COD (chemical oxygen demand) degrading microbial inoculum with high efficiency
Qiao et al. Optimized immobilization of activated sludge in poly (ethylene glycol) gels by UV technology
Hou et al. Influencing factors of immobilized bacteria particles for improving denitrification efficiency
JP3465419B2 (en) Wastewater treatment agent and wastewater treatment method