JP2887737B2 - Bioreactor - Google Patents

Bioreactor

Info

Publication number
JP2887737B2
JP2887737B2 JP7176757A JP17675795A JP2887737B2 JP 2887737 B2 JP2887737 B2 JP 2887737B2 JP 7176757 A JP7176757 A JP 7176757A JP 17675795 A JP17675795 A JP 17675795A JP 2887737 B2 JP2887737 B2 JP 2887737B2
Authority
JP
Japan
Prior art keywords
carrier
liquid
microorganism
treated
energy source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7176757A
Other languages
Japanese (ja)
Other versions
JPH08224076A (en
Inventor
弘明 植本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denryoku Chuo Kenkyusho
Original Assignee
Denryoku Chuo Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denryoku Chuo Kenkyusho filed Critical Denryoku Chuo Kenkyusho
Priority to JP7176757A priority Critical patent/JP2887737B2/en
Publication of JPH08224076A publication Critical patent/JPH08224076A/en
Application granted granted Critical
Publication of JP2887737B2 publication Critical patent/JP2887737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、被処理液中の特定成
分、例えば排水などの水中に含まれるアンモニアなどの
窒素成分を微生物によって効率よく除去するためのバイ
オリアクターに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bioreactor for efficiently removing, by microorganisms, specific components in a liquid to be treated, for example, nitrogen components such as ammonia contained in water such as waste water.

【0002】[0002]

【従来の技術】湖沼、閉鎖性海域へ流入するアンモニア
などの窒素化合物は、富栄養化の主要な原因物質の一つ
である。そのため、窒素に関する排水基準が強化され、
現在では河川や海域への排出も厳しく規制される状況に
ある。
2. Description of the Related Art Nitrogen compounds such as ammonia flowing into lakes and marshes and enclosed seas are one of the main causes of eutrophication. As a result, wastewater standards for nitrogen have been strengthened,
At present, emissions to rivers and seas are strictly regulated.

【0003】現在、排水中の窒素化合物を除去する方法
として、生物学的脱窒法が広く一般的に用いられてい
る。しかしながら、生物学的脱窒法による既存の排水処
理装置では、好気槽(硝化反応)と嫌気槽(脱窒反応)
を必要とするため、装置が大型化、複雑化するという難
点を有する。また、脱窒反応のエネルギー源としてアル
コールなどの有機物を脱窒槽に添加する必要があるが、
処理水中に残存するアルコール除去のため、再曝気槽を
設置する必要がある。さらに、pH調整が必要であり、
添加したアルコールの利用効率が低く、運転コストが高
くなるなどの問題点も存在する。
At present, biological denitrification is widely and generally used as a method for removing nitrogen compounds in wastewater. However, in existing wastewater treatment equipment using biological denitrification, an aerobic tank (nitrification reaction) and an anaerobic tank (denitrification reaction)
However, there is a drawback that the apparatus becomes large and complicated. Also, it is necessary to add an organic substance such as alcohol to the denitrification tank as an energy source of the denitrification reaction,
It is necessary to install a re-aeration tank to remove the alcohol remaining in the treated water. In addition, pH adjustment is required,
There are also problems such as low utilization efficiency of the added alcohol and high operating costs.

【0004】[0004]

【発明が解決しようとする課題】本発明は、微生物を使
用して被処理液中の特定の成分を除去または増加させる
ことができるバイオリアクターに関するもので、例え
ば、従来の窒素処理装置における問題点を解決すること
ができるもので、硝化と脱窒反応を1つの反応槽で効率
よく行い、かつ脱窒菌等に効率良くエネルギー源物質を
供給できる新しい窒素除去用バイオリアクター等を提供
せんとするものである。
SUMMARY OF THE INVENTION The present invention relates to a bioreactor capable of removing or increasing specific components in a liquid to be treated by using microorganisms. A new nitrogen-removing bioreactor that can efficiently perform nitrification and denitrification reactions in one reaction tank and efficiently supply energy source materials to denitrifying bacteria, etc. It is.

【0005】[0005]

【課題を解決するための手段】本発明者は、種々研究を
重ねた結果、アンモニア酸化菌脱窒菌を合成高分子、
天然高分子等の担体に包埋した固定化担体をフィルム、
シート、チューブ等に成形し、この菌固定化担体の一面
に被処理液を接触させ他面に菌体のエネルギー源物質を
接触させると、効率よく窒素除去できることを見いだ
し、更に他の微生物にも同様に適用できることを見いだ
して本発明を完成させたものである。したがって本発明
は、光硬化性樹脂、アガロース等の合成または天然高分
子等の微生物を包埋し得る担体に被処理液中の目的とす
る成分の除去等に有効な微生物と該微生物が産生する物
質を酸化または還元する微生物をそれぞれ1種または2
種以上固定化した固定化担体の一面に被処理液を接触さ
せ他面に該微生物のエネルギー源物質を接触させるよう
にしたことを特徴とするバイオリアクターに関するもの
である。
As a result of various studies, the present inventors have found that ammonia oxidizing bacteria and denitrifying bacteria can be synthesized by synthetic polymers,
Immobilized carrier embedded in a carrier such as a natural polymer film,
Formed into sheets, tubes, etc., it was found that nitrogen could be removed efficiently by contacting the liquid to be treated with one surface of the carrier for immobilizing bacteria and contacting the energy source substance of the bacterial cells with the other surface, and even for other microorganisms. The present invention has been completed by finding that the same can be applied. Therefore, the present invention provides a microorganism capable of embedding a microorganism such as a synthetic or natural polymer such as a photo-curable resin or agarose, which is effective for removing a target component in a liquid to be treated, and the microorganism produced by the microorganism. Stuff
One or two microorganisms that oxidize or reduce
It relates bioreactor, characterized in that it has on one surface of more kinds on immobilization was immobilized carrier so as to contact the energy source material other surface the microorganism is brought into contact with the liquid to be treated.

【0006】本発明の具体的な一例としては、光硬化性
樹脂、アガロース等の合成または天然高分子ゲル担体に
アンモニア酸化菌、脱窒菌等の被処理液中の窒素または
窒素成分の除去に有効な微生物の1種または2種以上を
固定化した固定化担体の一面に被処理液を接触させ他面
に該微生物のエネルギー源物質を接触させるようにした
ことを特徴とする窒素除去用バイオリアクターを挙げる
ことができる。なお、本発明において、被処理液中の窒
素または窒素成分の除去に有効な微生物としては、アン
モニア酸化菌および/または脱窒菌が好ましく、担体に
は更に亜硝酸酸化菌等を固定化させてもよい。
As a specific example of the present invention, a synthetic or natural polymer gel carrier such as a photocurable resin or agarose is effective for removing nitrogen or nitrogen components in a liquid to be treated such as ammonia oxidizing bacteria and denitrifying bacteria. A bioreactor for nitrogen removal, characterized in that a liquid to be treated is brought into contact with one surface of an immobilization carrier on which one or more kinds of microorganisms are immobilized, and an energy source substance of the microorganisms is brought into contact with the other surface. Can be mentioned. In the present invention, ammonia oxidizing bacteria and / or denitrifying bacteria are preferred as microorganisms effective for removing nitrogen or nitrogen components in the liquid to be treated, and even if nitrite oxidizing bacteria or the like are further immobilized on the carrier. Good.

【0007】本発明において、アンモニア酸化菌、脱窒
菌、および亜硝酸酸化菌は従来この種の分野で知られて
いるものが使用できるが、より具体的には、例えば、ア
ンモニア酸化菌としては、 Nitrosomonas europaea IFO-14298、 Nitrosomonas europaea, N.marinaNitrosococcus oceanus , N.mobilis、Nitrosococcus sp.DA-001 (FERM P-12904) 、 Nitrosospira briensis 、 Nitrosolobus multiformis、 Nitrosovibrio tenuis、 脱窒菌としては、 Paracoccus denitrificans JCM-6892*, Paracoccus denitrificans* , Alcaligenes eutrophus * ,A.faecalisAlcaligenes sp. Ab-A-1, Ab-A-2, G-A-2-1FERMP-138
62, P-13860, P-13861 ) Pseudomonas denitrificans, Thiosphaera pantotropha , Thiobacillus denitrificans**, 亜硝酸酸化菌としては、 Nitrobacter winogradskyi N.hamburgensisNitrospina gracilis Nitrococcus mobilis Nitrospira marina などを挙げることができる。なお、上記においてアンダ
ーラインを付した菌株は海水の処理にのみ適用できる菌
株であり、それ以外は淡水の処理に適用できる菌株であ
る。N. europaea とN. winogradskyi は淡水のものと海
水のものとがある。FERM番号の菌株は出願人が微生
物工業技術研究所に寄託済のもので、寄託番号を示す。
また、*の付した菌は、エタノールなどの有機物の代わ
りに水素をエネルギー源として使用できる菌株であり、
**を付した菌は硫黄のみをエネルギー源とすることが
でき、チオ硫酸などの硫黄化合物を使って脱窒できる菌
株である。
In the present invention, the ammonia-oxidizing bacteria, the denitrifying bacteria, and the nitrite-oxidizing bacteria can be those conventionally known in the field of this type. More specifically, for example, the ammonia-oxidizing bacteria include: Nitrosomonas europaea IFO-14298, Nitrosomonas europaea, N. marina , Nitrosococcus oceanus , N. mobilis, Nitrosococcus sp. DA-001 (FERM P-12904) , Nitrosospira briensis, Nitrosolobus multiformis, Nitrosovibrio tenuis, Nitrosovibrio tenuis, and denitrifying bacteria -6892 *, Paracoccus denitrificans *, Alcaligenes eutrophus *, A.faecalis Alcaligenes sp. Ab-A-1, Ab-A-2, GA-2-1 ( FERMP-138
62, P-13860, P-13861 ) Pseudomonas denitrificans, Thiosphaera pantotropha, Thiobacillus denitrificans **, and nitrite-oxidizing bacteria include Nitrobacter winogradskyi N. hamburgensis Nitrospina gracilis Nitrococcus mobilis Nitrospira marina . The underlined strain in the above is a strain applicable only to the treatment of seawater, and the other strains are applicable to the treatment of freshwater. N. europaea and N. winogradskyi are available in freshwater and seawater. The strain having the FERM number has been deposited by the Applicant with the Research Institute for Microbial Technology and indicates the deposit number.
Bacteria marked with * are strains that can use hydrogen as an energy source instead of organic substances such as ethanol.
Bacteria marked with ** can only use sulfur as an energy source and can be denitrified using sulfur compounds such as thiosulfate.

【0008】本発明において、上記菌株は単独でもまた
同種または異種の菌株を併せて一つの担体に固定化して
もよい。一般の脱窒法のように、亜硝酸酸化菌も関与す
る微生物反応系を考慮する場合には混合微生物系を使用
することも可能であることから、し尿処理等の汚泥中の
微生物などをそのまま担体に固定することもできる。本
発明は、上記の窒素除去用の菌のほかに、被処理液中の
特定の成分を除去または増加等させることができる菌株
として、活性汚泥中のアクロモバクター、アルカリゲネ
スなどの微生物や、排水中のリンの除去用の微生物、鉄
バクテリアなどをそのまま、またはこれらの微生物の繁
殖を助長する微生物を用いることができる。
[0008] In the present invention, the above strains may be used alone, or homologous or heterologous strains may be combined and immobilized on one carrier. When a microbial reaction system involving nitrite oxidizing bacteria is considered as in the general denitrification method, it is possible to use a mixed microbial system. Can also be fixed. The present invention, in addition to the above-described nitrogen-removing bacteria, as a strain capable of removing or increasing specific components in the liquid to be treated, such as microorganisms such as achromobacter in activated sludge, alkaligenes, and wastewater A microorganism for removing phosphorus therein, an iron bacterium, or the like can be used as it is, or a microorganism that promotes the propagation of these microorganisms can be used.

【0009】菌固定化用の担体としては、微生物や酵素
の固定化に用いられている高分子ゲルを使用することが
できる。具体的には、コラーゲン、フィブリン、アルブ
ミン、カゼイン、セルロースファイバー、セルロースト
リアセタート、寒天、アルギン酸カルシウム、カラギー
ナン、アガロース等の天然高分子、ポリアクリルアミ
ド、ポリ−2−ヒドロキシエチルメタクリル酸、ポリビ
ニルクロリド、γ−メチルポリグルタミン酸、ポリスチ
レン、ポリビニルピロリドン、ポリジメチルアクリルア
ミド、ポリウレタン、光硬化性樹脂(ポリビニルアルコ
ール誘導体、ポリエチレングリコール誘導体、ポリプロ
ピレングリコール誘導体、ポリブタジエン誘導体等)等
の合成高分子、またはこれらの複合体などが挙げられ
る。これらの担体のうち、天然高分子などの強度の小さ
いゲルは適当な支持体を用いるとか、または多孔性膜な
どに挟んで使用するとよい。バイオリアクターにおける
固定化担体の形状としては、チューブ状、プレート状ま
たはフィルム状等とすることができるほか、特定の形状
の成形体とすることができる。
As a carrier for immobilizing bacteria, a polymer gel used for immobilizing microorganisms and enzymes can be used. Specifically, collagen, fibrin, albumin, casein, cellulose fiber, cellulose triacetate, agar, calcium alginate, carrageenan, natural polymers such as agarose, polyacrylamide, poly-2-hydroxyethyl methacrylic acid, polyvinyl chloride, Synthetic polymers such as γ-methylpolyglutamic acid, polystyrene, polyvinylpyrrolidone, polydimethylacrylamide, polyurethane, photocurable resins (polyvinyl alcohol derivatives, polyethylene glycol derivatives, polypropylene glycol derivatives, polybutadiene derivatives, etc.), or composites thereof Is mentioned. Among these carriers, a gel having a low strength such as a natural polymer may be used by using an appropriate support or by sandwiching it between porous membranes. The shape of the immobilized carrier in the bioreactor can be a tube shape, a plate shape, a film shape, or the like, or a molded product having a specific shape.

【0010】本発明は、特に、光硬化性樹脂等のそれ自
体強度のある高分子ゲル担体にアンモニア酸化菌および
/または脱窒菌等の微生物を固定化し、チューブ状に成
形した窒素除去用などのバイオリアクターが好ましい。
このようにチューブ状に成形した菌固定化担体の中空部
に、メタノール、エタノール等の液体または水素ガス等
の気体などを流通せしめて、固定化菌のエネルギー源と
なる物質を補給し得るようにしたものである。固定化担
体のチューブは1本である必要はなく、アンモニア酸化
菌を担持させた固定化担体のチューブと脱窒菌を固定化
した担体のチューブを交互に並べて処理槽内に配置して
もよく、また両者の菌を固定化した担体を複数個配置す
るようにしてもよい。チューブは直線状である必要はな
く曲線状でもスパイラル状としてもよい。
The present invention is particularly applicable to a method for immobilizing microorganisms such as ammonium oxidizing bacteria and / or denitrifying bacteria on a polymer gel carrier such as a photo-curable resin which has its own strength, and for removing nitrogen formed in a tube shape. Bioreactors are preferred.
A liquid such as methanol or ethanol or a gas such as hydrogen gas is allowed to flow through the hollow portion of the bacteria-immobilized carrier thus formed into a tube so that a substance serving as an energy source of the immobilized bacteria can be supplied. It was done. The number of tubes of the immobilization carrier does not need to be one, and the tube of the immobilization carrier carrying the ammonia oxidizing bacteria and the tube of the carrier immobilizing the denitrifying bacteria may be arranged alternately in the treatment tank. A plurality of carriers on which both bacteria are immobilized may be arranged. The tube need not be straight but may be curved or spiral.

【0011】なお上記のものは、担体そのものをチュー
ブ状に成形したものであるが、更に本発明は、樋状など
の一面が開放した容器の開放面に、担体にアンモニア酸
化菌および/または脱窒菌等を固定化した固定化担体の
層を形成し、該固定化担体の層の裏面の空間部にエタノ
ール溶液、水素ガス等の液体または気体を流通せしめる
ようにしたものとすることができる。この場合、容器は
樋状のものに限らず、チューブをその軸線に沿って二分
割した形状に固定化担体を成形し、一面をガラス板、プ
ラスチック板、プラスチックフィルムで覆ったものとす
るとか、容器内を多数のプレート状に成形した固定化担
体で仕切り、固定化担体と固定化担体の間にエタノール
溶液を通過させ、固定化担体と固定化担体の間に被処理
液を通過させるようにするなど種々の形状としてもよ
い。固定化担体面がより大きく被処理液に接する形状と
するとよい。
In the above-described apparatus, the carrier itself is formed into a tube shape. However, the present invention further provides an ammonia oxidizing bacterium and / or desorbing agent on an open surface of a container having an open surface such as a gutter shape. A layer of an immobilization carrier on which nitrifying bacteria and the like are immobilized may be formed, and a liquid or gas such as an ethanol solution or hydrogen gas may be allowed to flow through a space on the back surface of the immobilization carrier layer. In this case, the container is not limited to a gutter-shaped one, and the immobilization carrier is formed into a shape obtained by dividing the tube into two along the axis thereof, and one surface is covered with a glass plate, a plastic plate, a plastic film, or the like. The inside of the container is partitioned by a number of immobilized carriers molded into a plate shape, an ethanol solution is passed between the immobilized carriers, and the liquid to be treated is passed between the immobilized carriers. Various shapes may be used. It is preferable that the surface of the immobilized carrier be larger in contact with the liquid to be treated.

【0012】固定化担体の厚さは特に限定されることな
く、被処理液の性質や要求される強度にしたがって脱窒
反応が効率よく行われる範囲内で任意に選択することが
できる。通常は0.5〜10mm程度、特に1mm前後の厚
さが好ましい。担体に固定化させる菌の量や、アンモニ
ア酸化菌と脱窒菌との割合は、処理すべき排水等の被処
理液によって任意に設定される。固定化担体のエネルギ
ー源物質としては、前記のメタノール、エタノール等の
アルコール溶液、水素ガス等の他、グルコースなどの有
機物や有機物を含む排液などを用いることができる。ま
た、独立栄養の硫黄酸化菌を用いて硫黄または硫黄化合
物溶液をエネルギー源とすることもできる。エネルギー
源物質は、固定化担体の性質に応じて適当な媒体で希釈
して用いるとよい。エネルギー源物質の供給に際して
は、これらの液体または気体を、必要に応じて加温また
は冷却等の温度調節を施してもよい。エネルギー源物質
の補給は、系外から循環方式で供給してもよく、または
固定化担体の一方の面の閉鎖空間内に必要量だけ充填し
ておく回分方式のいずれによってもよい。
The thickness of the immobilized carrier is not particularly limited, and can be arbitrarily selected according to the properties of the liquid to be treated and the required strength within a range in which the denitrification reaction is efficiently performed. Usually, a thickness of about 0.5 to 10 mm, particularly about 1 mm is preferable. The amount of bacteria immobilized on the carrier and the ratio between ammonia oxidizing bacteria and denitrifying bacteria are arbitrarily set depending on the liquid to be treated such as wastewater to be treated. As an energy source substance of the immobilization carrier, an organic substance such as glucose, a waste liquid containing an organic substance, and the like can be used in addition to the above-mentioned alcohol solution such as methanol and ethanol, hydrogen gas, and the like. Alternatively, an autotrophic sulfur oxidizing bacterium can be used as an energy source for sulfur or a sulfur compound solution. The energy source substance may be diluted with an appropriate medium depending on the properties of the immobilization carrier before use. When supplying the energy source material, these liquids or gases may be subjected to temperature adjustment such as heating or cooling as necessary. The replenishment of the energy source material may be carried out from outside the system in a circulating manner, or may be carried out in a batch manner in which the required amount is filled in a closed space on one side of the immobilized carrier.

【0013】[0013]

【実施例】以下、本発明を実験例および実施例により説
明するが、本発明はこれらの例に限られるものではな
い。
EXAMPLES The present invention will be described below with reference to experimental examples and examples, but the present invention is not limited to these examples.

【0014】実験例 1)供試菌株とその培養 硝化菌(アンモニア酸化菌)としてNitrosomonas europ
aea IFO-14298 、脱窒菌としてParacoccus denitrifica
ns JCM-6892 を用いた。培養には、N.europaeaはIFO Me
dium List No.240、P.denitrificans JCM Medium List
No.22 (Nutrient agar No.2)を基本とした液体培地を
用いた。培地の組成を表1に示す。それぞれ30℃で振
とう(110rpm)培養後、遠心分離により集菌し、リン酸
緩衝液(9g/l Na2HPO4 ・12H2O 、1.5g/l KH2PO4 、pH
7.5 )により3回洗浄した。洗浄菌体は、N.europaeaは
8mg dry wt./ml 、P.denitrificans は33mg drywt./
ml になるようそれぞれリン酸緩衝液に懸濁した。
Experimental Example 1) Test strain and its culture Nitrosomonas europ as nitrifying bacteria (ammonia-oxidizing bacteria)
aea IFO-14298, Paracoccus denitrifica as denitrifying bacteria
ns JCM-6892 was used. For culture, N. europaea is IFO Me
dium List No.240, P.denitrificans JCM Medium List
A liquid medium based on No. 22 (Nutrient agar No. 2) was used. Table 1 shows the composition of the medium. After culturing at 30 ° C. with shaking (110 rpm), the cells are collected by centrifugation, and phosphate buffer (9 g / l Na 2 HPO 4 .12H 2 O, 1.5 g / l KH 2 PO 4 , pH
Washed 3 times according to 7.5). The washed cells were 8 mg dry wt./ml for N. europaea and 33 mg dry wt./ml for P. denitrificans.
Each was suspended in a phosphate buffer solution to a volume of ml.

【0015】[0015]

【表1】 *1:IFO培地 No.240 に Phenol Red (フェノール レッド)をpH指示 薬として添加し、pHはCaCO3 の代わりにNa2CO3を適宜添加することに より調整した。 *2:JCM培地 No.22から寒天を除き、液体培地として用いた。[Table 1] * 1: Phenol Red (phenol red) was added to IFO medium No. 240 as a pH indicator, and the pH was adjusted by appropriately adding Na 2 CO 3 instead of CaCO 3 . * 2: Agar was removed from JCM medium No. 22 and used as a liquid medium.

【0016】2)固定化方法 光硬化性樹脂PVA−SbQ(SPP−H−13、東洋合
成工業製)9mlに対し、前述のN.europaeaの菌懸濁液1
ml、P.denitrificans の菌懸濁液2mlを混合し固定化し
た。N.europaeaを単独で固定化する場合は、P.denitrif
icans の菌懸濁液の代わりにリン酸緩衝液2mlを添加し
た。菌体と樹脂の混合液は、プラスチックシャーレ、お
よびガラス棒を入れたガラス管を鋳型として用い、メタ
ルハロゲンランプ下で1時間光照射することにより膜状
固定化担体(直径5cm、厚さ5mm)とチューブ状固定化
担体(外径12mm、内径5mm、長さ 125mm)に成形した。
チューブ状固定化担体は、担体内部にエタノール溶液を
供給するため、外径4mm、内径2mmのシリコーンチュー
ブをチューブ状固定化担体の前後に光硬化性樹脂を用い
て接着した。
2) Immobilization method The above N. europaea bacterial suspension 1 was mixed with 9 ml of the photocurable resin PVA-SbQ (SPP-H-13, manufactured by Toyo Gosei Kogyo).
ml and 2 ml of a P. denitrificans cell suspension were mixed and immobilized. When immobilizing N.europaea alone, use P.denitrif
2 ml of phosphate buffer was added in place of the icans suspension. The mixed solution of the cells and the resin is irradiated with light under a metal halogen lamp for 1 hour using a plastic petri dish and a glass tube containing a glass rod as a mold, thereby forming a film-shaped immobilized carrier (diameter 5 cm, thickness 5 mm). And a tubular immobilized carrier (outer diameter 12 mm, inner diameter 5 mm, length 125 mm).
In order to supply the ethanol solution into the inside of the carrier, a silicone tube having an outer diameter of 4 mm and an inner diameter of 2 mm was bonded to the front and back of the tubular immobilized carrier using a photocurable resin.

【0017】 3)実験1:膜状固定化担体による脱窒実験 上記実施例で作製した、N.europaeaを単独で包埋した膜
状固定化担体、およびN.europaeaとP.denitrificans を
同時に包埋した膜状固定化担体について、硝化および脱
窒速度を測定した。実験装置の模式図を図1に示す。図
中、1は実験槽、2は実験槽1を保温するための水浴
(ウォターバス)、3は培地を示す。供試膜状固定化担
体10は固定用の枠またはシャーレなどの固定具9ない
に形成し、培地3中に浸漬した。培地3はエアーポンプ
4によってエアーストーン5から空気を噴出させてエア
レーションするとともにスターラー7で攪拌する。6は
パイプ、8は攪拌翼を示す。実験は、30℃の条件下で行
い、エアレーション(100 ml/min)とスターラー7によ
る攪拌(300rpm)を同時に行った。実験培地3は、前述
したリン酸緩衝液に0.2 g-N/1 (NH4)2SO4 、0.2 g/l Mg
SO4・7H2O、微量元素(trace element )溶液(ZnSO4 10
0mg/l,MnCl2 30mg/l,H3BO3 300mg/l, CoCl2・6H2O 200
mg/l,CuCl2・2H2O 10mg/1,NiCl2・6H2O 20mg/l,Na2MoO4
・2H2O 30mg/l )1ml/lを添加した200ml溶液を用い、
経時的に培地中のアンモニア、亜硝酸、硝酸濃度を測定
した。また、N.europaeaとP.denitrificans を同時に包
埋した固定化担体については、脱窒用にエタノールを添
加した。エタノールの添加方法は、実験培地中に99.5%
エタノール0.5 ml(最終濃度0.25%)を直接添加する方
法と、固定化担体の裏側(シャーレとの間隙)に注入し
た5mlのリン酸緩衝液に、24時間毎に99.5%エタノール
を0.125 ml(4日間の総添加量0.5 ml)を添加する方法
の2通りで行った。
3) Experiment 1: Denitrification experiment using a membrane-shaped immobilized carrier A membrane-shaped immobilized carrier produced by embedding N. europaea alone and N. europaea and P. denitrificans were simultaneously encapsulated. The nitrification and denitrification rates of the embedded film-like immobilized carrier were measured. FIG. 1 shows a schematic diagram of the experimental apparatus. In the figure, 1 indicates an experimental tank, 2 indicates a water bath (water bath) for keeping the experimental tank 1 warm, and 3 indicates a culture medium. The test film-shaped immobilization carrier 10 was formed without a fixing frame 9 or a fixture 9 such as a petri dish, and was immersed in the medium 3. The culture medium 3 is aerated by blowing air from an air stone 5 by an air pump 4 and agitated by a stirrer 7. Reference numeral 6 denotes a pipe, and 8 denotes a stirring blade. The experiment was performed at 30 ° C., and aeration (100 ml / min) and stirring by the stirrer 7 (300 rpm) were performed simultaneously. Experimental medium 3 was prepared by adding 0.2 gN / 1 (NH 4 ) 2 SO 4 , 0.2 g / l Mg
SO 4・ 7H 2 O, trace element solution (ZnSO 4 10
0mg / l, MnCl 2 30mg / l, H 3 BO 3 300mg / l, CoCl 2 · 6H 2 O 200
mg / l, CuCl 2・ 2H 2 O 10mg / 1, NiCl 2・ 6H 2 O 20mg / l, Na 2 MoO 4
・ 2H 2 O 30mg / l) Using 200ml solution with 1ml / l added,
The concentrations of ammonia, nitrite and nitrate in the medium were measured over time. In addition, ethanol was added for denitrification for the immobilized carrier in which N. europaea and P. denitrificans were simultaneously embedded. The method of adding ethanol is 99.5% in the experimental medium.
A method of directly adding 0.5 ml of ethanol (final concentration 0.25%) and a method of adding 0.125 ml (4%) of 99.5% ethanol every 24 hours to 5 ml of a phosphate buffer injected on the back side of the immobilized carrier (gap between the Petri dish). (A total addition amount of 0.5 ml per day).

【0018】 4)実験2:チューブ状固定化担体による脱窒実験 N.europaeaとP.denitrificans を同時に包埋したチュー
ブ状固定化担体の硝化および脱窒速度を測定した。実験
装置の模式図を図2に示す。図2において、11はチュ
ーブ状固定化担体、11aはチューブ状固定化担体11の
両端に接着したシリコーンチューブ、12はエタノール
溶液、13は循環ポンプ、14はパイプを示し、他は図
1に記載のものと同じものは同一符号を用いた。実験は
30℃の条件下で行い、エアレーションとスターラー7
による攪拌は膜状固定化担体の場合と同様にして行っ
た。実験培地3は、前述したリン酸緩衝液に0.1 g-N/1
(NH4)2SO4 、0.2 g/l MgSO4・7H2O、微量元素(trace el
ement )溶液1ml/lを添加した 200ml溶液を用い、経時
的に培地中のアンモニア、亜硝酸、硝酸、TOC濃度を
測定した。なお、チューブ状固定化担体11内部では9
9.5%エタノール0.05mlと0.1 mlを添加した10mlのリン
酸緩衝液(エタノール最終濃度0.5%と1.0 %)が循環
するようにポンプ13を設定(5ml/h)した。また、発
生ガスの捕集および分析も行った。
4) Experiment 2: Denitrification Experiment Using Tubular Immobilized Carrier The nitrification and denitrification rates of the tubular immobilized carrier in which N. europaea and P. denitrificans were simultaneously embedded were measured. FIG. 2 shows a schematic diagram of the experimental apparatus. In FIG. 2, reference numeral 11 denotes a tubular immobilization carrier, 11a denotes a silicone tube adhered to both ends of the tubular immobilization carrier 11, 12 denotes an ethanol solution, 13 denotes a circulating pump, 14 denotes a pipe, and others denote FIG. The same reference numerals are used for the same components. The experiment was performed at 30 ° C, and the aeration and stirrer 7 were used.
Was performed in the same manner as in the case of the film-like immobilized carrier. Experimental medium 3 was added to the above phosphate buffer at 0.1 gN / 1.
(NH 4) 2 SO 4, 0.2 g / l MgSO 4 · 7H 2 O, trace elements (trace el
ement) The concentration of ammonia, nitrite, nitric acid and TOC in the medium was measured over time using a 200 ml solution to which 1 ml / l of the solution was added. Note that, inside the tubular immobilized carrier 11, 9
Pump 13 was set (5 ml / h) to circulate 10 ml of phosphate buffer (final concentration of ethanol 0.5% and 1.0%) to which 0.05 ml and 0.1 ml of 9.5% ethanol were added. In addition, the generated gas was collected and analyzed.

【0019】5)分析方法 培地溶液中のアンモニア、亜硝酸濃度は、それぞれイン
ドフェノール青吸光光度法、ナフチルアミン吸光光度法
により測定した。硝酸濃度はイオンクロマトアナライザ
(IC−500P、横河電機製)、TOC濃度は燃焼−
赤外線式全有機炭素分析計(TOC−500、島津製作
所製)、発生ガスの組成についてはPID検出器付ガス
クロマトアナライザ(G−3000、日立製作所製)に
より分析した。
5) Analytical method The concentrations of ammonia and nitrite in the medium solution were measured by indophenol blue absorption spectrophotometry and naphthylamine absorption photometry, respectively. Nitric acid concentration is ion chromatoanalyzer (IC-500P, manufactured by Yokogawa Denki), TOC concentration is combustion-
An infrared total organic carbon analyzer (TOC-500, manufactured by Shimadzu Corporation) and the composition of the generated gas were analyzed by a gas chromatograph with a PID detector (G-3000, manufactured by Hitachi, Ltd.).

【0020】結果 1)膜状固定化担体による脱窒 硝化と脱窒反応が同時に起こることを確認するため、N.
europaeaを包埋した膜状固定化担体、またはN.europaea
とP.denitrificans を同時に包埋した膜状共固定化担体
の硝化および脱窒速度を測定した。N.europaeaを包埋し
た固定化担体においては、実験培地3中のアンモニア濃
度は時間の経過とともに減少し、亜硝酸濃度が上昇した
(図3A)。一方、N.europaeaとP.denitrificans を同
時に包埋した固定化担体においては、実験培地中のアン
モニア濃度は時間の経過とともに減少したが、亜硝酸濃
度は2日目以降若干上昇したものの、実験終了時には減
少した(図3B)。この傾向は、エタノールの供給方法
を変えても同様であった(図3C)。また、硝酸につい
てはいずれの実験培地中からも検出されなかった。ま
た、各固定化担体における実験開始から13.5時間経過後
の実験培地中のアンモニア、亜硝酸濃度から算出された
硝化速度(NH4→NO2)と脱窒速度(NO2→N2) を表2に示
す。硝化速度は、N.europaeaを単独で包埋した固定化担
体の場合よりもN.europaeaとP.denitrificans を同時に
包埋した固定化担体の方が高かった。また、N.europaea
とP.denitrificans を同時に包埋した固定化担体におい
て、エタノールを実験培地中に添加した場合も固定化担
体とシャーレの間に注入した場合も硝化速度と脱窒速度
に違いが認められなかった。
Results 1) Denitrification by a film-like immobilized carrier In order to confirm that nitrification and denitrification reactions occur simultaneously,
A membrane-shaped immobilized carrier in which europaea is embedded, or N. europaea
The rates of nitrification and denitrification of the membrane-like co-immobilized carrier containing P. denitrificans and P. denitrificans were simultaneously measured. In the immobilized carrier in which N. europaea was embedded, the ammonia concentration in the experimental medium 3 decreased over time, and the nitrite concentration increased (FIG. 3A). On the other hand, in the immobilized carrier in which N. europaea and P. denitrificans were simultaneously embedded, the ammonia concentration in the experimental medium decreased with the passage of time, but the nitrite concentration increased slightly after the second day, but the experiment was terminated. Sometimes decreased (FIG. 3B). This tendency was the same even when the method of supplying ethanol was changed (FIG. 3C). Nitric acid was not detected in any of the experimental media. In addition, the nitrification rate (NH 4 → NO 2 ) and the denitrification rate (NO 2 → N 2 ) calculated from the ammonia and nitrite concentrations in the experimental medium 13.5 hours after the start of the experiment on each immobilized carrier are also shown. It is shown in FIG. The nitrification rate was higher in the immobilized carrier in which N. europaea and P. denitrificans were simultaneously embedded than in the immobilized carrier in which N. europaea was embedded alone. Also, N.europaea
No differences were observed between the nitrification rate and the denitrification rate when ethanol was added to the experimental medium or when it was injected between the immobilized carrier and the petri dish in the immobilized carrier in which P. denitrificans and P. denitrificans were simultaneously embedded.

【0021】[0021]

【表2】 硝化速度と脱窒速度は、13.5時間後の培地中の無機窒素濃度から算出した。 *1:培地中に0.25%(V/V )エタノールを直接添加した。 *2:2.5 %(V/V )エタノール溶液を培地とは反対の面に添加した。[Table 2] The nitrification rate and denitrification rate were calculated from the inorganic nitrogen concentration in the medium after 13.5 hours. * 1: 0.25% (V / V) ethanol was directly added to the medium. * 2: A 2.5% (V / V) ethanol solution was added to the surface opposite to the medium.

【0022】2)チューブ状固定化担体による脱窒 N.europaeaとP.denitrificans を同時に包埋したチュー
ブ状固定化担体において、チューブ内にエタノール溶液
を循環させ、脱窒実験を行った。膜状固定化担体の場合
と同様、実験培地中のアンモニア濃度は時間の経過とと
もに減少した。亜硝酸濃度は2日目以降に若干上昇した
が、実験終了時にはアンモニアとともに消失した(図
4)。また、実験培地中からは、硝酸は検出されなかっ
た。実験培地中のTOC濃度は、実験開始時から上昇
し、実験終了時には58mg-C/lとなった。しかしなが
ら、エタノール濃度を 0.5%に下げた場合、活性は変わ
らず、TOC濃度も実験開始時に40mg・C/lとなったが
それ以上には上昇しなかった(図5)。脱窒反応による
ガス発生は、チューブ内でのみ観察された。また、捕集
したガスは窒素であり、亜酸化窒素などの脱窒反応の中
間生成物は検出されなかった。
2) Denitrification by Tubular Immobilized Carrier In a tubular immobilized carrier in which N. europaea and P. denitrificans were simultaneously embedded, an ethanol solution was circulated in the tube to perform a denitrification experiment. As in the case of the membrane-like immobilized carrier, the ammonia concentration in the experimental medium decreased with time. The nitrite concentration increased slightly after the second day, but disappeared with the ammonia at the end of the experiment (FIG. 4). Nitric acid was not detected in the experimental medium. The TOC concentration in the experimental medium increased from the start of the experiment and reached 58 mg-C / l at the end of the experiment. However, when the ethanol concentration was reduced to 0.5%, the activity did not change, and the TOC concentration was 40 mg · C / l at the start of the experiment, but did not increase any more (FIG. 5). Gas generation due to the denitrification reaction was observed only in the tube. The collected gas was nitrogen, and no intermediate product of the denitrification reaction such as nitrous oxide was detected.

【0023】上記の実験結果からわかるように、N.euro
paeaとP.denitrificans を同時に固定化することによ
り、硝化と脱窒反応が同時に起こり、かつN.europaea単
独の場合よりも硝化活性が向上することが示された(図
3、表2)。P.denitrificansは、好気条件下では脱窒
活性は見られないことが知られている。しかしながら、
本発明のバイオリアクターにおいて硝化と脱窒反応が同
時に起こった理由としては、担体である樹脂内部への酸
素の供給が制限され、かつN.europaeaが酸素を消費した
ため、脱窒反応に必要な嫌気的部位が生じたためと考え
られる。また、同時固定化による硝化活性の向上は、N.
europaeaの反応生成物である亜硝酸が同時固定化したP.
denitrificans による脱窒によって速やかに除去される
ためと考えられる。
As can be seen from the above experimental results, N. euro
It was shown that by simultaneously immobilizing paea and P. denitrificans, nitrification and denitrification reactions occurred simultaneously and nitrification activity was improved as compared with the case of N. europaea alone (FIG. 3, Table 2). It is known that P. denitrificans has no denitrification activity under aerobic conditions. However,
In the bioreactor of the present invention, nitrification and denitrification reactions occurred simultaneously because the supply of oxygen to the inside of the resin as a carrier was restricted, and N. europaea consumed oxygen, so that the anaerobic reaction required for the denitrification reaction occurred. It is considered that a target site was generated. Improvement of nitrification activity by simultaneous immobilization is described in N.
N. nitrite, a reaction product of europaea, was simultaneously immobilized on P.
It is thought that it is quickly removed by denitrification by denitrificans.

【0024】上記実験により、アンモニア酸化菌と脱窒
菌の同時固定化とともに脱窒菌へのエタノールの供給方
法についても検討し、実験培地に接する固定化担体面と
は逆の面からエタノールを供給することも可能であるこ
とがわかる(表2)。また、固定化担体をチューブ状と
することによって、連続的なエタノールの供給により脱
窒が可能となった(図4)。本発明のエタノール供給法
は、従来の処理水中に直接添加する方法に比較し、固定
化担体内の脱窒菌に直接高濃度のエタノールを供給でき
るとともに、エタノールが担体内で消費され、実験培地
中に漏れ出ないため、従来行われていた処理水中に残存
するエタノールを除去する工程を省くことができる。
In the above experiment, a method of supplying ethanol to the denitrifying bacteria together with the simultaneous immobilization of the ammonia oxidizing bacteria and the denitrifying bacteria was examined, and the ethanol was supplied from the surface opposite to the surface of the immobilizing carrier in contact with the experimental medium. It can be seen that this is also possible (Table 2). In addition, by making the immobilized carrier into a tube shape, denitrification became possible by continuous supply of ethanol (FIG. 4). The ethanol supply method of the present invention can directly supply a high concentration of ethanol to the denitrifying bacteria in the immobilized carrier and consumes the ethanol in the carrier, as compared with the conventional method of directly adding the treated water to the treated water. Therefore, the step of removing the ethanol remaining in the treated water, which has been conventionally performed, can be omitted.

【0025】上記実験で使用したエタノール量は、排水
に直接エタノールを 0.025%濃度で添加する場合に相当
し、低濃度のエタノールを効率よく利用することができ
る。また、実験培地中のTOC濃度は、実験開始時に上
昇したが、それ以上には上昇しなかった(図5)。この
理由としては、固定化直後は担体内の脱窒菌が持ち込ん
だ有機物を消費するまでの間エタノールの消費が少なく
処理水中に漏れ出たものと考えられる。したがって、T
OCの蓄積はエタノール濃度の検討および固定化担体の
安定化により防止できる。
The amount of ethanol used in the above experiment corresponds to a case where ethanol is directly added to wastewater at a concentration of 0.025%, and low-concentration ethanol can be used efficiently. In addition, the TOC concentration in the experimental medium increased at the start of the experiment, but did not increase any more (FIG. 5). It is considered that the reason for this is that immediately after the immobilization, the denitrifying bacteria in the carrier consumed less ethanol until the organic matter brought in was consumed and leaked into the treated water. Therefore, T
The accumulation of OC can be prevented by studying the ethanol concentration and stabilizing the immobilized carrier.

【0026】図6は、本発明の他の実験例の結果を示す
グラフで、エネルギー源としてエタノールの代わりに水
素ガスを使用した例である。図6Aは、前記実験におい
て脱窒菌のみを固定化したチューブ状固定化担体を用
い、該担体のチューブ内にエタノール溶液の代わりに窒
素ガスを供給した場合の硝酸態窒素の除去を検討した結
果で、この場合固定化時の菌体内に残った有機物により
硝酸は減少するが、その後は減少しなくなる。これに対
し、図6Bに示すように窒素ガスに代えて水素ガスを供
給した場合には、時間の経過と共に硝酸態窒素量は減少
した。水素を菌体のエネルギー源として使用した場合に
は、アルコールなどの有機物を使用する場合と異なり、
人体に影響を及ぼすことが少ないため、飲料水として使
われる上水の処理や地下水の処理等に利用できる。ま
た、水素ガスの漏れ出しがなく水に溶かす必要もないた
め、安全面、コスト面からも有効である。
FIG. 6 is a graph showing the results of another experimental example of the present invention, in which hydrogen gas is used instead of ethanol as an energy source. FIG. 6A is a result of examining the removal of nitrate nitrogen in the case of using a tubular immobilized carrier in which only denitrifying bacteria were immobilized in the above experiment and supplying nitrogen gas instead of an ethanol solution in a tube of the carrier. In this case, the amount of nitric acid decreases due to the organic matter remaining in the cells at the time of immobilization, but does not decrease thereafter. On the other hand, when hydrogen gas was supplied instead of nitrogen gas as shown in FIG. 6B, the amount of nitrate nitrogen decreased over time. When hydrogen is used as the energy source for the cells, unlike when using organic substances such as alcohol,
Since it has little effect on the human body, it can be used for treatment of drinking water used as drinking water, treatment of groundwater, and the like. Further, since there is no need to dissolve in water without leakage of hydrogen gas, it is effective in terms of safety and cost.

【0027】上記の結果からわかるように、本発明のバ
イオリアクターによれば、菌体のエネルギー源としてア
ルコールのほか、水素ガスや、また硫黄化合物など、任
意のエネルギー源物質が使用できる。なお、エネルギー
源物質として水素を使用する場合は、水素ガス透過性の
プラスチックチューブ等を使用し、その外周面に固定化
担体層を形成するなどの方法により、不必要にガスが処
理系外に漏出するのを防止するなどの手段を用いるとよ
い。これらの結果から、本発明のチューブ状固定化担体
は、処理コストの低減とともに、硝化槽、脱窒槽の一体
化および再曝気槽が不要になるため、システムの小型
化、効率化に極めて有効である。
As can be seen from the above results, according to the bioreactor of the present invention, any energy source material such as hydrogen gas and sulfur compounds can be used as the energy source of the cells in addition to alcohol. When hydrogen is used as the energy source material, a gas is unnecessarily removed from the processing system by a method such as forming an immobilized carrier layer on an outer peripheral surface of the plastic tube using a hydrogen gas-permeable plastic tube or the like. It is advisable to use means such as preventing leakage. From these results, the tubular immobilized carrier of the present invention is extremely effective for reducing the size of the system and increasing the efficiency because the integration of the nitrification tank and the denitrification tank and the re-aeration tank are not required as well as the processing cost is reduced. is there.

【0028】上記実験例では直管状の固定化担体を示し
たが、以下に本発明バイオリアクターの応用例のいくつ
かを示す。 実施例1 図7は、チューブ状に形成した菌固定化担体21を支持
枠22で多数保持し、このチューブ状担体21内の通路
21aにエネルギー源物質Aを供給するようにしたもので
ある。ボイラーなどと同様の構造となし、ボイラーの熱
媒体の代わりにエネルギー源物質Aを使用し、チューブ
の外側に被処理液として使用できる。この場合、チュー
ブ内に被処理液を流し、チューブ外をエネルギー源物質
Aとすることもできる。なお、チューブ状の固定化担体
に代えて中空状の板状担体を同様に支持枠に固定して使
用することもできる。 実施例2 図8は、チューブ状固定化担体21をスパイラル(螺
旋)状とした例である。実施例1と同様に使用すること
ができる。
In the above experimental examples, a straight tubular immobilized carrier was shown, but some of the applications of the bioreactor of the present invention will be described below. Example 1 FIG. 7 shows that a large number of bacteria-immobilized carriers 21 formed in a tube shape are held by a support frame 22, and a passage in the tube-shaped carriers 21.
The energy source material A is supplied to 21a. It has a structure similar to that of a boiler or the like, and uses an energy source material A instead of the heat medium of the boiler, and can be used as a liquid to be treated outside the tube. In this case, the liquid to be treated may be flowed into the tube, and the outside of the tube may be used as the energy source material A. It should be noted that a hollow plate-shaped carrier can be similarly fixed to the support frame and used instead of the tubular immobilized carrier. Example 2 FIG. 8 shows an example in which the tubular immobilized carrier 21 is formed into a spiral shape. It can be used similarly to the first embodiment.

【0029】実施例3 図9は、一端が閉止されたチューブ状固定化担体21を
支持枠22に多数保持した例である。 実施例4 図10は、多数の平板状の固定化担体20を適当な間隔
で多数並列し、この平板状担体20の間に交互にエネル
ギー源物質Aと被処理液Bとを通すようにしたものの例
である。この場合、担体20間の間隔はすべて同じとす
る必要はなく、エネルギー源物質Aの通路を広くし、被
処理液B側を狭くするなど、任意に設定してよい。
Embodiment 3 FIG. 9 shows an example in which a large number of tubular immobilization carriers 21 having one end closed are held on a support frame 22. Example 4 FIG. 10 shows that a number of plate-shaped immobilization carriers 20 are arranged in parallel at appropriate intervals, and the energy source material A and the liquid to be treated B are alternately passed between the plate-shaped carriers 20. It is an example of things. In this case, the intervals between the carriers 20 do not need to be all the same, and may be set arbitrarily, such as making the passage of the energy source material A wider and narrowing the liquid B side to be treated.

【0030】実施例5 図11は、廃液処理管等の管体23の内部に、管体23
の直径方向に二分されるように平板状の固定化担体20
を配置した例で、担体20の一方の側にエネルギー源物
質A、他方の側に被処理液Bが流れるようにしたもので
ある。本例の場合も実施例4と同様に、一方の側の通路
を広くし他方の側を狭くするようにしてもよい。
Embodiment 5 FIG. 11 shows a pipe 23 inside a pipe 23 such as a waste liquid treatment pipe.
Immobilized carrier 20 in the form of a plate so as to be bisected in the diameter direction of
In this example, the energy source material A flows on one side of the carrier 20 and the liquid B to be processed flows on the other side. Also in the case of this example, similarly to the fourth embodiment, the passage on one side may be widened and the other side may be narrowed.

【0031】[0031]

【発明の効果】本発明のバイオリアクターは、固定化担
体内のアンモニア酸化菌と脱窒菌の数のバランス、およ
び固定化担体内の好気部分と嫌気部分の割合、菌濃度お
よび固定化担体層の厚さ、例えばチューブ状固定化担体
の場合のチューブの肉厚などの調整等、を適宜選択して
設定することによってより効率的に排水等を処理するこ
とができる。また、本発明のバイオリアクターを連続処
理槽として用いる場合には、処理槽内での滞留時間、循
環するエネルギー源物質の濃度、処理槽中の曝気量など
の処理条件も上記と同様に適宜選択して設定することに
よってより効率的に排水等を処理することができる。こ
のほか、固定化担体からの細菌の漏れ出しの防止や強度
を付与する目的で固定化担体の少なくとも排水などの被
処理液と接する側の表面に、細菌の活動を阻害しない薄
い樹脂層を形成してもよい。
According to the bioreactor of the present invention, the balance of the numbers of ammonia oxidizing bacteria and denitrifying bacteria in the immobilized carrier, the ratio of the aerobic and anaerobic portions in the immobilized carrier, the bacterial concentration and the immobilized carrier layer By appropriately selecting and setting the thickness of, for example, the thickness of the tube in the case of a tubular immobilized carrier, wastewater and the like can be treated more efficiently. When the bioreactor of the present invention is used as a continuous treatment tank, treatment conditions such as the residence time in the treatment tank, the concentration of the circulating energy source substance, and the amount of aeration in the treatment tank are appropriately selected in the same manner as described above. By setting as such, wastewater and the like can be treated more efficiently. In addition, a thin resin layer that does not inhibit bacterial activity is formed on at least the surface of the immobilization carrier that contacts the liquid to be treated, such as drainage, in order to prevent leakage of bacteria from the immobilization carrier and to provide strength. May be.

【0032】固定化担体を膜状、シート状またはチュー
ブ状に形成する場合、固定化担体のみで形成するほか
に、金属またはプラスチック製の適当なフレーム、例え
ば格子状やハニカム(honeycomb )状のフレームの隙間
に形成することによって所定の大きさのものとすること
ができる。本発明は、被処理液中の窒素除去を主体とし
て説明したが、種々の微生物を用いて同様なバイオリア
クターとすることによって、エネルギー源物質に影響さ
れることなく被処理液中の成分を除去することができる
ほか、被処理液中の特定の微生物の成育に必要な物質を
放出する微生物を使用することによって、被処理液中の
特定の微生物を増殖させたり特定の成分を増加させるこ
ともできる。
When the immobilized carrier is formed into a film, a sheet or a tube, an appropriate frame made of metal or plastic, such as a lattice or honeycomb frame, may be used in addition to the immobilized carrier. A predetermined size can be obtained by forming in the gap of. Although the present invention has been described mainly on the removal of nitrogen from the liquid to be treated, the components in the liquid to be treated can be removed without being affected by the energy source material by using a similar bioreactor using various microorganisms. In addition to the use of microorganisms that release substances necessary for the growth of specific microorganisms in the liquid to be treated, it is also possible to grow specific microorganisms and increase specific components in the liquid to be treated. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】膜状固定化担体用の実験装置の模式図である。FIG. 1 is a schematic view of an experimental device for a film-like immobilized carrier.

【図2】チューブ状固定化担体用の実験装置の模式図で
ある。
FIG. 2 is a schematic view of an experimental device for a tubular immobilized carrier.

【図3】膜状固定化担体のアンモニアおよび亜硝酸処理
効果を示すグラフである。
FIG. 3 is a graph showing the effects of treating a membrane-shaped immobilization carrier with ammonia and nitrite.

【図4】チューブ状固定化担体のアンモニアおよび亜硝
酸処理効果を示すグラフである。
FIG. 4 is a graph showing the effects of treating a tubular immobilized carrier with ammonia and nitrite.

【図5】実験培地中のTOC濃度を示すグラフである。FIG. 5 is a graph showing the TOC concentration in the experimental medium.

【図6】水素ガスをエネルギー源として使用したときの
チューブ状固定化担体の硝酸態窒素の除去効果を示すグ
ラフである。
FIG. 6 is a graph showing the nitrate nitrogen removal effect of a tubular immobilization carrier when hydrogen gas is used as an energy source.

【図7】本発明のバイオリアクターの一例を示す側面図
である。
FIG. 7 is a side view showing an example of the bioreactor of the present invention.

【図8】チューブ状固定化担体の一使用例を示す側面図
である。
FIG. 8 is a side view showing an example of use of a tubular immobilized carrier.

【図9】チューブ状固定化担体の他の使用例を示す側面
図である。
FIG. 9 is a side view showing another example of use of the tubular immobilized carrier.

【図10】平板状固定化担体の一使用例を示す斜視図で
ある。
FIG. 10 is a perspective view showing an example of use of a flat immobilized carrier.

【図11】平板状固定化担体の他の使用例を示す斜視図
である。
FIG. 11 is a perspective view showing another example of use of the flat immobilized carrier.

【符号の説明】[Explanation of symbols]

1 実験槽 2 水浴 3 実験培地 4 エアーポンプ 5 エアーストーン 7 スターラー 8 攪拌翼 10 膜状固定化担体 11 チューブ状固定化担体 11a シリコーンチューブ 12 エタノール溶液 13 循環ポンプ 20 平板状固定化担体 21 チューブ状固定化担体 22 支持枠 23 管体 DESCRIPTION OF SYMBOLS 1 Experimental tank 2 Water bath 3 Experimental medium 4 Air pump 5 Air stone 7 Stirrer 8 Stirrer blade 10 Membrane immobilization support 11 Tubular immobilization support 11a Silicone tube 12 Ethanol solution 13 Circulation pump 20 Flat immobilization support 21 Tubular immobilization Carrier 22 support frame 23 tube

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 合成高分子、天然高分子等の微生物を包
埋し得る担体に被処理液中の目的とする成分の除去等に
有効な微生物と該微生物が産生する物質を酸化または還
元する微生物をそれぞれ1種または2種以上固定化した
固定化担体の一面に被処理液を接触させ他面に該微生物
のエネルギー源物質を接触させるようにしたことを特徴
とするバイオリアクター。
Claims: 1. Encloses microorganisms such as synthetic polymers and natural polymers.
A microorganism that is effective for removing a target component in the liquid to be treated and a substance produced by the microorganism are oxidized or converted into a buried carrier.
Bioreactor, characterized in that the source is microorganisms so as to contact the energy source material of the microorganism on the other surface is brought into contact with the liquid to be treated on one surface of one or more kinds on immobilizes the immobilization carrier, respectively .
【請求項2】 合成高分子、天然高分子等の担体に目的
とする成分の除去等に有効な微生物としてアンモニア酸
化菌、脱窒菌等の被処理液中の窒素または窒素成分の除
去に有効な微生物の2種以上を固定化し、この固定化担
体の一面に被処理液を接触させ他面に該微生物のエネル
ギー源物質を接触させて窒素または窒素成分を除去する
ようにしたことを特徴とする請求項1記載のバイオリア
クター。
2. A microorganism effective for removing a target component from a carrier such as a synthetic polymer or a natural polymer is effective for removing nitrogen or a nitrogen component in a liquid to be treated such as ammonia oxidizing bacteria and denitrifying bacteria. Two or more kinds of microorganisms are immobilized, and a liquid to be treated is brought into contact with one surface of the immobilized carrier, and an energy source substance of the microorganism is brought into contact with the other surface to remove nitrogen or a nitrogen component. The bioreactor according to claim 1.
【請求項3】 窒素または窒素成分の除去に有効な微生
物としてアンモニア酸化菌脱窒菌を固定化した固定化
担体の一面に被処理液を接触させ他面に菌体のエネルギ
ー源物質を接触させるようにしたことを特徴とする請求
項2記載のバイオリアクター。
3. A liquid to be treated is brought into contact with one surface of an immobilization carrier on which ammonium oxidizing bacteria and denitrifying bacteria are immobilized as microorganisms effective for removing nitrogen or nitrogen components, and the other surface is brought into contact with a cell energy source material. The bioreactor according to claim 2, wherein:
【請求項4】 更に亜硝酸酸化菌を固定化したことを特
徴とする請求項2記載のバイオリアクター。
4. The bioreactor according to claim 2, wherein nitrite oxidizing bacteria are further immobilized.
【請求項5】 アンモニア酸化菌がNitrosomo
nas europaea IFO−14298、脱窒
菌がParacoccus denitrifican
s JCM−6892であることを特徴とする請求項2
記載のバイオリアクター。
5. The method according to claim 5, wherein the ammonia oxidizing bacterium is Nitrosomo.
nas europaea IFO-14298, denitrifying bacteria Paracoccus denitrifican
s JCM-6892.
The described bioreactor.
【請求項6】 担体が、コラーゲン、フィブリン、アル
ブミン、カゼイン、セルロースファイバー、寒天、アガ
ロース等の天然高分子、ポリアクリルアミド、ポリ−2
−ヒドロキシエチルメタクリル酸、ポリビニルクロリ
ド、ポリスチレン、ポリウレタン、光硬化性樹脂(ポリ
ビニルアルコール誘導体、ポリエチレングリコール誘導
体等)の合成高分子、またはこれらの複合体であること
を特徴とする請求項1ないし3のいずれか1項記載のバ
イオリアクター。
6. The carrier is a natural polymer such as collagen, fibrin, albumin, casein, cellulose fiber, agar, agarose, polyacrylamide, or poly-2.
4. A synthetic polymer of hydroxyethyl methacrylic acid, polyvinyl chloride, polystyrene, polyurethane, a photocurable resin (polyvinyl alcohol derivative, polyethylene glycol derivative, etc.), or a complex thereof. A bioreactor according to any one of the preceding claims.
【請求項7】 固定化担体の形状が、チューブ状、プレ
ート状またはフィルム状であることを特徴とする請求項
1ないし3のいずれか1項記載のバイオリアクター。
7. The bioreactor according to claim 1, wherein the shape of the immobilized carrier is a tube shape, a plate shape, or a film shape.
【請求項8】 チューブ状に成形した菌固定化担体の中
空部に、エタノール、水素ガス等の液体または気体状の
エネルギー源物質を流通せしめるようにしたことを特徴
とする請求項7項記載の窒素除去用バイオリアクター。
8. The method according to claim 7, wherein a liquid or gaseous energy source material such as ethanol or hydrogen gas is allowed to flow through the hollow portion of the tube-shaped bacteria-immobilized carrier. Bioreactor for nitrogen removal.
【請求項9】 箱体または樋状などの一面が開放した容
器の開放面に、合成高分子、天然高分子等の微生物を包
埋し得る担体に被処理液中の目的とする成分の除去等に
有効な微生物と該微生物が産生する物質を酸化または還
元する微生物をそれぞれ1種または2種以上固定化した
固定化担体の層を形成し、該固定化担体の層の裏面の容
器内の空間部にエタノール、水素ガス等の液体または気
体状のエネルギー源物質を流通せしめるようにしたこと
を特徴とするバイオリアクター。
9. An open surface of a container, such as a box or a trough, having an open surface, containing microorganisms such as synthetic polymers and natural polymers.
A microorganism that is effective for removing a target component in the liquid to be treated and a substance produced by the microorganism are oxidized or converted into a buried carrier.
Forming a layer of immobilization pellets based on microorganisms was Joka on one or two or more kinds solid respectively, ethanol space in the container on the back surface of the layer of the immobilization carrier, liquid or gaseous such as hydrogen gas A bioreactor characterized in that an energy source material is distributed.
【請求項10】 箱体または筒体など郭成体の内部を、
合成高分子、天然高分子等の微生物を包埋し得る担体に
アンモニア酸化菌脱窒菌等の対となって被処理液中の
特定の成分の除去等に有効な微生物をそれぞれ1種また
は2種以上固定化した固定化担体の層で2または2以上
に仕切り、該固定化担体の層の一方の側に被処理液を流
通させ他方の側に菌体のエネルギー源物質を流通させる
ようにしたことを特徴とするバイオリアクター。
10. The inside of a sectioned body such as a box or a cylinder,
Synthetic polymers, or natural polymers such as microbial carriers that may be embedded such as ammonia-oxidizing bacteria and denitrifying bacteria pairs and turned by a valid microorganisms such as removal of a particular component in the liquid to be treated, respectively 1 or 2 partition into two or more with a layer of immobilized carrier obtained by the immobilization or more kinds, circulating the energy source material in the cells into the side of the other by flowing liquid to be treated on one side of the layer of the immobilization support A bioreactor characterized in that:
【請求項11】 合成高分子、天然高分子等の微生物を
包埋し得る担体に被処理液中の目的とする成分の除去等
に有効な微生物と該微生物が産生する物質を酸化または
還元する微生物をそれぞれ1種または2種以上固定化
し、この固定化担体の一面に被処理液を接触させ他面に
該微生物のエネルギー源物質を接触させることを特徴と
する被処理液中の特定成分の処理方法。
11. A microorganism such as a synthetic polymer or a natural polymer.
The material object effective in removing such components to microorganisms and microorganism produced by a liquid to be processed to a carrier that may be embedded oxide or
Reducing respectively on one or two or more kinds solid a microorganism Teikashi, a liquid to be processed which comprises contacting an energy source substance of the microorganism on the other surface is brought into contact with the liquid to be treated on one surface of the immobilizing carrier Of specific components.
【請求項12】 合成高分子、天然高分子等の担体に目
的とする成分の除去等に有効な微生物としてアンモニア
酸化菌脱窒菌等の対となって被処理液中の窒素または
窒素成分の除去に有効な微生物のそれぞれを1種または
2種以上固定化し、この固定化担体の一面に被処理液を
接触させ他面に該微生物のエネルギー源物質を接触させ
て被処理液中の窒素を除去することを特徴とする請求項
11記載の処理方法。
12. synthetic polymers, nitrogen or nitrogen component of paired ammonia-oxidizing bacteria and denitrifying bacteria such as effective microorganisms such as removal of the component of interest on a carrier natural polymer such as a liquid to be processed each one or more kinds on a solid Teikashi effective microbial removal, of the liquid to be treated a liquid to be processed by contacting an energy source substance of the microorganism on the other surface is contacted to one surface of the immobilizing carrier The processing method according to claim 11, wherein nitrogen is removed.
【請求項13】 固定化担体の他面に接触さる微生物の
エネルギー源物質を加温または冷却して所望の温度に調
整して接触させることを特徴とする請求項11記載の処
理方法。
13. The treatment method according to claim 11, wherein the energy source substance of the microorganism contacting the other surface of the immobilized carrier is heated or cooled to a desired temperature and brought into contact therewith.
JP7176757A 1994-12-24 1995-06-20 Bioreactor Expired - Fee Related JP2887737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7176757A JP2887737B2 (en) 1994-12-24 1995-06-20 Bioreactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-335924 1994-12-24
JP33592494 1994-12-24
JP7176757A JP2887737B2 (en) 1994-12-24 1995-06-20 Bioreactor

Publications (2)

Publication Number Publication Date
JPH08224076A JPH08224076A (en) 1996-09-03
JP2887737B2 true JP2887737B2 (en) 1999-04-26

Family

ID=26497546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7176757A Expired - Fee Related JP2887737B2 (en) 1994-12-24 1995-06-20 Bioreactor

Country Status (1)

Country Link
JP (1) JP2887737B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143706A (en) * 2011-01-12 2012-08-02 Central Research Institute Of Electric Power Industry Electron donor supplying apparatus and denitrification bioreactor
US8685733B2 (en) 2007-05-11 2014-04-01 Dai Nippon Printing Co., Ltd. Cell sheet having good dimensional stability, method for production thereof, and cell culture carrier for use in the method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298562B2 (en) 1999-05-31 2002-07-02 松下電器産業株式会社 Denitrification accelerator and water treatment method using this denitrification accelerator
US8603805B2 (en) 2005-04-22 2013-12-10 Hyclone Laboratories, Inc. Gas spargers and related container systems
WO2006135028A1 (en) * 2005-06-15 2006-12-21 Central Research Institute Of Electric Power Industry Method of feeding microbial activity controlling substance, apparatus therefor, and making use of the same, method of environmental cleanup and bioreactor
JP4734182B2 (en) * 2005-06-15 2011-07-27 財団法人電力中央研究所 Bioreactor and method for decomposing and removing ammonia gas using the bioreactor
JP4864444B2 (en) * 2005-12-14 2012-02-01 財団法人電力中央研究所 Bioreactor
JP5165866B2 (en) * 2006-07-24 2013-03-21 一般財団法人電力中央研究所 Method and apparatus for supplying electron donor to microorganism and bioreactor using the same
KR100815469B1 (en) * 2007-03-08 2008-03-20 인하대학교 산학협력단 Extractor for meiofaunal organisms in sediments using ultra fine bubble generator
JP5456401B2 (en) * 2009-07-27 2014-03-26 一般財団法人電力中央研究所 Wastewater treatment method and system
US9376655B2 (en) 2011-09-29 2016-06-28 Life Technologies Corporation Filter systems for separating microcarriers from cell culture solutions
EP2760571B1 (en) 2011-09-30 2015-12-30 Life Technologies Corporation Container with film sparger
US9079690B1 (en) 2014-06-26 2015-07-14 Advanced Scientifics, Inc. Freezer bag, storage system, and method of freezing
CN104045170B (en) * 2014-07-07 2016-03-02 中国科学院重庆绿色智能技术研究院 A kind of waste disposal plant printing biologic packing material based on 3D
US10589197B2 (en) 2016-12-01 2020-03-17 Life Technologies Corporation Microcarrier filter bag assemblies and methods of use
KR20220059090A (en) * 2020-11-02 2022-05-10 경기대학교 산학협력단 Immobilization method of bacteria and bacterial culture media for bacteria activation in concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8685733B2 (en) 2007-05-11 2014-04-01 Dai Nippon Printing Co., Ltd. Cell sheet having good dimensional stability, method for production thereof, and cell culture carrier for use in the method
JP2012143706A (en) * 2011-01-12 2012-08-02 Central Research Institute Of Electric Power Industry Electron donor supplying apparatus and denitrification bioreactor

Also Published As

Publication number Publication date
JPH08224076A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
JP2887737B2 (en) Bioreactor
Rostron et al. Nitrification of high strength ammonia wastewaters: comparative study of immobilisation media
Chen et al. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms
Feng et al. Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors
JP5150993B2 (en) Denitrification method and apparatus
Chen et al. Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface
Gupta et al. Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBC biofilm
JP5324269B2 (en) Waste water treatment method and waste water treatment apparatus
JP4784873B2 (en) Anaerobic ammonia oxidation treatment method and apparatus
Hill et al. A comparative study of immobilized nitrifying and co-immobilized nitrifying and denitrifying bacteria for ammonia removal from sludge digester supernatant
KR101935093B1 (en) Selective Microorganism Immobilization Support
Morita et al. Nitrogen-removal bioreactor capable of simultaneous nitrification and denitrification for application to industrial wastewater treatment
JP5098183B2 (en) Waste water treatment method and apparatus
JP2001170684A (en) Ammonia-containing waste water treatment method and device therefor
JP4600817B2 (en) Method for treating ammonia-containing water
Garrido et al. Nitrous oxide production by nitrifying biofilms in a biofilm airlift suspension reactor
JP2003053385A (en) Biological denitrification equipment
Hagedorn-Olsen et al. Oxygen reduces denitrification in biofilm reactors
Catalan-Sakairi et al. Nitrification performance of marine nitrifiers immobilized in polyester-and macro-porous cellulose carriers
Lei et al. The short-term effects of temperature and free ammonia on ammonium oxidization in granular and floccular nitrifying system
JP3303665B2 (en) Nitrification / denitrification method and apparatus
KR100483421B1 (en) Wastewater treatment method using radial rotating biological contactors
JP4600816B2 (en) Method for treating ammonia-containing water
Liu et al. Carbon membrane-aerated biofilm reactor for synthetic wastewater treatment
Nakano et al. Improved simultaneous nitrification and denitrification in a single reactor by using two different immobilization carriers with specific oxygen transfer characteristics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees