JP4600816B2 - Method for treating ammonia-containing water - Google Patents

Method for treating ammonia-containing water Download PDF

Info

Publication number
JP4600816B2
JP4600816B2 JP2005071910A JP2005071910A JP4600816B2 JP 4600816 B2 JP4600816 B2 JP 4600816B2 JP 2005071910 A JP2005071910 A JP 2005071910A JP 2005071910 A JP2005071910 A JP 2005071910A JP 4600816 B2 JP4600816 B2 JP 4600816B2
Authority
JP
Japan
Prior art keywords
ammonia
anaerobic
oxidizing bacteria
denitrification
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005071910A
Other languages
Japanese (ja)
Other versions
JP2006247623A (en
Inventor
和一 井坂
立夫 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2005071910A priority Critical patent/JP4600816B2/en
Publication of JP2006247623A publication Critical patent/JP2006247623A/en
Application granted granted Critical
Publication of JP4600816B2 publication Critical patent/JP4600816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明はアンモニア含有水の処理方法に係り、特にアンモニア含有水を生物学的に脱窒処理する方法に関する。   The present invention relates to a method for treating ammonia-containing water, and more particularly to a method for biologically denitrifying ammonia-containing water.

アンモニア含有水を生物学的に脱窒処理する方法は周知である。最も一般的な方法は、アンモニアを硝化細菌による好気的な硝化反応によって亜硝酸や硝酸に酸化する。次いで亜硝酸や硝酸を脱窒菌による嫌気的な脱窒反応によって窒素ガスにする。脱窒菌は従属栄養性であるため脱窒反応には有機物が必要であり、通常、総窒素濃度に対して3倍程度の有機物を添加している。この従来方法は上記したように、硝化反応のために多量の酸素と、脱窒反応のために多量の有機物を必要とする点で、処理コストが高くなることが問題点として指摘されている。   Methods for biologically denitrifying ammonia-containing water are well known. The most common method oxidizes ammonia to nitrite or nitric acid by an aerobic nitrification reaction by nitrifying bacteria. Next, nitrous acid or nitric acid is converted to nitrogen gas by an anaerobic denitrification reaction by denitrifying bacteria. Since denitrifying bacteria are heterotrophic, organic matter is necessary for the denitrification reaction, and usually about three times as much organic matter as the total nitrogen concentration is added. As described above, this conventional method has been pointed out as a problem in that it requires a large amount of oxygen for the nitrification reaction and a large amount of organic matter for the denitrification reaction.

最近では生物学的に脱窒処理を効率よく安価に行うために、嫌気性アンモニア酸化法が検討されている。この方法はアンモニアの一部を例えば化1に示した硝化反応によって亜硝酸に変換する。次に、この残りのアンモニアと生成した亜硝酸とを嫌気性アンモニア酸化細菌により化2に示した反応によって脱窒する。

Figure 0004600816
Figure 0004600816
Recently, an anaerobic ammonia oxidation method has been studied in order to biologically perform denitrification treatment efficiently and inexpensively. In this method, a part of ammonia is converted into nitrous acid by the nitrification reaction shown in Chemical Formula 1, for example. Next, the remaining ammonia and the produced nitrous acid are denitrified by the reaction shown in Chemical Formula 2 by anaerobic ammonia oxidizing bacteria.

Figure 0004600816
Figure 0004600816

この方法ではアンモニアの一部のみを亜硝酸にするので、硝化反応に必要な酸素量を大幅に低減できる。また、嫌気性アンモニア酸化細菌は独立栄養性であるため、脱窒反応に際して有機物を必要としない。このため、アンモニア含有水を安価に脱窒処理できるといわれている(例えば、特許文献1及び特許文献2参照)。
特開2001−170684号公報 特開2004−275997号公報
In this method, only a part of the ammonia is converted to nitrous acid, so that the amount of oxygen necessary for the nitrification reaction can be greatly reduced. Moreover, since anaerobic ammonia oxidizing bacteria are autotrophic, no organic matter is required for the denitrification reaction. For this reason, it is said that ammonia-containing water can be denitrified at low cost (see, for example, Patent Document 1 and Patent Document 2).
JP 2001-170684 A JP 2004-275997 A

しかしながら、上記の嫌気性アンモニア酸化法では、化2に示したように嫌気性アンモニア酸化細菌における脱窒反応のアンモニアと亜硝酸の反応モル比が1:1.31である。したがって、この反応モル比が維持できないと、アンモニア又は亜硝酸のいずれか一方が過剰となり、反応後の処理水に残存して処理性能の低下を招く。前記特許文献1及び特許文献2にはこのような技術課題に対処するための方策が記載されているが、処理が複雑であり現実的な方法とはいえない。   However, in the above-described anaerobic ammonia oxidation method, as shown in Chemical Formula 2, the reaction molar ratio of ammonia and nitrous acid in the denitrification reaction in the anaerobic ammonia oxidizing bacteria is 1: 1.31. Therefore, if this reaction molar ratio cannot be maintained, either ammonia or nitrous acid becomes excessive and remains in the treated water after the reaction, resulting in a reduction in treatment performance. Although Patent Document 1 and Patent Document 2 describe measures for dealing with such a technical problem, the processing is complicated and cannot be said to be a practical method.

化1に示した硝化反応においてもアンモニアのすべてを均一に亜硝酸にすることは至難であり、現実の硝化反応槽では未反応のアンモニアや硝酸が硝化液中にかなりの割合で混入する。すなわち、未反応のアンモニアを少なくするために硝化処理を十分にすると硝化液中の硝酸が多くなる。逆に硝酸の生成を少なくするために硝化処理の程度を抑えると硝化液中のアンモニアが多くなる。このため、上記した反応モル比のバランスが不安定となり、嫌気性アンモニア酸化法の実用化をより一層、困難にしている。   Even in the nitrification reaction shown in Chemical Formula 1, it is extremely difficult to uniformly convert all of ammonia into nitrous acid. In an actual nitrification reaction tank, unreacted ammonia and nitric acid are mixed in the nitrification solution in a considerable proportion. That is, if sufficient nitrification treatment is performed to reduce unreacted ammonia, nitric acid in the nitrification solution increases. Conversely, if the degree of nitrification treatment is suppressed to reduce the production of nitric acid, the amount of ammonia in the nitrification solution increases. For this reason, the balance of the above-mentioned reaction molar ratio becomes unstable, making the practical use of the anaerobic ammonia oxidation method even more difficult.

また、嫌気性アンモニア酸化法は化2で明らかなように、反応後の処理液に硝酸が残る処理法である。このため、脱窒処理を十分に遂行するためには、従来の一般的な方法と同様に、反応後の処理液をさらに従属栄養性の脱窒菌によって脱窒しなければならないという問題点があった。
本発明の目的は上記従来技術の問題点を改善し、多量の酸素や有機物を必要とせず、かつ安定した処理が可能であり、反応後の処理液をさらに従属栄養性の脱窒菌によって脱窒する必要がないアンモニア含有水の処理方法を提供することにある。
The anaerobic ammonia oxidation method is a treatment method in which nitric acid remains in the treated solution after the reaction, as apparent from Chemical Formula 2. Therefore, in order to sufficiently perform the denitrification treatment, there is a problem that the treated solution after the reaction must be further denitrified by heterotrophic denitrification bacteria, as in the conventional general method. It was.
The object of the present invention is to improve the above-mentioned problems of the prior art, do not require a large amount of oxygen and organic matter, and can be stably treated. The treated solution after the reaction is further denitrified by heterotrophic denitrifying bacteria. An object of the present invention is to provide a method for treating ammonia-containing water that does not need to be performed.

前記目的を達成するために、本発明に係るアンモニア含有水の処理方法は、嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌とを脱窒槽に保持し、この脱窒槽に供給したアンモニア含有水と硝化液とを嫌気条件下で前記嫌気性アンモニア酸化細菌及び嫌気性亜硝酸酸化細菌と接触させることを特徴とする。   In order to achieve the above object, the method for treating ammonia-containing water according to the present invention comprises anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria held in a denitrification tank, and the ammonia-containing water supplied to the denitrification tank, A nitrifying solution is contacted with the anaerobic ammonia oxidizing bacteria and anaerobic nitrite oxidizing bacteria under anaerobic conditions.

上記の方法においては、前記脱窒槽に保持する嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌の合計菌数を10cells/mL以上にすることが望ましい。また、前記脱窒槽に保持する嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌との菌数比を10以下にすることが望ましい。さらに、前記脱窒槽に添加・流入される有機炭素量と総窒素量との比が0.1以上となるように前記脱窒槽に有機物を添加することが望ましい。 In the above method, the total number of anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria held in the denitrification tank is desirably 10 5 cells / mL or more. Further, it is desirable that the ratio of the number of anaerobic ammonia oxidizing bacteria and anaerobic nitrite oxidizing bacteria held in the denitrification tank is 10 or less. Furthermore, it is desirable to add an organic substance to the denitrification tank so that the ratio of the amount of organic carbon added to and introduced into the denitrification tank and the total nitrogen amount is 0.1 or more.

本発明に係る嫌気性亜硝酸酸化細菌は本発明者がアンモニア含有水の硝化脱窒に関する研究を実施する過程でその存在に初めて気付いた細菌であり、亜硝酸を主成分とした培養液によって培養することができる。この嫌気性亜硝酸酸化細菌は、前記従来技術の項で説明した嫌気性アンモニア酸化細菌と同様な脱窒機能を有しており独立栄養性に近いため、脱窒反応に際して有機物をほとんど必要としない。かつ、この嫌気性亜硝酸酸化細菌はアンモニアが共存しない場合でも亜硝酸を酸化して硝酸にする機能を有している。かつ、従属栄養性の還元作用があり、有機物の存在下で硝酸を還元して亜硝酸にする機能を有している。   The anaerobic nitrite-oxidizing bacterium according to the present invention is a bacterium that was first noticed by the inventor in the course of conducting research on the nitrification and denitrification of ammonia-containing water. can do. This anaerobic nitrite-oxidizing bacterium has the same denitrification function as the anaerobic ammonia-oxidizing bacterium described in the above-mentioned section of the prior art, and is almost autotrophic. Therefore, almost no organic matter is required for the denitrification reaction. . In addition, this anaerobic nitrite-oxidizing bacterium has a function of oxidizing nitrite into nitric acid even in the absence of ammonia. In addition, it has a heterotrophic reducing action and has a function of reducing nitric acid to nitrite in the presence of organic matter.

本発明のアンモニア含有水の処理方法によれば、アンモニア含有水の全量を硝化する必要がないので、硝化反応に必要な酸素量を大幅に低減できる。また、脱窒槽における嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌による脱窒反応は独立栄養性に近い反応であるため、多量の有機物を必要としない。このため、アンモニア含有水を安価に脱窒処理できる。さらに、脱窒槽では流入する硝化液中の硝酸や脱窒反応にともなって生成される硝酸が、少量の有機物の存在下で嫌気性亜硝酸酸化細菌の従属栄養性の還元作用により亜硝酸に変換される。このため、硝化液中の硝酸濃度が高い場合や硝酸濃度の変動幅が大きい場合でも格別の悪影響を受けることなく安定した脱窒処理を行うことができる。加えて、アンモニア含有水中のアンモニアに起因する窒素はそのほとんどが脱窒槽において窒素ガスに変換される。したがって、処理水に残存する硝酸は極めて低濃度であり、従属栄養性の脱窒菌によって脱窒する必要はない。   According to the method for treating ammonia-containing water of the present invention, since it is not necessary to nitrify the entire amount of ammonia-containing water, the amount of oxygen necessary for the nitrification reaction can be greatly reduced. Moreover, since the denitrification reaction by anaerobic ammonia oxidizing bacteria and anaerobic nitrite oxidizing bacteria in the denitrification tank is a reaction close to autotroph, a large amount of organic substances is not required. For this reason, it is possible to denitrify the ammonia-containing water at a low cost. Furthermore, in the denitrification tank, the nitric acid in the nitrifying solution flowing in and the nitric acid produced by the denitrification reaction are converted to nitrite in the presence of a small amount of organic substances by the heterotrophic reduction action of anaerobic nitrite-oxidizing bacteria. Is done. For this reason, even when the nitric acid concentration in the nitrification solution is high or when the fluctuation range of the nitric acid concentration is large, stable denitrification treatment can be performed without being particularly adversely affected. In addition, most of the nitrogen resulting from ammonia in the ammonia-containing water is converted to nitrogen gas in the denitrification tank. Therefore, the nitric acid remaining in the treated water has a very low concentration and does not need to be denitrified by heterotrophic denitrifying bacteria.

図1は本発明に係るアンモニア含有水の処理方法の第1実施形態を示す装置系統図である。アンモニア含有水10の一部10aが硝化槽12に供給され、残部10bは脱窒槽14に供給される。硝化槽12には硝化細菌が固定化担体16などに担持された状態で保持されている。硝化槽12では供給されたアンモニア含有水10の一部10aが好気条件下で固定化担体16と接触することにより、含まれたアンモニアが硝化細菌による硝化作用によって亜硝酸や硝酸になる。この硝化槽12で処理された亜硝酸や硝酸を含む硝化液18は脱窒槽14に供給される。   FIG. 1 is an apparatus system diagram showing a first embodiment of a method for treating ammonia-containing water according to the present invention. A part 10 a of the ammonia-containing water 10 is supplied to the nitrification tank 12, and the remaining part 10 b is supplied to the denitrification tank 14. In the nitrification tank 12, nitrifying bacteria are held in a state of being supported on an immobilization carrier 16 or the like. In the nitrification tank 12, a part 10a of the supplied ammonia-containing water 10 comes into contact with the immobilization carrier 16 under aerobic conditions, so that the contained ammonia becomes nitrous acid or nitric acid by nitrification action by nitrifying bacteria. The nitrification liquid 18 containing nitrous acid and nitric acid treated in the nitrification tank 12 is supplied to the denitrification tank 14.

脱窒槽14には嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌が固定化担体20に担持された状態で高濃度に保持されている。嫌気性アンモニア酸化細菌や嫌気性亜硝酸酸化細菌は下水処理場の汚泥や嫌気硝化汚泥などから集積培養できる。すなわち、嫌気性アンモニア酸化細菌はこれらの汚泥に対し例えばアンモニア性窒素と亜硝酸性窒素の濃度比が約1:1.3で総窒素濃度が80mg/mLの合成水を窒素負荷0.3kg−N/m/日程度で連続的に接触させて嫌気培養すると、5ヶ月程度で菌数10cells/mLにまで集積培養することができる。また、嫌気性亜硝酸酸化細菌はこれらの汚泥に対し例えばアンモニア性窒素と亜硝酸性窒素の濃度比が約0.2:1で総窒素濃度が80mg/mLの合成水を窒素負荷0.3kg−N/m/日程度で連続的に接触させることによって嫌気培養すると、3ヶ月程度で菌数10cells/mLにまで集積培養することができる。 In the denitrification tank 14, anaerobic ammonia oxidizing bacteria and anaerobic nitrite oxidizing bacteria are held at a high concentration in a state where they are supported on the immobilization carrier 20. Anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria can be accumulated and cultivated from sludge in an sewage treatment plant or anaerobic nitrifying sludge. That is, anaerobic ammonia-oxidizing bacteria are prepared by adding synthetic water having a concentration ratio of ammonia nitrogen to nitrite nitrogen of about 1: 1.3 and a total nitrogen concentration of 80 mg / mL to these sludges. When anaerobic culture is carried out by continuously contacting at about N / m 3 / day, it can be cultured up to about 10 7 cells / mL in about 5 months. In addition, anaerobic nitrite-oxidizing bacteria, for example, contain synthetic water having a concentration ratio of ammonia nitrogen and nitrite nitrogen of about 0.2: 1 and a total nitrogen concentration of 80 mg / mL against these sludges. When anaerobic culture is carried out by continuous contact at about −N / m 3 / day, it is possible to culture up to about 10 8 cells / mL in about 3 months.

脱窒槽14に保持する嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌の合計菌数は後述の実験1で明らかなように10cells/mL以上にすることが望ましい。脱窒槽14の液相は酸素が殆んどない嫌気条件に維持され、図示しない攪拌手段によって固定化担体20は流動状態におかれる。脱窒槽14で処理を受けた処理水22は出口側から排出される。脱窒槽14の出口側にはスクリーン26が配設されている。このスクリーン26によって固定化担体20と処理水22を分離し、固定化担体20が出口側から流出しないようにしている。アンモニア含有水の残部10bと硝化液18は脱窒槽14内で一定時間、滞留する間に流動状態の固定化担体20と激しく混合、接触する。 The total number of anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria held in the denitrification tank 14 is desirably 10 5 cells / mL or more as will be apparent from Experiment 1 described later. The liquid phase of the denitrification tank 14 is maintained under anaerobic conditions with little oxygen, and the immobilization carrier 20 is put into a fluid state by a stirring means (not shown). The treated water 22 treated in the denitrification tank 14 is discharged from the outlet side. A screen 26 is disposed on the outlet side of the denitrification tank 14. The immobilization carrier 20 and the treated water 22 are separated by the screen 26 so that the immobilization carrier 20 does not flow out from the outlet side. The remaining portion 10b of the ammonia-containing water and the nitrification liquid 18 are vigorously mixed and contacted with the immobilized carrier 20 in a fluid state while staying in the denitrification tank 14 for a certain time.

嫌気性アンモニア酸化細菌や嫌気性亜硝酸酸化細菌を固定化担体20に担持させる方法には付着固定化と包括固定化の2つの方法を用いることができる。付着固定化は担体に嫌気性アンモニア酸化細菌や嫌気性亜硝酸酸化細菌を付着させる方法であり、担体としては球状,筒状,ひも状,ゲル状のものや不織布などが使われ、なるべく凹凸が多い材料を用いると菌が付着しやすく反応効率が向上する。包括固定化では上記の細菌と固定化材料(モノマー,プレポリマ)を混合した後に重合し、ゲルの内部に菌を包括固定化する。モノマー材料としてはアクリルアミド,メチレンビスアクリルアミド,トリアクリルフォルマールなどがよい。プレポリマ材料としてはポリエチレングリコールジアクリレートやポリエチレングリコールメタアクリレートがよく、その誘導体を用いることができる。形状は球状,角状,筒状,ひも状,不織布状で凹凸が多い包括担体が接触効率に優れており、反応効率がよい。   As a method for supporting anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria on the immobilization carrier 20, two methods of adhesion immobilization and entrapping immobilization can be used. Adhesion immobilization is a method of attaching anaerobic ammonia-oxidizing bacteria or anaerobic nitrite-oxidizing bacteria to the carrier. As the carrier, spherical, cylindrical, string-like, gel-like or non-woven fabrics are used, and as many irregularities as possible. When many materials are used, bacteria are likely to adhere and the reaction efficiency is improved. In entrapping immobilization, the bacteria and the immobilizing material (monomer, prepolymer) are mixed and then polymerized to entrapped and immobilize the bacteria inside the gel. As the monomer material, acrylamide, methylenebisacrylamide, triacryl formal and the like are preferable. The prepolymer material is preferably polyethylene glycol diacrylate or polyethylene glycol methacrylate, and derivatives thereof can be used. The shape is spherical, square, cylindrical, string-like, non-woven, and the entangled carrier with many irregularities has excellent contact efficiency and good reaction efficiency.

固定化担体としては嫌気性アンモニア酸化細菌や嫌気性亜硝酸酸化細菌の両方を固定化したものに限らない。すなわち、嫌気性アンモニア酸化細菌を固定化した担体と、嫌気性亜硝酸酸化細菌を固定化した担体とを別々に用意して、脱窒槽14内に投入してもよい。
なお、脱窒槽14内に嫌気性アンモニア酸化細菌や嫌気性亜硝酸酸化細菌を保持させる手段としては、上記の固定化担体に限らず、例えば嫌気性アンモニア酸化細菌や嫌気性亜硝酸酸化細菌を集積した汚泥がグラニュール状に自己造粒したものを用いるようにしてもよい。
The immobilization carrier is not limited to one in which both anaerobic ammonia oxidizing bacteria and anaerobic nitrite oxidizing bacteria are immobilized. That is, a carrier on which anaerobic ammonia-oxidizing bacteria are immobilized and a carrier on which anaerobic nitrite-oxidizing bacteria are immobilized may be separately prepared and put into the denitrification tank 14.
The means for retaining anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria in the denitrification tank 14 is not limited to the above-described immobilization carrier, and for example, anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria are accumulated. You may make it use what made the sludge self-granulated in the shape of a granule.

嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌はともに脱窒機能を有しており、前記化2で示したと同様の反応によってアンモニアと亜硝酸を窒素ガスと硝酸に変換する。これらの嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌は独立栄養性に近いため、脱窒反応に際して有機物を必要としない。脱窒槽14に供給されたアンモニア含有水10の残部10b中のアンモニアと硝化液18中の亜硝酸は、固定化担体20に担持された嫌気性アンモニア酸化細菌及び嫌気性亜硝酸酸化細菌と嫌気条件下で接触することによって、脱窒処理を受けて窒素ガスと硝酸に変換する。   Both anaerobic ammonia oxidizing bacteria and anaerobic nitrite oxidizing bacteria have a denitrification function, and ammonia and nitrous acid are converted into nitrogen gas and nitric acid by the same reaction as shown in Chemical Formula 2 above. Since these anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria are close to autotrophs, no organic matter is required for the denitrification reaction. The ammonia in the remaining portion 10b of the ammonia-containing water 10 supplied to the denitrification tank 14 and the nitrous acid in the nitrification solution 18 are anaerobic with the anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria carried on the immobilization carrier 20. By contacting under, it is denitrified and converted to nitrogen gas and nitric acid.

この脱窒槽14に保持された嫌気性亜硝酸酸化細菌は、上記の脱窒機能に加えて従属栄養性の還元作用があり、有機物の存在下で硝酸を還元して亜硝酸にする機能を有している。したがって、脱窒槽14内に適度の有機物が存在している場合には、上記脱窒処理によって生成した硝酸や硝化液18中に含まれていた硝酸が嫌気性亜硝酸酸化細菌の還元作用によって亜硝酸になる。そして、この還元された亜硝酸が、繰り返し脱窒処理を受けるので、脱窒槽14では硝酸濃度が極めて低い濃度に維持されることになり、原水であるアンモニア含有水10中のアンモニアに起因する窒素はそのほとんどが脱窒槽14において窒素ガスに変換される。このため、反応後の処理水22に残存する硝酸をさらに従属栄養性の脱窒菌によって脱窒する必要はない。   The anaerobic nitrite-oxidizing bacteria held in the denitrification tank 14 has a heterotrophic reducing action in addition to the above-described denitrification function, and has a function of reducing nitrate to nitrite in the presence of organic matter. is doing. Therefore, when moderate organic substances are present in the denitrification tank 14, the nitric acid produced by the denitrification treatment and the nitric acid contained in the nitrification solution 18 are sublimated by the reducing action of the anaerobic nitrite oxidizing bacteria. Become nitric acid. Then, since the reduced nitrous acid is repeatedly subjected to denitrification treatment, the nitric acid concentration is maintained at a very low concentration in the denitrification tank 14, and nitrogen resulting from ammonia in the ammonia-containing water 10 that is raw water Most of them are converted into nitrogen gas in the denitrification tank 14. For this reason, it is not necessary to denitrify the nitric acid remaining in the treated water 22 after the reaction by heterotrophic denitrifying bacteria.

なお、脱窒槽14内に流入するアンモニア含有水や硝化液が有機物をほとんど含んでおらず、前記嫌気性亜硝酸酸化細菌の還元作用が期待できない場合には適量の有機物24を脱窒槽14内に添加する。添加する有機物としてはメタノール,廃糖蜜,酢酸などがよい。後述の実験5で明らかなように脱窒槽に添加・流入される有機炭素量と総窒素量との比(C/N比)が0.1以上、好ましくは0.2〜0.5となるように有機物の添加量を調節することが望ましい。   Note that when the ammonia-containing water or nitrification liquid flowing into the denitrification tank 14 contains almost no organic matter and the reduction action of the anaerobic nitrite oxidizing bacteria cannot be expected, an appropriate amount of the organic matter 24 is put into the denitrification tank 14. Added. Methanol, waste molasses, acetic acid, etc. are good as organic substances to be added. As will be apparent from Experiment 5 to be described later, the ratio (C / N ratio) between the amount of organic carbon added to and introduced into the denitrification tank and the total nitrogen amount is 0.1 or more, preferably 0.2 to 0.5. It is desirable to adjust the amount of organic matter added.

上述のとおり、本実施形態のアンモニア含有水の処理方法によれば、アンモニア含有水の一部10aのみを硝化槽12に導き硝化するので、硝化反応に必要な酸素量を大幅に低減できる。また、脱窒槽14における嫌気性アンモニア酸化細菌及び嫌気性亜硝酸酸化細菌による脱窒は独立栄養性に近い反応であるため、多量の有機物を必要としない。このため、アンモニア含有水を安価に脱窒処理できる。さらに、脱窒槽14では流入する硝化液18中の硝酸や脱窒反応にともなって生成される硝酸が、少量の有機物の存在下で嫌気性亜硝酸酸化細菌の従属栄養性の還元作用により亜硝酸に変換される。このため、硝化槽12から供給される硝化液18中の硝酸濃度が高い場合や硝酸濃度の変動幅が大きい場合でも格別の悪影響を受けることなく安定した脱窒処理を行うことができる。したがって、硝化槽12及び脱窒槽14の運転管理が容易になる。加えて、アンモニア含有水10中のアンモニアに起因する窒素はそのほとんどが脱窒槽14において窒素ガスに変換される。したがって、処理水22に残存する硝酸は極めて低濃度であり、従属栄養性の脱窒菌によって脱窒する必要はない。   As described above, according to the method for treating ammonia-containing water of the present embodiment, only a part 10a of the ammonia-containing water is introduced into the nitrification tank 12 for nitrification, so that the amount of oxygen necessary for the nitrification reaction can be greatly reduced. Further, denitrification by anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria in the denitrification tank 14 is a reaction close to autotroph, and therefore does not require a large amount of organic matter. For this reason, it is possible to denitrify the ammonia-containing water at a low cost. Furthermore, in the denitrification tank 14, nitric acid in the nitrifying solution 18 flowing in or nitric acid produced by the denitrification reaction is converted into nitrite by the heterotrophic reduction action of anaerobic nitrite oxidizing bacteria in the presence of a small amount of organic matter. Is converted to For this reason, even when the concentration of nitric acid in the nitrification solution 18 supplied from the nitrification tank 12 is high or when the fluctuation range of the concentration of nitric acid is large, stable denitrification treatment can be performed without being particularly adversely affected. Therefore, operation management of the nitrification tank 12 and the denitrification tank 14 becomes easy. In addition, most of the nitrogen resulting from ammonia in the ammonia-containing water 10 is converted into nitrogen gas in the denitrification tank 14. Therefore, the nitric acid remaining in the treated water 22 has a very low concentration and does not need to be denitrified by heterotrophic denitrifying bacteria.

図2〜図8はそれぞれ本発明の他の実施形態を示す装置系統図である。これらの図において、図1や他図と同一の符号を付した要素は実質的同一であり、その説明を省略する。
図2に示した第2実施形態は硝化槽12が後段にあり、硝化液を前段の脱窒槽14に返送する。図3に示した第3実施形態はアンモニア含有水10に有機物が多い場合である。脱窒槽14の前段に従属栄養式脱窒槽30を設置し、この従属栄養式脱窒槽30に従属栄養性の脱窒菌を付着固定させた充填材32を充填している。硝化液18を従属栄養式脱窒槽30と脱窒槽14に分注することによって、脱窒槽14におけるC/N比を適正値にまで引き下げている。図4に示した第4実施形態もアンモニア含有水10に有機物が多い場合であり、後段の硝化槽12から返送する硝化液18を従属栄養式脱窒槽30と脱窒槽14に分注する。図5に示した第5実施形態では硝化細菌などを含む浮遊汚泥を脱窒槽14,硝化槽12,沈殿槽34の順に循環させ、沈殿汚泥を硝化液18とともに脱窒槽14に返送する。図6に示した第6実施形態ではアンモニア含有水10に有機物が多い場合に沈殿汚泥を硝化液18とともに前段の従属栄養式脱窒槽30と脱窒槽14とに分けて返送する。
2 to 8 are system diagrams showing other embodiments of the present invention. In these drawings, elements denoted by the same reference numerals as those in FIG. 1 and other drawings are substantially the same, and the description thereof is omitted.
In the second embodiment shown in FIG. 2, the nitrification tank 12 is in the rear stage, and the nitrification liquid is returned to the front-stage denitrification tank 14. The third embodiment shown in FIG. 3 is a case where the ammonia-containing water 10 contains a large amount of organic matter. A heterotrophic denitrification tank 30 is installed in the preceding stage of the denitrification tank 14, and the heterotrophic denitrification tank 30 is filled with a filler 32 in which heterotrophic denitrifying bacteria are adhered and fixed. By dispensing the nitrification liquid 18 into the heterotrophic denitrification tank 30 and the denitrification tank 14, the C / N ratio in the denitrification tank 14 is lowered to an appropriate value. The fourth embodiment shown in FIG. 4 is also a case where the ammonia-containing water 10 contains a large amount of organic matter, and the nitrification liquid 18 returned from the subsequent nitrification tank 12 is dispensed into the heterotrophic denitrification tank 30 and the denitrification tank 14. In the fifth embodiment shown in FIG. 5, floating sludge containing nitrifying bacteria and the like is circulated in the order of the denitrification tank 14, the nitrification tank 12, and the precipitation tank 34, and the precipitated sludge is returned to the denitrification tank 14 together with the nitrification liquid 18. In the sixth embodiment shown in FIG. 6, when the ammonia-containing water 10 contains a large amount of organic matter, the precipitated sludge is returned together with the nitrifying liquid 18 to the heterotrophic denitrification tank 30 and the denitrification tank 14 in the previous stage.

実験例
実験1
下水処理場の活性汚泥を種汚泥としてポリエチレングリコールジアクリレートで包括固定化した。この包括固定体を3mm角に成形し、包括固定化担体を得た。得られた担体を有効容量が1Lの培養槽に充填率が20%になるように充填した。この培養槽に合成水を嫌気条件下で連続通水し、嫌気性アンモニア酸化細菌を連続培養した。合成水はアンモニア性窒素(NH−N),亜硝酸性窒素(NO−N)の濃度比が1:1.3で総窒素(T−N)を80mg/L含有したものである。この合成水を培養槽における滞留時間,6時間(T−N負荷0.3kg−N/m/日)で通水した。1ヵ月後には脱窒反応の兆候がみられ、5ヶ月後には脱窒反応が十分かつ安定に進行することを確認した。
Experimental example Experiment 1
The activated sludge from the sewage treatment plant was used as seed sludge and included in polyethylene glycol diacrylate. This inclusive fixing body was formed into a 3 mm square to obtain an inclusive fixing carrier. The obtained carrier was filled in a culture tank having an effective volume of 1 L so that the filling rate was 20%. Synthetic water was continuously passed through the culture tank under anaerobic conditions, and anaerobic ammonia oxidizing bacteria were continuously cultured. Synthetic water has a concentration ratio of ammonia nitrogen (NH 4 -N) and nitrite nitrogen (NO 2 -N) of 1: 1.3 and contains 80 mg / L of total nitrogen (TN). This synthetic water was passed through the culture tank at a residence time of 6 hours (TN load 0.3 kg-N / m 3 / day). After 1 month, signs of denitrification reaction were observed, and after 5 months, it was confirmed that the denitrification reaction proceeded sufficiently and stably.

そこで、担体を培養槽から取り出して微粉砕し、微粉砕した担体を試料として、担体中の嫌気性アンモニア酸化細菌の菌数をFISH法によって計測した。すなわち、試料を超音波によって分散させた後に、AMX820プローブにより染色し、蛍光顕微鏡によってダイレクトカウントして菌数を求めた。その結果、微粉砕した担体試料中には、嫌気性アンモニア酸化細菌が菌数10cells/mLにまで集積培養されていることが判った。 Therefore, the carrier was taken out of the culture tank and pulverized, and the pulverized carrier was used as a sample, and the number of anaerobic ammonia-oxidizing bacteria in the carrier was measured by the FISH method. That is, after the sample was dispersed by ultrasonic waves, it was stained with an AMX820 probe and directly counted with a fluorescence microscope to obtain the number of bacteria. As a result, it was found that the anaerobic ammonia oxidizing bacteria were accumulated and cultivated up to 10 7 cells / mL in the finely ground carrier sample.

実験2
実験1と同様の包括固定化担体を有効容量が1Lの培養槽に充填率が20%になるように充填した。この培養槽に合成水を嫌気条件下で連続通水し、嫌気性亜硝酸酸化細菌を連続培養した。合成水はアンモニア性窒素と亜硝酸性窒素の濃度比が約0.2:1で総窒素濃度が80mg/mL含有したものである。この合成水を窒素負荷0.3kg−N/m/で通水した。1ヵ月後には処理水に硝酸の生成がみられ、3ヶ月後には処理水における硝酸の生成がほぼ100%に安定して進行することを確認した。
Experiment 2
The same entrapping immobilization support as in Experiment 1 was filled in a culture tank having an effective volume of 1 L so that the filling rate was 20%. Synthetic water was continuously passed through the culture tank under anaerobic conditions, and anaerobic nitrite oxidizing bacteria were continuously cultured. Synthetic water has a concentration ratio of ammonia nitrogen and nitrite nitrogen of about 0.2: 1 and a total nitrogen concentration of 80 mg / mL. This synthetic water was passed through with a nitrogen load of 0.3 kg-N / m 3 /. It was confirmed that nitric acid was generated in the treated water after one month, and that nitric acid in the treated water was stably progressed to almost 100% after three months.

そこで、担体を培養槽から取り出して微粉砕し、微粉砕した担体を試料として、担体中の嫌気性亜硝酸酸化細菌の菌数をMPN法によって計測した。MPN法の分析では微粉砕した担体を段階的に希釈した複数のサンプルを表1に示した培地を用いて1ヶ月間,培養した。この培養後の各サンプルをイオンクロマト装置によって分析し、硝酸を生成しているサンプルを陽性とすることによって、担体中の嫌気性亜硝酸酸化細菌の菌数を計測した。その結果、微粉砕した担体試料中には嫌気性亜硝酸酸化細菌が菌数10cells/mLにまで集積培養されていることが判った。

Figure 0004600816
Therefore, the carrier was taken out of the culture tank and pulverized, and the pulverized carrier was used as a sample, and the number of anaerobic nitrite oxidizing bacteria in the carrier was measured by the MPN method. In the analysis of the MPN method, a plurality of samples obtained by stepwise dilution of a finely pulverized carrier were cultured for 1 month using the medium shown in Table 1. Each sample after this culture was analyzed with an ion chromatograph, and the number of anaerobic nitrite-oxidizing bacteria in the carrier was counted by making the sample producing nitric acid positive. As a result, it was found that the anaerobic nitrite-oxidizing bacteria were accumulated and cultivated to a cell count of 10 8 cells / mL in the finely ground carrier sample.
Figure 0004600816

実験3
実験1及び実験2と同様の微粉砕した担体試料を用い、嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌との菌数比を一定の1:1とし合計菌数を変化させた回分実験を実施した。すなわち、合計菌数を変化させた各試験管内にT−N濃度が80mg/L(NH−N濃度,NO−N濃度,NO−N濃度の比が1:0.5:0.5)、有機炭素源としての酢酸ナトリウムが総窒素量とのC/N比で0.2となるように調整した試料液を注入した。そして、各試験管を嫌気状態で振とうし、試料液中のT−N濃度の経時変化から脱窒速度を求めた。
Experiment 3
Using the same finely pulverized carrier sample as in Experiment 1 and Experiment 2, a batch experiment was performed in which the total cell count was changed with a constant 1: 1 cell count ratio between anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria. Carried out. That is, in each test tube in which the total number of bacteria was changed, the TN concentration was 80 mg / L (ratio of NH 4 -N concentration, NO 2 -N concentration, NO 3 -N concentration was 1: 0.5: 0. 5) A sample solution adjusted so that sodium acetate as an organic carbon source was 0.2 in terms of C / N ratio with the total nitrogen amount was injected. And each test tube was shaken in the anaerobic state, and the denitrification rate was calculated | required from the time-dependent change of TN density | concentration in a sample liquid.

図7はこの実験3に係る回分実験の結果を示すグラフである。図7において横軸は試料液における嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌の合計菌数を示し、縦軸は脱窒速度を示す。図7から明らかなように、合計菌数が10cells/mL以上で脱窒速度が急激に向上し始める。このことから本発明においては脱窒槽に保持する合計菌数を10cells/mL以上にすればよいことが判る。 FIG. 7 is a graph showing the results of a batch experiment according to Experiment 3. In FIG. 7, the horizontal axis indicates the total number of anaerobic ammonia oxidizing bacteria and anaerobic nitrite oxidizing bacteria in the sample solution, and the vertical axis indicates the denitrification rate. As is clear from FIG. 7, the denitrification rate starts to increase sharply when the total number of bacteria is 10 5 cells / mL or more. From this, it can be seen that the total number of bacteria retained in the denitrification tank should be 10 5 cells / mL or more in the present invention.

実験4
実験3と同様の担体試料を用い、嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌の合計菌数を一定の10cells/mLとし、嫌気性アンモニア酸化細菌と嫌気性亜硝酸との菌数比を変化させた回分実験を実施した。すなわち、菌数比を変化させた各試験管内に実験3と同一の条件で試料液を注入した。各試験管を嫌気状態で振とうし、試料液中のT−N濃度の経時変化から脱窒速度を求めた。
Experiment 4
Using the same carrier sample as in Experiment 3, the total number of anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria was a constant 10 6 cells / mL, and the number of anaerobic ammonia-oxidizing bacteria and anaerobic nitrite was Batch experiments were performed with varying ratios. That is, the sample solution was injected under the same conditions as in Experiment 3 into each test tube in which the bacterial count ratio was changed. Each test tube was shaken in an anaerobic state, and the denitrification rate was determined from the change over time of the TN concentration in the sample solution.

図8はこの実験4に係る回分実験の結果を示すグラフである。図8において横軸は試料液における嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌との菌数比を示し、縦軸は脱窒速度を示す。図8から明らかなように、菌数比(嫌気性アンモニア酸化細菌数/嫌気性亜硝酸酸化細菌数)が10を越えると脱窒速度が急激に低下し始める。このことから本発明においては脱窒槽に保持する嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌の菌数比を10以下、好ましくは0.05〜1の範囲に保持すればよいことが判る。   FIG. 8 is a graph showing the results of a batch experiment according to Experiment 4. In FIG. 8, the horizontal axis indicates the number ratio of anaerobic ammonia oxidizing bacteria and anaerobic nitrite oxidizing bacteria in the sample solution, and the vertical axis indicates the denitrification rate. As is clear from FIG. 8, when the bacteria ratio (anaerobic ammonia-oxidizing bacteria number / anaerobic nitrite-oxidizing bacteria number) exceeds 10, the denitrification rate starts to decrease rapidly. From this, it can be seen that in the present invention, the ratio of the number of anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria held in the denitrification tank may be kept to 10 or less, preferably 0.05 to 1.

実験5
実験3と同様の担体試料を用い、嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌との菌数比を0.1:1、合計菌数を10cells/mLとし、試料液のC/N比を変化させた回分実験を実施した。すなわち、各試験管内に試料液としてT−N濃度が80mg/L(NH−N濃度,NO−N濃度,NO−N濃度の比が1:0.5:0.5)と一定で、有機炭素源としての酢酸ナトリウムを総窒素量とのC/N比で0〜1.5の範囲で変化させたものを注入した。各試験管を嫌気状態で4時間、振とうした後に、試料液中のT−N濃度の減少量から脱窒率を測定した。
Experiment 5
Using the same carrier sample as in Experiment 3, the ratio of the number of anaerobic ammonia oxidizing bacteria and anaerobic nitrite oxidizing bacteria was 0.1: 1, the total number of bacteria was 10 6 cells / mL, and the C / Batch experiments were performed with varying N ratios. That is, the TN concentration as a sample solution in each test tube is constant at 80 mg / L (ratio of NH 4 -N concentration, NO 2 -N concentration, NO 3 -N concentration is 1: 0.5: 0.5). Then, the one in which sodium acetate as the organic carbon source was changed in the range of 0 to 1.5 in the C / N ratio with the total nitrogen amount was injected. Each test tube was shaken in an anaerobic state for 4 hours, and then the denitrification rate was measured from the decrease in the TN concentration in the sample solution.

図9はこの実験5に係る回分実験の結果を示すグラフであり、横軸は試料液のC/N比を示し、縦軸は脱窒率を示す。図9から明らかなようにC/N比が0.1以上の時に脱窒率が高く、C/N比が0.2〜0.5の範囲で特に高い脱窒率を示すことが判った。   FIG. 9 is a graph showing the results of a batch experiment according to Experiment 5, in which the horizontal axis represents the C / N ratio of the sample solution, and the vertical axis represents the denitrification rate. As is clear from FIG. 9, it was found that the denitrification rate was high when the C / N ratio was 0.1 or higher, and that the C / N ratio was particularly high in the range of 0.2 to 0.5. .

実験6
図1に示した装置によって実廃水の処理実験を行った。使用した固定化担体は表2に示した組成で製造した包括固定化担体である。嫌気性アンモニア酸化細菌や嫌気性亜硝酸酸化細菌の集積汚泥としては実験1や実験2と同一の微粉砕した担体を用いた。過硫酸カリウムを添加することにより、表2に示した組成の混合物はゲル化する。このゲル化体を3mm角に成形し、実験用の包括固定化担体とした。

Figure 0004600816
Experiment 6
An actual wastewater treatment experiment was conducted using the apparatus shown in FIG. The used immobilization carrier was a entrapping immobilization carrier produced with the composition shown in Table 2. As the accumulated sludge of anaerobic ammonia oxidizing bacteria and anaerobic nitrite oxidizing bacteria, the same finely ground carrier as in Experiment 1 and Experiment 2 was used. By adding potassium persulfate, the mixture having the composition shown in Table 2 is gelled. This gelled body was formed into a 3 mm square and used as a entrapping immobilization support for experiments.

Figure 0004600816

上記の包括固定化担体を脱窒槽14に充填率20%で投入し、この脱窒槽14を機械攪拌しながら実験した。使用した実廃水はNH−N濃度が90〜120mg/L,BODが15〜30mg/Lであった。この実廃水の60%を硝化槽12に供給して硝化した後に硝化液18として脱窒槽14に送り、残り40%を直接に脱窒槽14に供給した。脱窒槽14では供給液の滞留時間を2時間とし、有機物は添加しなかった。有機物を添加しない理由は、実廃水中のBOD成分を有機炭素源として利用できるからである。上記の条件で連続処理した結果、1ヵ月後には脱窒率90%以上の安定した脱窒処理性能を示すようになった。 The above entrapping immobilization support was charged into the denitrification tank 14 at a filling rate of 20%, and this denitrification tank 14 was tested while being mechanically stirred. The actual wastewater used had an NH 4 —N concentration of 90 to 120 mg / L and a BOD of 15 to 30 mg / L. 60% of the actual waste water was supplied to the nitrification tank 12 and nitrified, and then sent to the denitrification tank 14 as the nitrification liquid 18 and the remaining 40% was directly supplied to the denitrification tank 14. In the denitrification tank 14, the residence time of the feed liquid was 2 hours, and no organic matter was added. The reason for not adding the organic substance is that the BOD component in the actual wastewater can be used as the organic carbon source. As a result of continuous treatment under the above conditions, a stable denitrification performance with a denitrification rate of 90% or more was exhibited after one month.

実験7
実験6における包括固定化担体に替えて、嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌との菌数比が1:1で合計菌数が4×10cells/mLとなるように(1)集積汚泥を自己造粒させたもの、(2)集積汚泥をスポンジ担体に付着固定したものを脱窒槽14に投入し、その他の条件は実験6と同一条件で実験した。その結果、(1)(2)の両方とも、実験6における包括固定化担体と同様に1ヵ月後には脱窒率90%以上の安定した脱窒処理性能を示すようになった。その後、供給液の滞留時間を減少させることによって包括固定化担体及び(1)(2)について、それぞれ高負荷運転を行ったところ、包括固定化担体の場合では脱窒速度12kg−N/m/日、(1)の自己造粒の場合では脱窒速度7kg−N/m/日、(2)の付着固定担体の場合では脱窒速度5kg−N/m/日の結果が得られた。これらの脱窒速度はこれまで発表されている嫌気性アンモニア酸化法の脱窒速度よりも大きく、本発明方法の有効性を裏付けることができた。
Experiment 7
Instead of the entrapping immobilization carrier in Experiment 6, the ratio of the number of anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria was 1: 1 and the total number of bacteria was 4 × 10 6 cells / mL (1 1) Accumulated sludge was self-granulated, 2) Accumulated sludge adhered to and fixed on a sponge carrier was put into the denitrification tank 14, and the other conditions were the same as in Experiment 6. As a result, both (1) and (2) showed stable denitrification performance with a denitrification rate of 90% or more after one month, as with the entrapping immobilization support in Experiment 6. Thereafter, the entrapping immobilization support and (1) (2) were each subjected to high load operation by reducing the residence time of the feed liquid. In the case of the entrapping immobilization support, the denitrification rate was 12 kg-N / m 3. / Day, in the case of (1) self-granulation, a denitrification rate of 7 kg-N / m 3 / day is obtained, and in the case of (2) the adherent fixed carrier, a denitrification rate of 5 kg-N / m 3 / day is obtained. It was. These denitrification rates were larger than the denitrification rates of the anaerobic ammonia oxidation methods that have been published so far, thus supporting the effectiveness of the method of the present invention.

本発明に係るアンモニア含有水の処理方法の第1実施形態を示す装置系統図である。1 is a system diagram showing a first embodiment of a method for treating ammonia-containing water according to the present invention. 本発明に係るアンモニア含有水の処理方法の第2実施形態を示す装置系統図である。It is an apparatus system diagram which shows 2nd Embodiment of the processing method of ammonia containing water which concerns on this invention. 本発明に係る亜硝酸含有液の酸化処理方法の第3実施形態を示す装置系統図である。It is an apparatus system diagram which shows 3rd Embodiment of the oxidation treatment method of the nitrous acid containing liquid which concerns on this invention. 本発明に係る亜硝酸含有液の酸化処理方法の第4実施形態を示す装置系統図である。It is an apparatus system diagram which shows 4th Embodiment of the oxidation treatment method of the nitrous acid containing liquid which concerns on this invention. 本発明に係る亜硝酸含有液の酸化処理方法の第5実施形態を示す装置系統図である。It is an apparatus system diagram which shows 5th Embodiment of the oxidation treatment method of the nitrous acid containing liquid which concerns on this invention. 本発明に係る亜硝酸含有液の酸化処理方法の第8実施形態を示す装置系統図である。It is an apparatus system diagram which shows 8th Embodiment of the oxidation treatment method of the nitrous acid containing liquid which concerns on this invention. 実験3の実験結果を示すグラフである。10 is a graph showing an experimental result of Experiment 3. 実験4の実験結果を示すグラフである。10 is a graph showing an experimental result of Experiment 4. 実験5の実験結果を示すグラフである。10 is a graph showing an experimental result of Experiment 5.

符号の説明Explanation of symbols

10………アンモニア含有水、12………硝化槽、14………脱窒槽、18………硝化液、20………固定化担体、22………処理水、24………有機物、26………スクリーン、30………従属栄養式脱窒槽、32………充填材、34………沈殿槽。   10 ......... Ammonia-containing water, 12 ......... Nitrification tank, 14 ......... Denitrification tank, 18 ......... Nitrification liquid, 20 ......... Immobilized carrier, 22 ......... Treatment water, 24 ...... organic matter, 26... Screen, 30... Heterotrophic denitrification tank, 32... Filler, 34.

Claims (4)

嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌とを脱窒槽に保持し、この脱窒槽に供給したアンモニア含有水と硝化液とを嫌気条件下で前記嫌気性アンモニア酸化細菌及び嫌気性亜硝酸酸化細菌と接触させることを特徴とするアンモニア含有水の処理方法。   Anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria are held in a denitrification tank, and the anaerobic ammonia-oxidizing bacteria and anaerobic nitrite oxidation are performed under anaerobic conditions with the ammonia-containing water and nitrification solution supplied to the denitrification tank. A method for treating ammonia-containing water, which comprises contacting with bacteria. 前記脱窒槽に保持する嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌の合計菌数を10cells/mL以上にすることを特徴とする請求項1に記載のアンモニア含有水の処理方法。 The method for treating ammonia-containing water according to claim 1, wherein the total number of anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria held in the denitrification tank is 10 5 cells / mL or more. 前記脱窒槽に保持する嫌気性アンモニア酸化細菌と嫌気性亜硝酸酸化細菌との菌数比を10以下にすることを特徴とする請求項1又は請求項2に記載のアンモニア含有水の処理方法。   The method for treating ammonia-containing water according to claim 1 or 2, wherein the ratio of the number of anaerobic ammonia-oxidizing bacteria and anaerobic nitrite-oxidizing bacteria held in the denitrification tank is 10 or less. 前記脱窒槽に添加・流入される有機炭素量と総窒素量との比が0.1以上となるように前記脱窒槽に有機物を添加することを特徴とする請求項1に記載のアンモニア含有水の処理方法。   2. The ammonia-containing water according to claim 1, wherein an organic substance is added to the denitrification tank so that a ratio of an amount of organic carbon added to and introduced into the denitrification tank and a total nitrogen amount is 0.1 or more. Processing method.
JP2005071910A 2005-03-14 2005-03-14 Method for treating ammonia-containing water Expired - Fee Related JP4600816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071910A JP4600816B2 (en) 2005-03-14 2005-03-14 Method for treating ammonia-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005071910A JP4600816B2 (en) 2005-03-14 2005-03-14 Method for treating ammonia-containing water

Publications (2)

Publication Number Publication Date
JP2006247623A JP2006247623A (en) 2006-09-21
JP4600816B2 true JP4600816B2 (en) 2010-12-22

Family

ID=37088652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071910A Expired - Fee Related JP4600816B2 (en) 2005-03-14 2005-03-14 Method for treating ammonia-containing water

Country Status (1)

Country Link
JP (1) JP4600816B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023485A (en) * 2006-07-24 2008-02-07 Japan Organo Co Ltd Biological denitrification method and apparatus therefor
JP6460935B2 (en) * 2015-07-22 2019-01-30 株式会社日立製作所 Anaerobic fermentation treatment method for waste water, microbial carrier for anaerobic fermentation treatment, and anaerobic fermentation treatment apparatus
CN106865766A (en) * 2017-03-10 2017-06-20 桂林理工大学 A kind of method of upgrading biochemical denitrification sewage treatment plant
CN108439593B (en) * 2018-03-27 2020-10-27 北京工业大学 Device and method for treating urban domestic sewage by continuous flow segmented water inlet DEAMOX combined sludge fermentation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283758A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd Biological denitrification method
JP2006239579A (en) * 2005-03-03 2006-09-14 Hitachi Plant Technologies Ltd Oxidation treatment method of nitrous acid-containing liquid
JP2006239572A (en) * 2005-03-03 2006-09-14 Hitachi Plant Technologies Ltd Oxidation treatment method of nitrous acid-containing liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283758A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd Biological denitrification method
JP2006239579A (en) * 2005-03-03 2006-09-14 Hitachi Plant Technologies Ltd Oxidation treatment method of nitrous acid-containing liquid
JP2006239572A (en) * 2005-03-03 2006-09-14 Hitachi Plant Technologies Ltd Oxidation treatment method of nitrous acid-containing liquid

Also Published As

Publication number Publication date
JP2006247623A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
Gebara Activated sludge biofilm wastewater treatment system
CN100475718C (en) Method and apparatus for removing nitrogen
JP4600817B2 (en) Method for treating ammonia-containing water
Li et al. The variation of nitrifying bacterial population sizes in a sequencing batch reactor (SBR) treating low, mid, high concentrated synthetic wastewater
Chen et al. Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface
JP5324269B2 (en) Waste water treatment method and waste water treatment apparatus
JP5098183B2 (en) Waste water treatment method and apparatus
JP4632135B2 (en) Method and apparatus for treating ammonia-containing liquid
Ishimoto et al. Full-scale simultaneous partial nitrification, anammox, and denitrification process for treating swine wastewater
JP2003047990A (en) Biological denitrifier
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP4600816B2 (en) Method for treating ammonia-containing water
JP3252888B2 (en) Biological nitrogen removal equipment
Benáková et al. The increase of process stability in removing ammonia nitrogen from wastewater
JP4618419B2 (en) Method for oxidizing nitrous acid-containing liquid
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP4817057B2 (en) Batch treatment of nitrogen-containing water
Qiao et al. Partial nitritation of raw anaerobic sludge digester liquor by swim-bed and swim-bed activated sludge processes and comparison of their sludge characteristics
Lei et al. The short-term effects of temperature and free ammonia on ammonium oxidization in granular and floccular nitrifying system
JP4835906B2 (en) Treatment equipment for ammonia-containing liquid
JP4600818B2 (en) Method for treating ammonia-containing water
JP4817056B2 (en) Method and apparatus for treating nitrogen-containing water
CN104271516A (en) System and method for treating wastewater containing suspended organic substance
JP4618420B2 (en) Method for oxidizing nitrous acid-containing liquid
JP6651298B2 (en) Wastewater treatment method and wastewater treatment device for wastewater containing high salt concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees