JPS6227025A - Composite membrane for separating gas - Google Patents

Composite membrane for separating gas

Info

Publication number
JPS6227025A
JPS6227025A JP60165923A JP16592385A JPS6227025A JP S6227025 A JPS6227025 A JP S6227025A JP 60165923 A JP60165923 A JP 60165923A JP 16592385 A JP16592385 A JP 16592385A JP S6227025 A JPS6227025 A JP S6227025A
Authority
JP
Japan
Prior art keywords
membrane
composite membrane
polysulfone
treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60165923A
Other languages
Japanese (ja)
Other versions
JPH0378129B2 (en
Inventor
Kenko Yamada
山田 建孔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60165923A priority Critical patent/JPS6227025A/en
Publication of JPS6227025A publication Critical patent/JPS6227025A/en
Publication of JPH0378129B2 publication Critical patent/JPH0378129B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To increase permeation flow rate of a composite membrane and to stabilize the same by subjecting a porous polysulfone backing membrane to a hot water treatment then forming the membrane into the composite membrane and subjecting the membrane to a heat treatment in the gaseous phase under the reduced pressure. CONSTITUTION:The porous polysulfone membrane which has <=0.5mu surface pore size and >=10<-5>g/cm<2> sec atm as the permeation rate of water measured at 25 deg.C is used as the backing membrane. Such membrane is immersed in the hot water kept at 50-130 deg.C and is thereby heat-treated. The treatment is executed for >=0.2hr. A sepn. function layer consisting of an org. high-polymer compd. is formed on such backing membrane. The thickness of said layer is made <=0.5mu. The resulted composite membrane is treated for >=0.2hr at 60-200 deg.C in the gaseous phase under the treated for >=0.2hr at 60-200 deg.C in the gaseous phase under the reduced pressure of 0.1-400Torr. The flow rate and selectivity are stabilized and the flow rate in particular is increased by about 10% by such treatment.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は気体混合物を膜分離する際に用いられる膜、特
に気体透過性にすぐれ、かつ安定性の改善された膜に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a membrane used for membrane separation of gas mixtures, and particularly to a membrane having excellent gas permeability and improved stability.

〈従来技術〉 近年膜分離技術はその省エネルギー性の故に多くの分野
で利用されている。かかる分離に用いられる膜の製造方
法も種々開発されてきたが、中でも膜を分ma能を発現
する部分(分離機能FF2>と機械的強度を保持する部
分(多孔質支持体)とに分け、それぞれをそれぞれに最
適な別個の素材で構成せしめた、いわゆる複合膜は膜設
針の自由度を飛躍的に高めたものとして注目されている
<Prior Art> In recent years, membrane separation technology has been used in many fields due to its energy saving properties. Various methods have been developed for producing membranes used in such separations, among which the membrane is separated into a part that exhibits the separation function (separation function FF2>) and a part that maintains mechanical strength (porous support). So-called composite membranes, in which each membrane is constructed from separate materials that are optimal for each, are attracting attention as they dramatically increase the degree of freedom in membrane installation.

上述の如く複合膜においては多孔質膜の上に分離機能層
が設けられるが、機能層の形成が直接当該多孔質膜上で
実施されるか、あるいは別個に作成したものを積層する
かは別にしても通常当該機能層は分離膜形成物質を有n
溶媒に溶解せしめた溶液から7fJ層(薄膜)として形
成される。
As mentioned above, in a composite membrane, a separation functional layer is provided on a porous membrane, but it does not matter whether the functional layer is formed directly on the porous membrane or whether separately prepared layers are laminated. However, the functional layer usually contains a separation membrane forming substance.
It is formed as a 7fJ layer (thin film) from a solution dissolved in a solvent.

がかる薄層を支持するために多孔質膜を用いるが、多孔
質膜は気体透過上その大小はあるが透過抵抗になること
、また特に湿式製膜によってつくられる複合膜は使用中
流量が低下するなどの経時変化がJ3.こりやすい等の
問題点を有している。
A porous membrane is used to support such a thin layer, but porous membranes have some degree of resistance to gas permeation, and especially composite membranes made by wet membrane formation have a reduced flow rate during use. Changes over time such as J3. It has problems such as being easily stiff.

多孔質膜支持体としてポリスルボン多孔膜が使用される
場合が多いが、かかる複合膜において流量の増大と安定
化という2つの改善が望まれている。
Although polysulfone porous membranes are often used as porous membrane supports, two improvements are desired in such composite membranes: increased flow rate and stabilization.

〈発明の構成〉 本発明者らはポリスルホン系多孔膜とその上の分Il!
i門能層からなる複合膜において、複合膜に特定の処理
を施すことによってその安定化をはかることを検討する
なかで、通常複合膜を特定の!2!lE’!!をすると
複合膜の流量は低下するのに対し、該複合膜を構成する
ポリスルホン多孔膜をあらかじめ特定の処理を施し用い
ると、複合膜を同様の特定の処理をしても膜の透過流量
は低下せず逆に増大すること、又流量の安定性がさらに
改善されることを見い出し本発明に到達したものである
。すなわら本発明は、ポリスルホン系多孔膜とその上に
存在する0、5μ以下の厚さの分!llIn能層からな
る複合膜において、該ポリスルホン多孔膜が湿式製膜に
より製膜され、表面孔径が0.5μ以下で水の透過速度
が1×10→ (g/Cm−5ec −atm )以上あり、かつ50
〜130℃の熱水中0.2時間以上処理されたものであ
り、そして該複合膜が複合膜を形成した後に0.1〜4
00Torrの減圧の気相条件下、60〜200℃の温
度で0.2時間以上処理してつくられることを特徴とす
る気体分離用複合膜である。
<Structure of the Invention> The present inventors have developed a polysulfone-based porous membrane and a portion thereon!
When considering stabilizing a composite membrane consisting of an i-portal layer by applying a specific treatment to the composite membrane, it is common to use a specific treatment for the composite membrane. 2! lE'! ! However, if the polysulfone porous membrane that makes up the composite membrane is subjected to a specific treatment beforehand, the permeation flow rate of the membrane will decrease even if the composite membrane is subjected to the same specific treatment. The inventors have arrived at the present invention by discovering that the flow rate does not increase, and that the stability of the flow rate is further improved. In other words, the present invention covers the polysulfone porous membrane and the thickness of 0.5μ or less that exists on it! In a composite membrane consisting of an llIn-layer, the polysulfone porous membrane is formed by wet membrane forming, and has a surface pore diameter of 0.5μ or less and a water permeation rate of 1×10 → (g/Cm-5ec-atm) or more. , and 50
~130°C hot water for 0.2 hours or more, and after forming the composite membrane, the composite membrane has a temperature of 0.1~4
The present invention is a composite membrane for gas separation characterized in that it is produced by processing at a temperature of 60 to 200° C. for 0.2 hours or more under gas phase conditions at a reduced pressure of 0.00 Torr.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明で用いられるポリスルホン系多孔膜の素材である
ポリスルホン系樹脂とは、その分子中に5O2−の結合
基を有する重合体から構成されるが、該重合体の中で橢
械的強度及び耐熱性にすぐれるものとして下記式(1)
又は(2)で表わされる繰り返し単位を50モル%以上
有する重合体が挙げられる。これらの重合体は1種類又
は2種類以上の混合物どして使用することができる。
The polysulfone resin, which is the material of the polysulfone porous membrane used in the present invention, is composed of a polymer having a 5O2- bonding group in its molecule. The following formula (1) has excellent properties:
Alternatively, a polymer having 50 mol% or more of the repeating unit represented by (2) may be mentioned. These polymers can be used alone or in a mixture of two or more.

ポリスルホン系多孔膜の製膜はポリスルホン系樹脂を溶
媒に溶解した溶液を凝固液中で凝固させてa3こなうと
いう公知の方法で実施される。
Polysulfone-based porous membranes are formed by a known method in which a solution of polysulfone-based resin dissolved in a solvent is coagulated in a coagulating solution.

かかる溶媒としては、例えばジメチルアセ1〜アミド、
ジメチルホルムアミド、N−メチルピロリドン、テ1へ
ラメチル尿素などが用いられる。
Such solvents include, for example, dimethylacetamide,
Dimethylformamide, N-methylpyrrolidone, tetramethylurea, etc. are used.

また該ポリスルホン系溶液の中には通常使用されている
開孔剤や安定剤などの添加剤を添加することができる。
Further, commonly used additives such as pore opening agents and stabilizers can be added to the polysulfone solution.

本発明では、以上説明した如きポリスルホン系樹脂、そ
の溶媒、必要に応じ添加剤を含有した樹脂溶液を用いて
流量又は紡糸等により平IQ、チューブラ−あるいは中
空糸等の膜状に成形する。平膜及びチューブラ−の膜状
に成形する際には、必要に応じて他の支持体を用いても
よい。また流量。
In the present invention, a resin solution containing the above-described polysulfone resin, its solvent, and optionally additives is used to form a film shape such as flat IQ, tubular, or hollow fiber by flow rate or spinning. When forming into a flat film or a tubular film, other supports may be used as necessary. Also the flow rate.

紡糸等の成形後、樹脂溶液中の溶媒等の部分乾燥を行な
ってもよい。
After shaping such as spinning, the solvent in the resin solution may be partially dried.

本発明では、かくして膜状に成形されたものを凝固液に
浸漬することによって製膜を行なう。
In the present invention, film formation is performed by immersing the film thus formed into a coagulating liquid.

本発明の微多孔膜を製膜するに際し用いられる凝固液と
しては、水、又は水と自由に混和しうる有機液体の少な
くとも1種、あるいはこれらの混合物が用いられる。
The coagulating liquid used in forming the microporous membrane of the present invention is water, at least one organic liquid that is freely miscible with water, or a mixture thereof.

水と自由に混和しうる有機液体の例としてはメタノール
、エタノール、エチレングリコール、ジメチルホルムア
ミド、ジメチルアセトアミド、N−メチルピロリドンな
どをあげることができる。
Examples of organic liquids that are freely miscible with water include methanol, ethanol, ethylene glycol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the like.

本発明の凝固浴としては、特に好ましくは実質的に水か
らなる液である。
The coagulation bath of the present invention is particularly preferably a liquid consisting essentially of water.

これらの凝固液に該樹脂溶液より製膜した膜を浸漬し、
実質的に凝固させ、更に必要ならば水洗し残留溶媒等を
除くことにより本発明の多孔膜が得られる。
A film formed from the resin solution is immersed in these coagulation solutions,
The porous membrane of the present invention can be obtained by substantially coagulating and, if necessary, washing with water to remove residual solvent and the like.

本発明の多孔膜の形態としてはその使用目的に応じ、平
膜、チューブラ−膜、中空糸膜等の形態で製膜し得る。
The porous membrane of the present invention may be formed in the form of a flat membrane, a tubular membrane, a hollow fiber membrane, etc. depending on the purpose of use.

平膜、チューブラ−膜等の場合には例えば不織布等の基
材を補強材として用いてもよい。
In the case of flat membranes, tubular membranes, etc., a base material such as nonwoven fabric may be used as a reinforcing material.

かくして得られたポリスルホン系多孔膜を分離機能薄膜
層の支持体として用いる場合、多孔膜の表面孔径が0.
5μ以下、好ましくは0.2μ以下、さらに好ましくは
0.1μ以下である。0.5μより大きいと分離機能薄
膜の膜層を薄くできない。
When the polysulfone porous membrane thus obtained is used as a support for a separation functional thin membrane layer, the surface pore diameter of the porous membrane is 0.
It is 5μ or less, preferably 0.2μ or less, more preferably 0.1μ or less. If it is larger than 0.5μ, the membrane layer of the separation functional thin film cannot be made thinner.

流用はできるだけ大きいほうが好ましく、25℃で測定
した水の透過速度として1×10″5(g/Cd−SQ
C−atm )以上、好ましくは1×10→<’j/c
ti −sec −ati )以上である。
It is preferable that the diversion is as large as possible, and the water permeation rate measured at 25°C is 1 x 10"5 (g/Cd-SQ
C-atm) or more, preferably 1×10→<'j/c
ti-sec-ati) or more.

本発明においては、前記の如き湿式製膜されたポリスル
ホン系多孔膜を熱水中に浸漬し熱処理する。熱水の温度
は50〜130℃、好ましくは60〜100℃である。
In the present invention, the wet-formed polysulfone porous membrane as described above is immersed in hot water and heat-treated. The temperature of the hot water is 50-130°C, preferably 60-100°C.

100℃以上は加圧下でおこなう。When the temperature is 100°C or higher, it is carried out under pressure.

50℃以下では多孔膜の安定化という効果がほとんどな
い。熱水処理時間は0.2時間以上、好ましくは0.5
時間以上さらに好ましくは1時間以上である。0.2時
間以下では熱処理の効果がでない。処理時間の艮ざは特
に限定されないが、通常24時間以内である。24時間
以上しても24時間以内と効果に何らかわりはない。
At temperatures below 50°C, there is almost no effect of stabilizing the porous membrane. The hot water treatment time is 0.2 hours or more, preferably 0.5 hours.
It is more than 1 hour, more preferably 1 hour or more. If the heating time is less than 0.2 hours, the heat treatment will not be effective. Although the processing time is not particularly limited, it is usually within 24 hours. Even if you take it for more than 24 hours, there is no difference in effectiveness than if you take it for less than 24 hours.

温水中の浸漬法は一旦製膜したポリスルホン系多孔膜を
水洗の侵、あらためて温水中に浸漬することができる。
In the hot water immersion method, the polysulfone porous membrane that has been formed can be washed with water and then immersed in warm water again.

その場合平膜状であるならば巻いたままで浸漬してもシ
ート状で浸漬してもその効果はかわらない。また中空糸
条、チューブラ−状の場合連続的にあるいは束ねて浸漬
処理することができる。あるいは製膜後凝固液からでて
、ついで熱水処理槽に通すという連続的処理方法もでき
る。
In this case, if it is in the form of a flat membrane, the effect will be the same whether it is immersed in a rolled form or in a sheet form. In the case of hollow fibers or tubular fibers, they can be immersed continuously or in bundles. Alternatively, a continuous treatment method can be used in which the membrane is discharged from the coagulation solution after film formation and then passed through a hot water treatment tank.

なお湿式製膜したポリスルホン系多孔膜を一旦乾燥した
後、熱処理する場合、ポリスルホンは疎水性であり一旦
乾燥すると多孔膜の孔の中への水の浸漬が充分いかず、
処理の効果が低下するためポリスルホン系多孔膜は乾燥
することなく湿潤状態のまま処理することが好ましい。
Note that when a wet-formed polysulfone-based porous membrane is once dried and then heat-treated, polysulfone is hydrophobic and once dried, water will not soak sufficiently into the pores of the porous membrane.
It is preferable to treat the polysulfone-based porous membrane in a wet state without drying it, since the effectiveness of the treatment will be reduced.

本発明に用いられる複合膜の分離機能層は有機高分子化
合物からなる薄膜であるが、かかる?Jmは有は高分子
化合物を含有する有機溶媒溶液から水面上展間法、キャ
スティング法あるいはコーティング法などよく知られて
いる方法により形成される。有機高分子化合物である膜
素材は、特定の気体に対して優れた選択性を有する公知
の素材を適宜使用することができる。特定の気体が例え
ば酸素の場合は炭素−炭素間の重合性二重結合ないしは
三重結合を有する炭化水素化合物及び/又はシラン化合
物から選ばれる少なくとも1種の不飽和化合物の付加重
合体、あるいは主鎖ないし側鎖にシロキサン単位を有す
る重合体、あるいは芳香族ポリエーテル類などが好適に
用いられる。
The separation functional layer of the composite membrane used in the present invention is a thin film made of an organic polymer compound. Jm is formed from an organic solvent solution containing a polymer compound by a well-known method such as a water surface spreading method, a casting method, or a coating method. As the membrane material which is an organic polymer compound, any known material having excellent selectivity to a specific gas can be used as appropriate. When the specific gas is, for example, oxygen, an addition polymer or main chain of at least one unsaturated compound selected from hydrocarbon compounds and/or silane compounds having a polymerizable double bond or triple bond between carbon and carbon. Polymers having siloxane units in their side chains, aromatic polyethers, and the like are preferably used.

かかるポリマーの例としては、ポリメチルペンテン、ポ
リメチルヘキセン、ポリブタジェン、ポリビニルトリメ
チルシラン、ポリトリメチルシリルアセチレン、ポリ(
メチルヘキセン−アリルトリメチルシラン)共重合体、
ポリ−t−ブチルアセチレン、ポリ(アリルトリメチル
シラン−アリル−t−ブチルジメチルシラン)、ポリジ
メチルシロキサン、ポリシロキサン−ポリカーボネート
共重合体、ポリシロキサン−ポリブタジェン共重合体、
ポリ[メチクリロキシブロビルトリス(トリメチルシロ
キシ)シラン]、ポリ 2,6−シメチルフエニレンエ
ーテルなどをあげることができる。
Examples of such polymers include polymethylpentene, polymethylhexene, polybutadiene, polyvinyltrimethylsilane, polytrimethylsilylacetylene, poly(
methylhexene-allyltrimethylsilane) copolymer,
Poly-t-butylacetylene, poly(allyltrimethylsilane-allyl-t-butyldimethylsilane), polydimethylsiloxane, polysiloxane-polycarbonate copolymer, polysiloxane-polybutadiene copolymer,
Examples include poly[methycryloxybrobyl tris(trimethylsiloxy)silane], poly 2,6-dimethylphenylene ether, and the like.

かかる膜素材を溶解する溶媒としては膜素材を溶解する
ものであればいかなるものでよく、例えばベンゼン、ト
ルエン、キシレン、シクロヘキサン、シクロヘキセン、
ヘキセン、オクタン、ヘキサデセン、オクタデセンなど
の炭化水素系溶媒、トリクロロエチレン、テトラクロロ
エチレン、クロロホルム、トリクロロトリフロロエチレ
ンなどのハロゲン化炭化水素系溶媒、テトラヒドロフラ
ン、ジオキサンなどのエーテル系溶媒、ジメチルホルム
アミド、ジメチルアセトアミド、N−メチルピロリドン
などの非プロトン系溶媒、エタノール、1so−プロピ
ルアコール、ブタノールなどのアルコール系溶媒などで
あり、その単独あるいは2種以上の混合系で用いられる
。また溶媒以外にも製膜を安定化ならしめる界面活性剤
や展開助剤を加えることもできる。薄膜檄能層を形成さ
せるためにはかかる溶媒に溶解した有様高分子化合物溶
液を調整し、通常のよく知られた方法で薄膜層を形成す
る。すなわち例えばこの有機高分子化合物溶液を水面上
に展開したり、あるいは平らな固体表面上にキャスティ
ングしたりして薄い溶液にし、ついで脱溶媒して薄膜を
形成しついで多孔質膜上に積層する方法、あるいは有機
高分子化合物溶液を多孔質膜の上にコーティングし脱溶
媒して薄膜を形成する方法などである。
Any solvent may be used as long as it dissolves the membrane material, such as benzene, toluene, xylene, cyclohexane, cyclohexene,
Hydrocarbon solvents such as hexene, octane, hexadecene, and octadecene, halogenated hydrocarbon solvents such as trichloroethylene, tetrachloroethylene, chloroform, and trichlorotrifluoroethylene, ether solvents such as tetrahydrofuran and dioxane, dimethylformamide, dimethylacetamide, N- These include aprotic solvents such as methylpyrrolidone, alcoholic solvents such as ethanol, 1so-propyl alcohol, butanol, etc., and these solvents may be used alone or in a mixture of two or more thereof. In addition to the solvent, a surfactant or a developing aid may be added to stabilize the film formation. In order to form a thin film layer, a solution of a specific polymer compound dissolved in such a solvent is prepared, and a thin film layer is formed by a conventional and well-known method. That is, for example, this organic polymer compound solution is spread on a water surface or cast on a flat solid surface to make a thin solution, then the solvent is removed to form a thin film, and then it is laminated on a porous membrane. Alternatively, there is a method in which a porous membrane is coated with an organic polymer compound solution and the solvent is removed to form a thin film.

いづれの場合も有機高分子化合物を溶媒に溶解し、溶液
としこれを用い製膜し、ついで脱溶媒して薄膜を形成す
る。
In either case, the organic polymer compound is dissolved in a solvent, the solution is used to form a film, and then the solvent is removed to form a thin film.

なお分離機能層は単独層(一層)でもよいし、あるいは
少なくとも2層からなる複数層であってもよい。特に少
なくとも2層の薄膜を積層し分離機能層とした膜は、薄
膜の欠陥部分は重ね合わせにより埋められ分離特性が向
上すること、また分離嶺能層の強度も改善することがで
き好ましく用いられる。もちろん積層する薄膜は同一素
材からなるものでも、異なる素材からなるものであって
もよい。
Note that the separation functional layer may be a single layer (single layer) or may be a plurality of layers consisting of at least two layers. In particular, a membrane with a separation function layer made by laminating at least two thin films is preferably used because defective parts of the thin films are filled by overlapping, improving the separation characteristics, and the strength of the separation layer is also improved. . Of course, the thin films to be laminated may be made of the same material or may be made of different materials.

本発明の分1iMIm能層の厚さは膜中に欠陥を生じな
ければ気体透過性の上からできるだけ薄い方が好ましく
、厚さとしては0.5μ以下、好ましくは0.3μ以下
、さらに好ましくは0.15μ以下である。
The thickness of the microlayer of the present invention is preferably as thin as possible from the viewpoint of gas permeability as long as no defects occur in the film, and the thickness is 0.5μ or less, preferably 0.3μ or less, and more preferably It is 0.15μ or less.

かくして得られた複合膜を0.1〜400TOrrの減
圧の気相条件下60〜200℃の温度で0.2時間以上
処理する。
The composite membrane thus obtained is treated at a temperature of 60 to 200° C. for 0.2 hours or more under gas phase conditions at a reduced pressure of 0.1 to 400 TOrr.

本発明の複合膜はかかる熱処理により流量が増大し、か
つ複合膜がその使用中あるいは保存中も流量や選択性が
安定、特に流量が安定する。流量は熱処理前に比べて最
大10%、平均5%増大する。
The flow rate of the composite membrane of the present invention is increased by such heat treatment, and the flow rate and selectivity of the composite membrane are stabilized even during use or storage, especially the flow rate is stabilized. The flow rate increases by a maximum of 10% and an average of 5% compared to before heat treatment.

非常に興味深いことは複合膜の熱処理によりかかる流量
の増大がおこるのは、あらかじめ熱水処理したポリスル
ホン系多孔膜を用いた時だけであり、熱水処理しないポ
リスルホン系多孔膜を用い同様の複合膜をつくり熱処理
すると熱処理前に比べて流量は低下する。
What is very interesting is that the increase in flow rate due to heat treatment of the composite membrane occurs only when a porous polysulfone membrane that has been previously treated with hot water is used, and when a similar composite membrane is used with a porous polysulfone membrane that is not treated with hot water. When it is made and heat treated, the flow rate decreases compared to before heat treatment.

また流量の安定性についても差がある。熱水処理しない
ポリスルホン系多孔膜を用い複合膜をつくり熱処理する
と熱処理しないものに比べて流量は著しく安定し、熱処
理効果がでるが熱処理したポリスルホン系多孔膜を用い
ると複合膜の熱処理効果はさらによくでて流量の安定性
がさらに向上する。
There are also differences in the stability of flow rate. When a composite membrane is made using a polysulfone-based porous membrane that is not treated with hot water and then heat treated, the flow rate is significantly more stable and the heat treatment effect is obtained compared to one that is not heat-treated, but the heat treatment effect of the composite membrane is even better when a heat-treated polysulfone-based porous membrane is used. This further improves the stability of the flow rate.

複合膜の熱処理効果の一つは、分子Ii機能層を形成す
る段階で用いたfr礪溶媒が、製膜後の除去過程におい
ても膜中に微量に残存していて、それが熱処理により除
去されること、またポリスルホン系多孔膜の熱水処理の
効果も湿式製膜したポリスルホン系多孔膜に残存する微
mの製膜溶媒を除去することにその一つがあり、その効
果はあられれていると考えるがそれだけで全ては説明で
きない。
One of the effects of heat treatment on composite films is that a trace amount of the FR solvent used in the stage of forming the molecular II functional layer remains in the film even during the removal process after film formation, and this is removed by heat treatment. In addition, one of the effects of hot water treatment of polysulfone-based porous membranes is to remove minute amounts of membrane-forming solvent remaining in wet-formed polysulfone-based porous membranes, and the effect is said to be great. I think about it, but that alone doesn't explain everything.

一つの考え方としてポリスルホン系多孔膜の熱水処理で
脱溶媒とともに構造変化をもたらし、それがさらに乾燥
した状態での熱処理により支持体として最適の構造例え
ば表面の孔が少し拡がり開口度が増大したことなどが予
想される。即ち熱水処理・熱処理が製膜溶媒の除去だけ
でなく、ポリスルホンの構造の変化をもたらし膜の安定
性に結びついたと考えられる。もちろ/υ分離曙能層の
熱処理による構造の安定化もあると考えられる。
One way of thinking is that hot water treatment of a polysulfone porous membrane brings about structural changes along with desolvation, and then heat treatment in a dry state creates the optimal structure for the support, for example, the pores on the surface expand a little and the degree of aperture increases. etc. are expected. In other words, it is thought that the hydrothermal treatment/heat treatment not only removed the film-forming solvent but also brought about a change in the structure of polysulfone, leading to stability of the film. It is thought that the structure may be stabilized by heat treatment of the mochiro/υ separated Akebono layer.

すなわち本発明は支持体として用いるポリスルホン系多
孔膜を特定の条件で熱水処理することと、さらに複合膜
としたあとで特定の条件下で熱処理することの両方の処
理によりはじめてその効果を発揮することを見い出した
ものである。
In other words, the present invention exhibits its effects only when the porous polysulfone membrane used as a support is treated with hot water under specific conditions, and the composite membrane is further heat-treated under specific conditions after being made into a composite membrane. This is what I discovered.

本発明の複合膜の処理は、0.1〜400T orrの
減圧の気相条件下でおこなう。ここでいう減圧の気相条
件下とは本発明の複合膜をかかる減圧容器内に置き、膜
全体を処理する場合と、複合膜を膜の片側から減圧に吸
引できるモジュールの形状に組み、膜の片側を0.1〜
400Torrの減圧に吸引しく膜の使方側は大気圧)
空気やイナートガスを複合膜中を通過する形式でおこな
う場合との2つの方法がある。そのうちで後者の方法は
、複合膜中を気体が大但に通過し処理効果は大きく好適
に用いられる。減圧度としては0.1〜400Torr
好ましくは10〜300TOrr好ましくは20〜25
0TOrrである。400T orr以上だと熱処理の
効果 −は小さく、また0、1T orr以下にしても
0.1T orr以内と効果は何らかわりない。
The treatment of the composite membrane of the present invention is carried out under gas phase conditions at a reduced pressure of 0.1 to 400 Torr. The reduced-pressure gas phase conditions here refer to cases in which the composite membrane of the present invention is placed in such a reduced-pressure container and the entire membrane is treated, and cases in which the composite membrane is assembled into a module shape that can be sucked under reduced pressure from one side of the membrane, and the membrane is treated in a vacuum container. 0.1 to one side of
Atmospheric pressure is applied to the side where the membrane is used (atmospheric pressure on the side where the membrane is used)
There are two methods: one in which air or inert gas is passed through a composite membrane; Among these, the latter method is preferably used because the gas passes through the composite membrane and the treatment effect is large. The degree of reduced pressure is 0.1 to 400 Torr
Preferably 10-300 TOrr, preferably 20-25
It is 0 TOrr. If the temperature is 400T orr or more, the effect of heat treatment is small, and even if the temperature is set to 0.1T orr or less, the effect is no different from 0.1T orr or less.

該処理の温度条件は60〜200℃であるが温度につい
ては、複合膜の部材あるいはモジュールとして組んだ場
合はそのモジュール部材も含めて部材の耐熱性に制限さ
れる。すなわち部材の耐熱温度より高い温度で処理する
と膜やモジュールが変形し破損をもたらし不都合を生じ
る。温度としては部材の耐熱温度より低いができるだけ
高い温度でするのが好ましい。一般には好ましくは65
〜180℃さらに好ましくは70〜150℃である。
The temperature condition for this treatment is 60 to 200°C, but when assembled as a composite membrane member or module, the temperature is limited by the heat resistance of the member including the module member. That is, if the treatment is performed at a temperature higher than the allowable temperature limit of the member, the membrane or module will be deformed and damaged, resulting in inconvenience. The temperature is preferably lower than the heat resistant temperature of the member, but as high as possible. Generally preferably 65
The temperature is preferably 70 to 150°C, more preferably 70 to 150°C.

熱処理時間は0.2時間以上、好ましくは0,5時間以
上さらに好ましくは1時間以上である。0.2時間以下
では熱処理の効果はでない。処理時間の長さは特に限定
されないが通常24時間以内である。
The heat treatment time is 0.2 hours or more, preferably 0.5 hours or more, and more preferably 1 hour or more. If the time is less than 0.2 hours, the heat treatment will have no effect. The length of treatment time is not particularly limited, but is usually within 24 hours.

24時間以上しても24時間以内と効果に何らかわりは
ない。
Even if you take it for more than 24 hours, there is no difference in effectiveness than if you take it for less than 24 hours.

本発明の気体分離用複合膜は平膜状ならば積み重ねられ
、また管状および中空糸条なら複数本に束ねられ、モジ
ュールにそしてさらに酸素富化装置として組みたてられ
大気から酸素富化空気の製造に用いることができるから
エンジンや暖房器具の燃焼効率向上に役立ち、また未熟
児の保育や呼吸器疾患者の治療に役立ち、あるいは人工
肺や人工えらとして使用することができる。
The composite membrane for gas separation of the present invention can be stacked if it is in the form of a flat membrane, or bundled into multiple pieces if it is in the form of a tube or hollow fiber, and then assembled into a module and further as an oxygen enrichment device to extract oxygen-enriched air from the atmosphere. Since it can be used in manufacturing, it can help improve the combustion efficiency of engines and heating equipment, it can also be useful in caring for premature babies and treating people with respiratory disorders, and it can also be used as artificial lungs and artificial gills.

また本発明の気体分離用複合膜は大気から酸素富化空気
を製造するに好適にあるに止まらず例えば二酸化炭素と
空気から主として成る気体混合物(例えば燃焼廃ガス)
からの二酸化炭素の分離、ヘリウム又はアルゴンと窒素
ガスとから主として成る気体混合物(例えば液化ヘリウ
ム又はアルゴンが気化して空気と混合したガス)からの
ヘリウム又はアルゴンの分離、天然ガスからのヘリウム
濃縮、あるいは水素と一酸化炭素あるいはメタンなどを
含む気体混合物(例えば水性ガスやプロセスガス)から
の水素の分離等にも好適に使用することができる。以下
実施例をあげて本発明をさらに説明するが本発明はこの
実施例によって何ら限定されるものでない。
Furthermore, the composite membrane for gas separation of the present invention is suitable not only for producing oxygen-enriched air from the atmosphere, but also for producing gas mixtures mainly composed of carbon dioxide and air (e.g., combustion waste gas).
separation of helium or argon from gas mixtures consisting mainly of helium or argon and nitrogen gas (e.g. liquefied helium or argon vaporized and mixed with air); helium enrichment from natural gas; Alternatively, it can also be suitably used to separate hydrogen from a gas mixture (for example, water gas or process gas) containing hydrogen and carbon monoxide or methane. The present invention will be further explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 密に織ったポリエステル製不織布(目付ffl 180
’j / 71i>の上にポリスルホン(口座化学ud
elP3500) 15wt%、N−メチルピロリドン
85wt%からなる溶液を厚さ約0.35 rrsの層
状にキャストし、直ちにポリスルホン層を20℃の水浴
中にてゲル化させることにより不織布補強ポリスルホン
多孔膜を得た。
Example 1 Densely woven polyester nonwoven fabric (fabric weight ffl 180
Polysulfone (account chemistry ud
elP3500) A solution consisting of 15 wt% of N-methylpyrrolidone and 85 wt% of N-methylpyrrolidone was cast into a layer with a thickness of about 0.35 rrs, and the polysulfone layer was immediately gelled in a water bath at 20°C to form a nonwoven reinforced polysulfone porous membrane. Obtained.

ひきつづきこの多孔膜を流水中で2日間洗浄し、残留溶
媒を除いた。かくして得られたポリスルホン多孔膜を1
00℃の熱水中に2時間浸漬し熱水処理をした。
Subsequently, the porous membrane was washed in running water for 2 days to remove residual solvent. The polysulfone porous membrane thus obtained was
The sample was immersed in hot water at 00°C for 2 hours for hot water treatment.

この多孔膜の特性として、1に’J/l:iの圧力にお
いて25℃の純水の透過量をはかったところ、水の透過
速度としT 1.41 X 10−’ 9 / ci 
・See −ajmであった。
As a characteristic of this porous membrane, when the amount of permeation of pure water at 25°C at a pressure of 1'J/l:i was measured, the water permeation rate was T 1.41 x 10-' 9 / ci
・See-ajm.

また100,000倍で膜の表面電顕を撮影しその孔径
を求めたところ0.01〜0.02μであった。
Further, the pore diameter of the membrane was determined by photographing the surface of the membrane with an electron microscope at a magnification of 100,000 times, and was found to be 0.01 to 0.02 .mu.m.

このポリスルホン多孔膜上にポリ−4−メチルペンテン
のシクロヘキセン溶液(展開助剤としてシクロヘキセン
ルヒドロパーオキサイドを3wt%を添加)を水面状に
展開して製膜したポリ−4−メチルペンテンの薄膜を数
層重ね膜厚を約0.12μにして複合膜をつくった。
A thin film of poly-4-methylpentene was formed on this porous polysulfone membrane by spreading a cyclohexene solution of poly-4-methylpentene (3 wt% of cyclohexene hydroperoxide was added as a developing aid) on the water surface. A composite film was made by stacking several layers to a film thickness of approximately 0.12 μm.

この複合膜を25c1R×50cIRの大きさに切り取
りアルミ板、ネット、複合膜の順に重ねノズル口をつけ
て四方をエポキシ樹脂で固め分離膜エレメント(モジュ
ール)とした。
This composite membrane was cut into a size of 25c1R x 50cIR, the aluminum plate, the net, and the composite membrane were stacked in this order, a nozzle opening was attached, and the four sides were solidified with epoxy resin to form a separation membrane element (module).

膜を乾燥後ノズル口より 160Torrに吸引して空
気分離をおこなったところ、酸素濃度40.5%の酸素
富化空気が217CG /分得られた。
After drying the membrane, air was separated by suction at 160 Torr from the nozzle opening, and 217 CG/min of oxygen-enriched air with an oxygen concentration of 40.5% was obtained.

ついでこのエレメントを80℃の熱風炉に入れ、ノズル
口より 130T orr減圧に引いて3時間処理をし
た。処理後さぎと同じ条件で空気分離をおこなったとこ
ろ酸素濃度は40.6%で酸素富化空気量は228cc
 /分であった。
Next, this element was placed in a hot air oven at 80° C., and the pressure was reduced to 130 Torr from the nozzle opening for treatment for 3 hours. After treatment, air separation was performed under the same conditions as the rabbit, and the oxygen concentration was 40.6% and the amount of oxygen-enriched air was 228cc.
/minute.

ついでこのエレメントをノズル口より吸引して160T
orrの減圧、温度23℃清浄空気雰囲気下で連続して
5ooo時間吸引したが、酸素濃度はかわらず、また流
量も226cc 7分(保持率99%)と安定七二比較
例1 熱水処、理をしないポリスルホン多孔膜を用いた以外は
実施例1と同様の操作をおこない複合膜をつくった。こ
の複合膜の熱水処理前の空気分離の性能は酸素温度40
.6%、富化空気徴208cc 7分であった。この複
合膜の熱処理後の性能は酸素濃度40.5%富化空気f
iti98cc 7分と低下した。また実施例1と同じ
耐久テストでは5000時間後の流量保持率は95%で
あった。
Next, suck this element from the nozzle opening and apply 160T.
Although suction was carried out continuously for 500 hours in a clean air atmosphere at a reduced pressure of orr and a temperature of 23°C, the oxygen concentration did not change and the flow rate remained stable at 226 cc for 7 minutes (retention rate 99%). A composite membrane was prepared in the same manner as in Example 1 except that a non-treated polysulfone porous membrane was used. The air separation performance of this composite membrane before hydrothermal treatment is as follows:
.. 6%, enriched air signature 208cc, 7 minutes. The performance of this composite membrane after heat treatment is as follows:
Iti98cc decreased to 7 minutes. Further, in the same durability test as in Example 1, the flow rate retention rate after 5000 hours was 95%.

実施例2 ポリ−2,6−ジメヂルフエニルレンオキシド2.0I
ffi ffi部、シクロへキセニルヒドロパーオキサ
イド 1.5重量部およびトリクロロエチレン97重は
部よりなる溶液を50℃に保持し、O,aSφの注射針
の先から6.Occ/分の流量で5℃に保持された水面
上に針先を水面に接しながら連続的に供給し、水面上に
ポリ−2,6−ジメヂルフエニレンオキシドの薄膜を形
成せしめた。形成された薄膜を針先から00(m l1
IIれたところで実施例1で使用したポリスルホン多孔
質膜の上から押しつけることによりポリスルホン多孔質
膜上に引きあげて第1層を形成した。膜厚は0.015
μmと81算された。
Example 2 Poly-2,6-dimethylphenyllene oxide 2.0I
A solution consisting of parts ffi ffi, 1.5 parts by weight of cyclohexenyl hydroperoxide, and 97 parts by weight of trichlorethylene was maintained at 50°C and injected with 6.0 parts by weight from the tip of an O, aSφ syringe needle. A thin film of poly-2,6-dimethylphenylene oxide was formed on the water surface by continuously supplying the needle tip onto the water surface maintained at 5° C. at a flow rate of Occ/min while in contact with the water surface. The formed thin film is 00 (ml1) from the needle tip.
At the second stage, the first layer was formed by pressing onto the polysulfone porous membrane used in Example 1 and pulling it up onto the polysulfone porous membrane. Film thickness is 0.015
It was calculated as 81 μm.

ついでポリジメチルシロキサン−ポリブタジェン共重合
体く引っ張り弾性率318Kg/ ci 、 P O2
1,5x 10’ CG−cm/ cm−3eC−ct
nHg、α:  2.0)7重世部、シクロへキセニル
ヒドロパーオキサイド5重量部およびベンゼン88重学
部よりなる溶液を同様に水面上に連続的に供給し水面上
にポリジメチルシロキサン−ポリブタジェン共重合体の
薄膜を形成せしめた。この共重合体の薄膜を2枚、ざき
の第1層の上に積層し中間層を形成せしめた。
Next, the polydimethylsiloxane-polybutadiene copolymer had a tensile modulus of 318 kg/ci, P O2
1,5x 10' CG-cm/cm-3eC-ct
nHg, α: 2.0) A solution consisting of 7 parts by weight, 5 parts by weight of cyclohexenyl hydroperoxide and 88 parts by weight of benzene was similarly continuously supplied onto the water surface, and polydimethylsiloxane-polybutadiene was deposited on the water surface. A thin film of the copolymer was formed. Two thin films of this copolymer were laminated on top of the first layer to form an intermediate layer.

計算したこの中間層の厚さは0.10μmであった。The calculated thickness of this intermediate layer was 0.10 μm.

さらにこの上にさきのポリ−2,6−シメチルフエニレ
ンオキシドの層(厚さ0.015μTrL)を設はポリ
フエニレンオキシドーボリジメチルラロキサン・ポリブ
タジェン−ポリフェニレンオキシドの積層した分離機能
層をもつ複合膜をつくった。
Furthermore, a layer of poly-2,6-dimethylphenylene oxide (thickness 0.015 μTrL) is placed on top of this, and a separation functional layer is formed by laminating polyphenylene oxide, polydimethylraloxane, polybutadiene, and polyphenylene oxide. We created a composite membrane with

この複合体を用い実施例1と同様に空気分離をおこなっ
たところ(減圧160Torr ) 40.2%の酸素
濃度で412cc 7分の流量の酸素富化空気が得られ
た。これをノズル口より吸引して180T orrに減
圧し、80℃の温度雰囲気で3時間熱処理した。
When air separation was carried out using this composite in the same manner as in Example 1 (reduced pressure: 160 Torr), oxygen-enriched air with an oxygen concentration of 40.2% and a flow rate of 412 cc for 7 minutes was obtained. This was suctioned from the nozzle opening, the pressure was reduced to 180 Torr, and heat treatment was performed in an atmosphere at a temperature of 80° C. for 3 hours.

熱処理後空気分離をおこなったところ(減圧160T 
orr ) 40.1%の酸素濃度で428CC7分の
流量の酸素富化空気が得られた。
Air separation after heat treatment (reduced pressure 160T)
orr ) Oxygen-enriched air with a flow rate of 428 CC7 minutes was obtained with an oxygen concentration of 40.1%.

実施例3 ポリ4−メチルペンテン−1(三4」石油化学■製、グ
レードDX 845) 3fflflft部、シクロヘ
キセニルヒドロパーオキリイド3重足部からなる溶液を
30°Cに保持して、0.8Mφの注射針の先から60
C,C7分の流量で5℃に保持された水面上に針先を水
面に接しながら連続的に供給した。該ポリマー溶液は水
面上に薄膜が形成した。形成された薄膜を針先から60
cm離れたところで、実施例1で用いたポリスルホン多
孔膜をその上から連続的に押しつけることによりポリス
ルホン多孔膜上に引きげた。ついでポリジメチルシロキ
サン−ポリカーボネート共重合体(シロキサン含有率6
0モル%。
Example 3 A solution consisting of 3 fflflfft parts of poly-4-methylpentene-1 (manufactured by San4 Petrochemical Company Ltd., grade DX 845) and 3 parts of cyclohexenyl hydroperoxylide was maintained at 30°C, and 0. 60 from the tip of an 8Mφ syringe needle
C and C were continuously supplied onto the water surface maintained at 5° C. with the needle tip in contact with the water surface at a flow rate of 7 minutes. The polymer solution formed a thin film on the water surface. The formed thin film is removed from the needle tip for 60 minutes.
At a distance of cm, the polysulfone porous membrane used in Example 1 was pulled onto the polysulfone porous membrane by continuously pressing it from above. Next, polydimethylsiloxane-polycarbonate copolymer (siloxane content: 6
0 mol%.

P○22 X 10−” cc−ctn/cri−se
a −cmHo 、α:2.2.引っ張り弾性率26O
ff9 / ci ) 8重量部、シクロへキセニルヒ
ドロパーオキサイド5重量部およびベンセン8フ重母部
からなる溶液を水面上に展開して共重合体の薄膜を形成
せしめ、さぎのポリ4−メチルペンテンの?J層の上に
積層し、さらにもう一度mね、厚さ0.108μの中間
層を形成した。
P○22 X 10-” cc-ctn/cri-se
a-cmHo, α: 2.2. Tensile modulus 26O
A solution consisting of 8 parts by weight of cyclohexenyl hydroperoxide, 5 parts by weight of cyclohexenyl hydroperoxide, and 8 parts of benzene fluoride was spread on the water surface to form a thin film of the copolymer. Penten's? This layer was laminated on top of the J layer, and an intermediate layer having a thickness of 0.108 μm was formed again.

つぎにこの中間層の外側にさきと同じ方法で形成せしめ
たポリ4−メチルペンテン−1の0.01γμの厚さの
薄膜を積層し、積層した分離機能層を有する複合膜を得
た。
Next, a thin film of poly-4-methylpentene-1 having a thickness of 0.01 γμ, which had been formed in the same manner as before, was laminated on the outside of this intermediate layer to obtain a composite membrane having a laminated separation functional layer.

この複合膜を用い腹側に空気を送り多孔性支持体の反対
側を160Torrの減圧にして空気の分離テストをお
こなったところ、41.3%の酸素濃度の酸素富化空気
が4.21/−rIL分の量(qられ7CQこれを80
℃の温度雰囲気下ノズル口より 130T orrの減
圧で吸引しながら3時I!!]処理した。
When we conducted an air separation test using this composite membrane by sending air to the ventral side and reducing the pressure to 160 Torr on the opposite side of the porous support, we found that oxygen-enriched air with an oxygen concentration of 41.3% was -Amount of rIL (qare 7CQ this is 80
At 3 o'clock while suctioning at a reduced pressure of 130T orr from the nozzle opening in a temperature atmosphere of ℃! ! ] Processed.

98理後同様に空気分離をおこなったところ、酸素濃度
41.3%の酸素富化空気が4.5交/ゴ分の最得られ
た。またこの処理した膜を、実施例1と同じ条件で連続
吸引テストをおこなったところ、5ooo時間、後の流
量保持率は99%以上あり、また酸素濃度もかわらず安
定していた。
After 98 hours, air separation was performed in the same manner, and oxygen-enriched air with an oxygen concentration of 41.3% was obtained at a maximum rate of 4.5 cycles/minute. Further, when this treated membrane was subjected to a continuous suction test under the same conditions as in Example 1, the flow rate retention rate after 500 hours was 99% or more, and the oxygen concentration remained stable.

実施例4 密に織ったポリエステル製不織布(目付量1357/T
rl>の上にポリスルホン(住友化学、PE5300P
 ) 15wt%、N−メチルピロリドン85wt%か
らなる溶液を厚さ約o、3mの層状にキャストし、直ら
にポリスルホン層を15℃の水浴中にてゲル化させるこ
とにより、不織布補強ポリスルホン多孔膜を得た。
Example 4 Densely woven polyester nonwoven fabric (basis weight 1357/T
polysulfone (Sumitomo Chemical, PE5300P)
) A nonwoven reinforced polysulfone porous membrane was obtained by casting a solution consisting of 15 wt% and 85 wt% of N-methylpyrrolidone into a layer with a thickness of approximately 0.3 m, and immediately gelling the polysulfone layer in a water bath at 15°C. Obtained.

この多孔膜を流水中で2日間洗浄し残留溶媒を除き、つ
いで90℃の熱水中で10時間熱処理をおこなった。こ
の多孔膜の水の透過速度は3.lX10−3<g/cr
i−sec −atm )であり表面孔径は0.01μ
以下であった。
This porous membrane was washed in running water for 2 days to remove residual solvent, and then heat-treated in 90° C. hot water for 10 hours. The water permeation rate of this porous membrane is 3. lX10-3<g/cr
i-sec-atm) and the surface pore diameter is 0.01μ
It was below.

このポリスルホン多孔膜の上にポリ(アリル−し−プチ
ルジメヂルシランーアリルトリメチルシラン〉共重合体
(アリル−℃−ブチルジメチルシラン30モル%)の0
.024μの薄膜、ついでポリメチルシロキサンーボリ
ビニルトリメヂルシラン共重合体くジメチルシロキサン
含有率70モル%)の0.10μの薄膜、ついでさぎの
ポリ(アリル−℃−ブヂルジメヂルシランーアリルトリ
メチルシラン)共重合体の0.024μの薄膜をこの順
に積層し複合膜を得た。
On this polysulfone porous membrane, 0% of poly(allyl-butyldimethylsilane-allyltrimethylsilane) copolymer (allyl-℃-butyldimethylsilane 30 mol%) was applied.
.. 0.024μ thin film, then a 0.10μ thin film of polymethylsiloxane-borivinyltrimedylsilane copolymer (dimethylsiloxane content 70 mol%), and then a 0.10μ thin film of poly(allyl-℃-butyldimedylsilane-allyltrimethyl). Silane) copolymer thin films of 0.024 μm were laminated in this order to obtain a composite film.

この複合膜の性能を調べるため空気分離をおこなったと
ころ(減圧50TOrr ) ′Pli素濶度3濃度2
%。
In order to investigate the performance of this composite membrane, air separation was performed (reduced pressure 50 TOrr) 'Pli concentration 3 concentration 2
%.

富化空気ffi 1.5017況・分であった。The enriched air ffi was 1.5017 min.

この複合膜を70℃の温度雰囲気下ノズル口より120
Torrの減圧に吸引し5時間熱処理した。さ 、きと
同じ条件で空気分離をおこなったところ、酸素温度38
.2%、富化空気l 1,53 fi/尻・分であった
This composite film was heated at 120℃ from the nozzle opening in a temperature atmosphere of 70℃.
The mixture was vacuumed to a vacuum of Torr and heat-treated for 5 hours. When air separation was performed under the same conditions as before, the oxygen temperature was 38.
.. 2%, enriched air l 1,53 fi/min.

実施例5 ポリスルホン(日照化学、 udelP3500) 2
0wt%。
Example 5 Polysulfone (Nizho Kagaku, udelP3500) 2
0wt%.

N〜メチルピロリドン57wt%、塩化リチウム3wt
%、2−メ;〜キシエタノール20wt%からなる溶液
を、30℃において芯液として水を用い環状スリットよ
り吐出させ、25℃の水中に浸漬し凝固させることによ
り、外径800μ、内径500μのポリスルホン中空糸
多孔膜を得た。ついでこの中空多孔膜を束ねて 100
℃の熱水中に4時間浸漬し、熱水処理した。
N~Methylpyrrolidone 57wt%, lithium chloride 3wt
A solution consisting of 20 wt% of xyethanol was discharged from an annular slit at 30°C using water as the core liquid, and immersed in water at 25°C to coagulate. A polysulfone hollow fiber porous membrane was obtained. Next, bundle this hollow porous membrane and make 100
It was immersed in hot water at ℃ for 4 hours for hot water treatment.

このポリスルホン中空多孔膜の水通過速度は、4、OX
 10’ (’j / cm −see −arm )
であった。中空糸の内側および外側の表面孔径はいづれ
も、0.01〜0.02μであった。またこの中空糸多
孔膜は、内側および外側は緻密構造をもち、中側は中空
のフィンガー構造であった。
The water passing rate through this polysulfone hollow porous membrane is 4, OX
10'('j/cm-see-arm)
Met. The inner and outer surface pore diameters of the hollow fibers were both 0.01 to 0.02 μ. Moreover, this hollow fiber porous membrane had a dense structure on the inside and outside, and a hollow finger structure on the inside.

この中空多孔膜をポリカーボネー1〜製のパイプ中に詰
め、両端部を接着剤で固め中空糸膜モジュールを19だ
This hollow porous membrane was packed into a pipe made of polycarbonate 1~, and both ends were secured with adhesive to form a hollow fiber membrane module 19.

つぎにこのモジュールの中空糸多孔膜中に水を含浸させ
たまま、ポリメチルペンテン(三井石油化学■製グレー
ドMX−002)の4wt%シクロへキセン溶液を、モ
ジュールのまま中空糸の内側に流す。流したのらトレイ
ンして風乾し、又ポリマー溶液を流すことを3回繰り返
す。
Next, while the hollow fiber porous membrane of this module is impregnated with water, a 4wt% cyclohexene solution of polymethylpentene (grade MX-002 manufactured by Mitsui Petrochemical ■) is poured inside the hollow fiber while the module is intact. . After pouring, train and air dry, and repeat the process of pouring the polymer solution three times.

かくして得られた分離膜を乾燥し、ついで75℃雰囲気
下モジュールの外側吸引口より 160T orrの減
圧で吸引し、5時間熱処理した。160T orrの減
圧で空気分離をしたところ酸素濃度は38.8%。
The separation membrane thus obtained was dried and then subjected to a heat treatment for 5 hours under vacuum of 160 Torr from the outside suction port of the module in an atmosphere of 75°C. When air was separated under reduced pressure of 160T orr, the oxygen concentration was 38.8%.

富化空気量は159cc/ rd・分であった。実施例
1と同様の雰囲気下で連続して吸引することで耐久テス
トを実施したが、5000時間後の流量保持率は98%
以上あり、性能は安定していた。
The enriched air amount was 159 cc/rd·min. A durability test was conducted by continuously suctioning in the same atmosphere as in Example 1, and the flow rate retention rate after 5000 hours was 98%.
Above all, performance was stable.

特許出願人  帝  人  株  式  会  社代 
 理  人  弁理士  前  1) 純  1冑7.
/1(゛
Patent applicant: Teijin Ltd.
Patent attorney former 1) Jun 1 7.
/1(゛

Claims (2)

【特許請求の範囲】[Claims] (1)ポリスルホン系多孔膜と、その上に存在する0.
5μ以下の厚さの分離機能層からなる複合膜において、
該ポリスルホン系多孔膜が湿式製膜により製膜され、表
面孔径が0.5μ以下で水の透過速度が1×10^−^
4(g/cm^2・sec・atm)以上あり、かつ5
0〜130℃の熱水中0.2時間以上処理されたもので
あり、そして該複合膜が複合膜を形成した後に0.1〜
400Torrの減圧の気相条件下、60〜200℃の
温度で0.2時間以上処理されたものであることを特徴
とする気体分離用複合膜。
(1) A polysulfone-based porous membrane and a 0.
In a composite membrane consisting of a separation functional layer with a thickness of 5μ or less,
The polysulfone-based porous membrane is formed by wet film forming, and has a surface pore diameter of 0.5μ or less and a water permeation rate of 1×10^-^.
4 (g/cm^2・sec・atm) or more, and 5
The composite membrane is treated in hot water at 0 to 130°C for 0.2 hours or more, and after forming the composite membrane,
1. A composite membrane for gas separation, characterized in that it is treated under gas phase conditions at a reduced pressure of 400 Torr at a temperature of 60 to 200°C for 0.2 hours or more.
(2)該分離機能層が有機高分子化合物を含有する有機
溶媒溶液から形成された膜層であることを特徴とする特
許請求の範囲第1項記載の気体分離用複合膜。
(2) The composite membrane for gas separation according to claim 1, wherein the separation functional layer is a membrane layer formed from an organic solvent solution containing an organic polymer compound.
JP60165923A 1985-07-29 1985-07-29 Composite membrane for separating gas Granted JPS6227025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165923A JPS6227025A (en) 1985-07-29 1985-07-29 Composite membrane for separating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165923A JPS6227025A (en) 1985-07-29 1985-07-29 Composite membrane for separating gas

Publications (2)

Publication Number Publication Date
JPS6227025A true JPS6227025A (en) 1987-02-05
JPH0378129B2 JPH0378129B2 (en) 1991-12-12

Family

ID=15821576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165923A Granted JPS6227025A (en) 1985-07-29 1985-07-29 Composite membrane for separating gas

Country Status (1)

Country Link
JP (1) JPS6227025A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004200A1 (en) * 1987-11-02 1989-05-18 Union Carbide Corporation Treatment of permeable membranes
US4871378A (en) * 1987-12-11 1989-10-03 Membrane Technology & Research, Inc. Ultrathin ethylcellulose/poly(4-methylpentene-1) permselective membranes
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them
JPH04501735A (en) * 1988-11-18 1992-03-26 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Washing and cleaning formulations containing secondary dialkyl ether sulfates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144456A (en) * 1978-05-03 1979-11-10 Rhone Poulenc Ind Polymer composition for membrane
JPS5771606A (en) * 1980-10-23 1982-05-04 Kanegafuchi Chem Ind Co Ltd Dry polysulfone semipermeable membrane and manufacture thereof
JPS583830A (en) * 1981-06-30 1983-01-10 Teijin Ltd Manufacture of extremely thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144456A (en) * 1978-05-03 1979-11-10 Rhone Poulenc Ind Polymer composition for membrane
JPS5771606A (en) * 1980-10-23 1982-05-04 Kanegafuchi Chem Ind Co Ltd Dry polysulfone semipermeable membrane and manufacture thereof
JPS583830A (en) * 1981-06-30 1983-01-10 Teijin Ltd Manufacture of extremely thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004200A1 (en) * 1987-11-02 1989-05-18 Union Carbide Corporation Treatment of permeable membranes
US4871378A (en) * 1987-12-11 1989-10-03 Membrane Technology & Research, Inc. Ultrathin ethylcellulose/poly(4-methylpentene-1) permselective membranes
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them
JPH04501735A (en) * 1988-11-18 1992-03-26 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Washing and cleaning formulations containing secondary dialkyl ether sulfates

Also Published As

Publication number Publication date
JPH0378129B2 (en) 1991-12-12

Similar Documents

Publication Publication Date Title
JP3859464B2 (en) Method for producing a composite gas separation membrane from a perfluoropolymer
JP2003225542A (en) Composite hollow fiber membrane reinforced with woven fabric
JPH0317533B2 (en)
Chung A review of microporous composite polymeric membrane technology for air-separation
CA2145451C (en) Process for producing composite membranes
JPH0647058B2 (en) Gas selective permeable membrane
JPH057749A (en) Fluorine-containing polyimide type composite membrane and asymmetric membrane, preparation of them and gas separating/concentrating method using said membranes
PT87512B (en) PROCESS FOR REACTIVE POST-TREATMENT OF GAS SEPARATION MEMBRANES
JP6521052B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JPS6351921A (en) Multicomponent gas separating membrane
KR20160026070A (en) Manufacturing method of gas separator membrane
JPH0323208B2 (en)
JPS62227423A (en) Gas separating membrane
JPS643134B2 (en)
JPS6227025A (en) Composite membrane for separating gas
KR0149879B1 (en) Composite film for gas stripping and its manufacture
JP2828001B2 (en) Asymmetric hollow fiber membrane for water / organic solvent separation or gas separation and method for producing the same
JPH0260370B2 (en)
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JPH0122008B2 (en)
JPH119974A (en) Composite hollow-yarn membrane for external pressure gas separation and method for producing the same
JPS6227022A (en) Stabilizing method for membrane
JPH0470048B2 (en)
JP2004097918A (en) Polyetherimide conjugate hollow fiber membrane and its manufacturing method
JPH0364176B2 (en)