JPH0378129B2 - - Google Patents

Info

Publication number
JPH0378129B2
JPH0378129B2 JP60165923A JP16592385A JPH0378129B2 JP H0378129 B2 JPH0378129 B2 JP H0378129B2 JP 60165923 A JP60165923 A JP 60165923A JP 16592385 A JP16592385 A JP 16592385A JP H0378129 B2 JPH0378129 B2 JP H0378129B2
Authority
JP
Japan
Prior art keywords
membrane
composite membrane
polysulfone
separation
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60165923A
Other languages
Japanese (ja)
Other versions
JPS6227025A (en
Inventor
Kenko Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60165923A priority Critical patent/JPS6227025A/en
Publication of JPS6227025A publication Critical patent/JPS6227025A/en
Publication of JPH0378129B2 publication Critical patent/JPH0378129B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は気体混合物を膜分離する際に用いられ
る膜、特に気体透過性にすぐれ、かつ安定性の改
善された膜に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a membrane used for membrane separation of gas mixtures, and particularly to a membrane having excellent gas permeability and improved stability.

〈従来技術〉 近年膜分離技術はその省エネルギー性の故に多
くの分野で利用されている。かかる分離に用いら
れる膜の製造方法も種々開発されてきたが、中で
も膜を分離機能を発現する部分(分離機能層)と
機械的強度を保持する部分(多孔質支持体)とに
分け、それぞれをそれぞれに最適な別個の素材で
構成せしめた、いわゆる複合膜は膜設計の自由度
を飛躍的に高めたものとして注目されている。
<Prior Art> In recent years, membrane separation technology has been used in many fields due to its energy saving properties. Various methods have been developed for producing membranes used in such separations, among which the membrane is divided into a part that performs the separation function (separation functional layer) and a part that maintains mechanical strength (porous support). So-called composite membranes, which are composed of separate materials that are optimal for each, are attracting attention as they dramatically increase the degree of freedom in membrane design.

上述の如く複合膜においては多孔質膜の上に分
離機能層が設けられるが、機能層の形成が直接当
該多孔質膜上で実施されるか、あるいは別個に作
成したものを積層するかは別にしても通常当該機
能層は分離膜形成物質を有機溶媒に溶解せしめた
溶液から薄層(薄膜)として形成される。
As mentioned above, in a composite membrane, a separation functional layer is provided on a porous membrane, but it does not matter whether the functional layer is formed directly on the porous membrane or whether separately prepared layers are laminated. However, the functional layer is usually formed as a thin layer (thin film) from a solution in which a separation membrane-forming substance is dissolved in an organic solvent.

かかる薄層を支持するために多孔質膜を用いる
が、多孔質膜は気体透過上その大小はあるが透過
抵抗になること、また特に湿式製膜によつてつく
られる複合膜は使用中流量が低下するなどの経時
変化がおこりやすい等の問題点を有している。
A porous membrane is used to support such a thin layer, but porous membranes have some degree of resistance to gas permeation, and especially composite membranes made by wet membrane formation have a high flow rate during use. It has problems such as easy changes over time such as deterioration.

多孔質膜支持体としてポリスルホン多孔膜が使
用される場合が多いが、かかる複合膜において流
量の増大と安定化という2つの改善が望まれてい
る。
Although polysulfone porous membranes are often used as porous membrane supports, two improvements are desired in such composite membranes: increased flow rate and stabilization.

〈発明の構成〉 本発明者らはポリスルホン系多孔膜とその上の
分離機能層からなる複合膜において、複合膜に特
定の処理を施すことによつてその安定化をはかる
ことを検討するなかで、通常複合膜を特定の処理
をすると複合膜の流量は低下するのに対し、該複
合膜を構成するポリスルホン多孔膜をあらかじめ
特定の処理を施し用いると、複合膜を同様の特定
の処理をしても膜の透過流量は低下せず逆に増大
すること、又流量の安定性がさらに改善されるこ
とを見い出し本発明に到達したものである。すな
わち本発明は、ポリスルホン系多孔膜とその上に
存在する0.5μ以下の厚さの分離機能層からなる複
合膜において、該ポリスルホン多孔膜が湿式製膜
により製膜され、表面孔径が0.5μ以下で水の透過
速度が1×10-4(g/cm2・sec・atm)以上あり、
かつ50〜130℃の熱水中0.2時間以上処理されたも
のであり、そして該複合膜が複合膜を形成した後
に該複合膜の一面側の圧力を他面側よりも低くし
且つ該一面側の圧力を0.1〜400Torrとした気相
条件下、60〜200℃の温度で0.2時間以上処理して
つくられることを特徴とする気体分離用複合膜で
ある。
<Structure of the Invention> The present inventors have investigated stabilizing a composite membrane consisting of a polysulfone porous membrane and a separation functional layer thereon by subjecting the composite membrane to a specific treatment. Normally, when a composite membrane is subjected to a specific treatment, the flow rate of the composite membrane decreases, but if the polysulfone porous membrane that makes up the composite membrane is subjected to a specific treatment in advance, then the composite membrane can be subjected to the same specific treatment. We have arrived at the present invention by discovering that the permeation flow rate through the membrane does not decrease, but increases, and that the stability of the flow rate is further improved. That is, the present invention provides a composite membrane consisting of a polysulfone-based porous membrane and a separation functional layer with a thickness of 0.5μ or less existing thereon, in which the polysulfone porous membrane is formed by wet film forming and has a surface pore size of 0.5μ or less. The water permeation rate is 1×10 -4 (g/cm 2・sec・atm) or more,
and treated in hot water at 50 to 130°C for 0.2 hours or more, and after forming the composite membrane, the pressure on one side of the composite membrane is lower than the other side, and the pressure on one side of the composite membrane is lower than that on the other side. A composite membrane for gas separation characterized in that it is produced by processing at a temperature of 60 to 200°C for 0.2 hours or more under gas phase conditions at a pressure of 0.1 to 400 Torr.

以下、本発明について詳細に説明する。 The present invention will be explained in detail below.

本発明で用いられるポリスルホン系多孔膜の素
材であるポリスルホン系樹脂とは、その分子中に
−SO2−の結合基を有する重合体から構成される
が、該重合体の中で機械的強度及び耐熱性にすぐ
れるものとして下記式(1)又は(2) で表わされる繰り返し単位を50モル%以上有する
重合体が挙げられる。これらの重合体は1種類又
は2種類以上の混合物として使用することができ
る。
The polysulfone resin, which is the material of the polysulfone porous membrane used in the present invention, is composed of a polymer having a -SO 2 - bonding group in its molecule. The following formula (1) or (2) has excellent heat resistance. Examples include polymers having 50 mol% or more of repeating units represented by These polymers can be used alone or as a mixture of two or more.

ポリスルホン系多孔膜の製膜はポリスルホン系
樹脂を溶媒に溶解した溶液を凝固液中で凝固させ
ておこなうという公知の方法で実施される。
Polysulfone-based porous membranes are formed by a known method in which a solution of polysulfone-based resin dissolved in a solvent is coagulated in a coagulating liquid.

かかる溶媒としては、例えばジメチルアセトア
ミド、ジメチルホルムアミド、N−メチルピロリ
ドン、テトラメチル尿素などが用いられる。
Examples of such solvents include dimethylacetamide, dimethylformamide, N-methylpyrrolidone, and tetramethylurea.

また該ポリスルホン系溶液の中には通常使用さ
れている開孔剤や安定剤などの添加剤を添加する
ことができる。
Further, commonly used additives such as pore opening agents and stabilizers can be added to the polysulfone solution.

本発明では、以上説明した如きポリスルホン系
樹脂、その溶媒、必要に応じ添加剤を含有した樹
脂溶液を用いて流涎又は紡糸等により平膜、チユ
ーブラーあるいは中空糸等の膜状に成形する。平
膜及びチユーブラーの膜状に成形する際には、必
要に応じて他の支持体を用いてもよい。また流
涎、紡糸等の成形後、樹脂溶液中の溶媒等の部分
乾燥を行なつてもよい。
In the present invention, a resin solution containing the above-described polysulfone resin, its solvent, and optionally additives is used to form a membrane shape such as a flat membrane, tubular fiber, or hollow fiber by drooling or spinning. When forming into a flat film or a tubular film, other supports may be used as necessary. Further, after forming by drooling, spinning, etc., the solvent etc. in the resin solution may be partially dried.

本発明では、かくして膜状に成形されたものを
凝固液に浸漬することによつて製膜を行なう。
In the present invention, film formation is performed by immersing the thus formed film in a coagulating liquid.

本発明の微多孔膜を製膜するに際し用いられる
凝固液としては、水、又は水と自由に混和しうる
有機液体の少なくとも1種、あるいはこれらの混
合物が用いられる。
The coagulating liquid used in forming the microporous membrane of the present invention is water, at least one organic liquid that is freely miscible with water, or a mixture thereof.

水と自由に混和しうる有機液体の例としてはメ
タノール、エタノール、エチレングリコール、ジ
メチルホルムアミド、ジメチルアセトアミド、N
−メチルピロリドンなどをあげることができる。
Examples of organic liquids that are freely miscible with water include methanol, ethanol, ethylene glycol, dimethylformamide, dimethylacetamide, N
-Methylpyrrolidone, etc. can be mentioned.

本発明の凝固浴としては、特に好ましくは実質
的に水からなる液である。
The coagulation bath of the present invention is particularly preferably a liquid consisting essentially of water.

これらの凝固液に該樹脂溶液より製膜した膜を
浸漬し、実質的に凝固させ、更に必要ならば水洗
し残留溶媒等を除くことにより本発明の多孔膜が
得られる。
The porous membrane of the present invention can be obtained by immersing a membrane formed from the resin solution in these coagulating liquids, substantially coagulating the membrane, and if necessary, washing with water to remove residual solvent and the like.

本発明の多孔膜の形態としてはその使用目的に
応じ、平膜、チユーブラー膜、中空糸膜等の形態
で製膜し得る。平膜、、チユーブラー膜等の場合
には例えば不織布等の基材を補強材として用いて
もよい。
The porous membrane of the present invention may be formed in the form of a flat membrane, a tubular membrane, a hollow fiber membrane, etc. depending on the purpose of use. In the case of flat membranes, tubular membranes, etc., a base material such as nonwoven fabric may be used as a reinforcing material.

かくして得られたポリスルホン系多孔膜を分離
機能薄膜層の支持体として用いる場合、多孔膜の
表面孔径が0.5μ以下、好ましくは0.2μ以下、さら
に好ましくは0.1μ以下である。0.5μより大きいと
分離機能薄膜の膜層を薄くできない。
When the polysulfone porous membrane thus obtained is used as a support for a separation functional thin film layer, the surface pore diameter of the porous membrane is 0.5 μ or less, preferably 0.2 μ or less, and more preferably 0.1 μ or less. If it is larger than 0.5μ, the membrane layer of the separation functional thin film cannot be made thinner.

流量はできるだけ大きいほうが好ましく、25℃
で測定した水の透過速度として1×10-5(g/
cm2・sec・atm)以上、好ましくは1×10-4(g/
cm2・sec・atm)以上である。
The flow rate should be as large as possible, and the temperature should be 25℃.
The water permeation rate measured at 1×10 -5 (g/
cm2・sec・atm) or more, preferably 1×10 -4 (g/
cm2・sec・atm) or more.

本発明においては、前記の如き湿式製膜された
ポリスルホン系多孔膜を熱水中に浸漬し熱処理す
る。熱水の温度は50〜130℃、好ましくは60〜100
℃である。100℃以上は加圧下でおこなう。50℃
以下では多孔膜の安定化という効果がほとんどな
い。熱水処理時間は0.2時間以上、好ましくは0.5
時間以上さらに好ましくは1時間以上である。
0.2時間以下では熱処理の効果がでない。処理時
間の長さは特に限定されないが、通常24時間以内
である。24時間以上しても24時間以内と効果に何
らかわりはない。
In the present invention, the wet-formed polysulfone porous membrane as described above is immersed in hot water and heat-treated. Hot water temperature is 50-130℃, preferably 60-100℃
It is ℃. If the temperature is 100℃ or higher, perform under pressure. 50℃
Below this, there is almost no effect of stabilizing the porous membrane. Hot water treatment time is 0.2 hours or more, preferably 0.5 hours
It is more than 1 hour, more preferably 1 hour or more.
If the time is less than 0.2 hours, the heat treatment will not be effective. The length of treatment time is not particularly limited, but is usually within 24 hours. Even if you take it for more than 24 hours, there is no difference in effectiveness than if you take it for less than 24 hours.

温水中の浸漬法は一旦製膜したポリスルホン系
多孔膜を水洗の後、あらためて温水中に浸漬する
ことができる。その場合平膜状であるならば巻い
たままで浸漬してもシート状で浸漬してもその効
果はかわらない。また中空糸条、チユーブラー状
の場合連続的にあるいは束ねて浸漬処理すること
ができる。あるいは製膜後凝固液からでて、つい
で熱水処理槽に通すという連続的処理方法もでき
る。
In the hot water immersion method, the polysulfone porous membrane once formed can be washed with water and then immersed again in warm water. In this case, if it is in the form of a flat membrane, the effect will be the same whether it is immersed in a rolled form or in a sheet form. In the case of hollow fibers or tubular fibers, they can be subjected to dipping treatment continuously or in bundles. Alternatively, a continuous treatment method can be used in which the membrane is discharged from the coagulation solution after film formation and then passed through a hot water treatment tank.

なお湿式製膜したポリスルホン系多孔膜を一旦
乾燥した後、熱処理する場合、ポリスルホンは疎
水性であり一旦乾燥すると多孔膜の孔の中への水
の浸漬が充分いかず、処理の効果が低下するため
ポリスルホン系多孔膜は乾燥することなく湿潤状
態のまま処理することが好ましい。
Note that when a wet-formed porous polysulfone membrane is once dried and then heat-treated, polysulfone is hydrophobic, and once it dries, water cannot soak into the pores of the porous membrane sufficiently, reducing the effectiveness of the treatment. Therefore, it is preferable to process the polysulfone porous membrane in a wet state without drying it.

本発明に用いられる複合膜の分離機能層は有機
高分子化合物からなる薄膜であるが、かかる薄膜
は有機高分子化合物を含有する有機溶媒溶液から
水面上展開法、キヤステイング法あるいはコーテ
イング法などよく知られている方法により形成さ
れる。有機高分子化合物である膜素材は、特定の
気体に対して優れた選択性を有する公知の素材を
適宜使用することができる。特定の気体が例えば
酸素の場合は炭素−炭素間の重合性二重結合ない
しは三重結合を有する炭化水素化合物及び/又は
シラン化合物から選ばれる少なくとも1種の不飽
和化合物の付加重合体、あるいは主鎖ないし側鎖
にシロキサン単位を有する重合体、あるいは芳香
族ポリエーテル類などが好適に用いられる。
The separation functional layer of the composite membrane used in the present invention is a thin film made of an organic polymer compound, and such a thin film can be prepared by a method such as spreading on water, casting, or coating from an organic solvent solution containing the organic polymer. Formed by known methods. As the membrane material which is an organic polymer compound, any known material having excellent selectivity to a specific gas can be used as appropriate. When the specific gas is, for example, oxygen, an addition polymer or main chain of at least one unsaturated compound selected from hydrocarbon compounds and/or silane compounds having a polymerizable double bond or triple bond between carbon and carbon. Polymers having siloxane units in their side chains, aromatic polyethers, and the like are preferably used.

かかるポリマーの例としては、ポリメチルペン
テン、ポリメチルヘキセン、ポリブタジエン、ポ
リビニルトリメチルシラン、ポリトリメチルシリ
ルアセチレン、ポリ(メチルヘキセン−アリルト
リメチルシラン)共重合体、ポリ−t−ブチルア
セチレン、ポリ(アリルトリメチルシラン−アリ
ル−t−ブチルジメチルシラン)、ポリジメチル
シロキサン、ポリシロキサン−ポリカーボネート
共重合体、ポリシロキサン−ポリブタジエン共重
合体、ポリ[メチクリロキシプロピルトリス(ト
リメチルシロキシ)シラン]、ポリ2,6−ジメ
チルフエニレンエーテルなどをあげることができ
る。
Examples of such polymers include polymethylpentene, polymethylhexene, polybutadiene, polyvinyltrimethylsilane, polytrimethylsilylacetylene, poly(methylhexene-allyltrimethylsilane) copolymer, poly-t-butylacetylene, poly(allyltrimethylsilane). -allyl-t-butyldimethylsilane), polydimethylsiloxane, polysiloxane-polycarbonate copolymer, polysiloxane-polybutadiene copolymer, poly[methycryloxypropyltris(trimethylsiloxy)silane], poly2,6-dimethyl Examples include phenylene ether.

かかる膜素材を溶解する溶媒としては膜素材を
溶解するものであればいかなるものでよく、例え
ばベンゼン、トルエン、キシレン、シクロヘキサ
ン、シクロヘキセン、ヘキセン、オクタン、ヘキ
サデセン、オクタデセンなどの炭化水素系溶媒、
トリクロロエチレン、テトラクロロエチレン、ク
ロロホルム、トリクロロトリフロロエチレンなど
のハロゲン化炭化水素系溶媒、テトラヒドロフラ
ン、ジオキサンなどのエーテル系溶媒、ジメチル
ホルムアミド、ジメチルアセトアミド、N−メチ
ルピロリドンなどの非プロトン系溶媒、エタノー
ル、iso−プロピルアコール、ブタノールなどの
アルコール系溶媒などであり、その単独あるいは
2種以上の混合系で用いられる。また溶媒以外に
も製膜を安定化ならしめる界面活性剤や展開助剤
を加えることもできる。薄膜機能層を形成させる
ためにはかかる溶媒に溶解した有機高分子化合物
溶液を調整し、通常のよく知られた方法で薄膜層
を形成する。すなわち例えばこの有機高分子化合
物溶液を水面上に展開したり、あるいは平らな固
体表面上にキヤステイングしたりして薄い溶液に
し、ついで脱溶媒して薄膜を形成しついで多孔質
膜上に積層する方法、あるいは有機高分子化合物
溶液を多孔質膜の上にコーテイングし脱溶媒して
薄膜を形成する方法などである。
Any solvent may be used as long as it dissolves the membrane material, such as hydrocarbon solvents such as benzene, toluene, xylene, cyclohexane, cyclohexene, hexene, octane, hexadecene, and octadecene;
Halogenated hydrocarbon solvents such as trichlorethylene, tetrachlorethylene, chloroform, trichlorotrifluoroethylene, ether solvents such as tetrahydrofuran and dioxane, aprotic solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethanol, iso-propyl Alcohol solvents such as alcohol and butanol are used alone or in a mixture of two or more. In addition to the solvent, a surfactant or a developing aid may be added to stabilize the film formation. In order to form a thin film functional layer, a solution of an organic polymer compound dissolved in such a solvent is prepared, and a thin film layer is formed by a conventional and well-known method. That is, for example, this organic polymer compound solution is spread on a water surface or casted on a flat solid surface to make a thin solution, and then the solvent is removed to form a thin film, which is then laminated onto a porous membrane. method, or a method in which a porous membrane is coated with an organic polymer compound solution and the solvent is removed to form a thin film.

いづれの場合も有機高分子化合物を溶媒に溶解
し、溶液としこれを用い製膜し、ついで脱溶媒し
て薄膜を形成する。
In either case, the organic polymer compound is dissolved in a solvent, the solution is used to form a film, and then the solvent is removed to form a thin film.

なお分離機能層は単独層(一層)でもよいし、
あるいは少なくとも2層からなる複数層であつて
もよい、特に少なくとも2層の薄膜を積層し分離
機能層とした膜は、薄膜の欠陥部分は重ね合わせ
により埋められ分離特性が向上すること、また分
離機能層の強度も改善することができ好ましく用
いられる。もちろん積層する薄膜は同一素材から
なるものでも、異なる素材からなるものであつて
もよい。
Note that the separation functional layer may be a single layer (single layer),
Alternatively, it may be a multi-layer structure consisting of at least two layers. In particular, a membrane with a separation function layer formed by laminating at least two thin films has the advantage that defective parts of the thin films are filled by overlapping and the separation properties are improved. It is preferably used because it can also improve the strength of the functional layer. Of course, the thin films to be laminated may be made of the same material or may be made of different materials.

本発明の分離機能層の厚さは膜中に欠陥を生じ
なければ気体透過性の上からできるだけ薄い方が
好ましく、厚さとしては0.5μ以下、好ましくは
0.3μ以下、さらに好ましくは0.15μ以下である。
The thickness of the separation functional layer of the present invention is preferably as thin as possible in terms of gas permeability, as long as no defects occur in the membrane, and the thickness is preferably 0.5μ or less, preferably
It is 0.3μ or less, more preferably 0.15μ or less.

かくして得られた複合膜を0.1〜400Torrの減
圧の気相条件下60〜200℃の温度で0.2時間以上処
理する。
The composite membrane thus obtained is treated at a temperature of 60 to 200° C. for 0.2 hours or more under gas phase conditions at a reduced pressure of 0.1 to 400 Torr.

本発明の複合膜はかかる熱処理により流量が増
大し、かつ複合膜がその使用中あるいは保存中も
流量や選択性が安定、特に流量が安定する。流量
は熱処理前に比べて最大10%、平均5%増大す
る。非常に興味深いことは複合膜の熱処理により
かかる流量の増大がおこるのは、あらかじめ熱水
処理したポリスルホン系多孔膜を用いた時だけで
あり、熱水処理しないポリスルホン系多孔膜を用
い同様の複合膜をつくり熱処理すると熱処理前に
比べて流量は低下する。
The flow rate of the composite membrane of the present invention is increased by such heat treatment, and the flow rate and selectivity of the composite membrane are stabilized even during use or storage, especially the flow rate is stabilized. The flow rate increases by a maximum of 10% and an average of 5% compared to before heat treatment. What is very interesting is that the increase in flow rate due to heat treatment of the composite membrane occurs only when a porous polysulfone membrane that has been previously treated with hot water is used, and when a similar composite membrane is used with a porous polysulfone membrane that is not treated with hot water. When it is made and heat treated, the flow rate decreases compared to before heat treatment.

また流量の安定性についても差がある。熱水処
理しないポリスルホン系多孔膜を用い複合膜をつ
くり熱処理すると熱処理しないものに比べて流量
は著しく安定し、熱処理効果がでるが熱処理した
ポリスルホン系多孔膜を用いると複合膜の熱処理
効果はさらによくでて流量の安定性がさらに向上
する。
There are also differences in the stability of flow rate. When a composite membrane is made using a polysulfone-based porous membrane that is not treated with hot water and then heat treated, the flow rate is significantly more stable and the heat treatment effect is obtained compared to one that is not heat-treated, but the heat treatment effect of the composite membrane is even better when a heat-treated polysulfone-based porous membrane is used. This further improves the stability of the flow rate.

複合膜の熱処理効果の一つは、分離機能層を形
成する段階で用いた有機溶媒が、製膜後の除去過
程においても膜中に微量に残存していて、それが
熱処理により除去されること、またポリスルホン
系多孔膜の熱水処理の効果も湿式製膜したポリス
ルホン系多孔膜に残存する微量の製膜溶媒を除去
することにその一つがあり、その効果はあらわれ
ていると考えるがそれだけで全ては説明できな
い。
One of the effects of heat treatment on composite membranes is that the organic solvent used in the stage of forming the separation functional layer remains in the membrane in trace amounts even during the removal process after film formation, and this is removed by heat treatment. In addition, one of the effects of hot water treatment of polysulfone-based porous membranes is the removal of trace amounts of membrane-forming solvent remaining in wet-formed polysulfone-based porous membranes, and I believe that this effect is visible, but that is not all. I can't explain everything.

一つの考え方としてポリスルホン系多孔膜の熱
水処理で脱溶媒とともに構造変化をもたらし、そ
れが乾燥した状態での熱処理により支持体として
最適の構造例えば表面の孔が少し拡がり開口度が
増大したことなどが予想される。即ち熱水処理・
熱処理が製膜溶媒の除去だけでなく、ポリスルホ
ンの構造の変化をもたらし膜の安定性に結びつい
たと考えられる。もちろん分離機能層の熱処理に
よる構造の安定化もあると考えられる。
One way of thinking is that hot water treatment of polysulfone porous membranes brings about structural changes along with desolvation, and then heat treatment in a dry state creates a structure that is optimal for use as a support, for example, the pores on the surface expand a little and the degree of aperture increases. is expected. In other words, hot water treatment
It is thought that the heat treatment not only removed the film-forming solvent but also caused a change in the structure of the polysulfone, leading to stability of the film. Of course, it is thought that the structure may be stabilized by heat treatment of the separation functional layer.

すなわち本発明は支持体として用いるポリスル
ホン系多孔膜を特定の条件で熱水処理すること
と、さらに複合膜としたあとで特定の条件下で熱
処理することの両方の処理によりはじめてその効
果を発揮することを見い出したものである。
In other words, the present invention exhibits its effects only when the porous polysulfone membrane used as a support is treated with hot water under specific conditions, and the composite membrane is further heat-treated under specific conditions after being made into a composite membrane. This is what I discovered.

本発明の複合膜の処理は、0.1〜400Torrの減
圧の気相条件下でおこなう。ここでいう減圧の気
相条件下とは本発明の複合膜をかかる減圧容器内
に置き、膜全体を処理する場合と、複合膜を膜の
片側から減圧に吸引できるモジユールの形状に組
み、膜の片側を0.1〜400Torrの減圧に吸引し
(膜の他方側は大気圧)空気やイナートガスを複
合膜中を通過する形式でおこなう場合との2つの
方法がある。そのうちで後者の方法は、複合膜中
を気体が大量に通過し処理効果は大きく好適に用
いられる。減圧度としては0.1〜400Torr好まし
くは10〜300Torr好ましくは20〜250Torrであ
る。400Torr以上だと熱処理の効果は小さく、ま
た0.1Torr以下にしても0.1Torr以内と効果は何
らかわりない。
The treatment of the composite membrane of the present invention is carried out under gas phase conditions at a reduced pressure of 0.1 to 400 Torr. Here, the reduced pressure gas phase conditions refer to cases in which the composite membrane of the present invention is placed in such a reduced pressure container and the entire membrane is treated, and cases in which the composite membrane is assembled into a module shape that can be sucked under reduced pressure from one side of the membrane, and the membrane is treated in a vacuum container. There are two methods: one in which one side of the membrane is vacuumed to a reduced pressure of 0.1 to 400 Torr (the other side of the membrane is at atmospheric pressure) and air or inert gas is passed through the composite membrane. Among these, the latter method is preferably used because a large amount of gas passes through the composite membrane and the treatment effect is large. The degree of pressure reduction is 0.1 to 400 Torr, preferably 10 to 300 Torr, preferably 20 to 250 Torr. If the temperature is 400 Torr or more, the effect of heat treatment will be small, and even if the temperature is set to 0.1 Torr or less, the effect will be the same as if it were within 0.1 Torr.

該処理の温度条件は60〜200℃であるが温度に
ついては複合膜の部材あるいはモジユールとして
組んだ場合はそのモジユール部材も含めて部材の
耐熱性に制限される。すなわち部材の耐熱温度よ
り高い温度で処理すると膜やモジユールが変形し
破損をもたらし不都合を生じる。温度としては部
材の耐熱温度より低いができるだけ高い温度です
るのが好ましい。一般には好ましくは65〜180℃
さらに好ましくは70〜150℃である。
The temperature conditions for this treatment are 60 to 200°C, but when assembled as a composite membrane member or module, the temperature is limited by the heat resistance of the member including the module member. That is, if the treatment is performed at a temperature higher than the allowable temperature limit of the member, the membrane or module will be deformed and damaged, resulting in inconvenience. The temperature is preferably lower than the heat resistant temperature of the member, but as high as possible. Generally preferably 65-180℃
More preferably, the temperature is 70 to 150°C.

熱処理時間は0.2時間以上、好ましくは0.5時間
以上さらに好ましくは1時間以上である。0.2時
間以下では熱処理の効果はでない。処理時間の長
さは特に限定されないが通常24時間以内である。
24時間以上しても24時間以内と効果に何らかわり
はない。
The heat treatment time is 0.2 hours or more, preferably 0.5 hours or more, and more preferably 1 hour or more. Heat treatment has no effect if the time is less than 0.2 hours. The length of processing time is not particularly limited, but is usually within 24 hours.
Even if you take it for more than 24 hours, there is no difference in effectiveness than if you take it for less than 24 hours.

本発明の気体分離用複合膜は平膜状ならば積み
重ねられ、また管状および中空糸条なら複数本に
束ねられ、モジユールにそしてさらに酸素富化装
置として組みたてられ大気から酸素富化空気の製
造に用いることができるからエンジンや暖房器具
の燃焼効率向上に役立ち、また未熟児の保育や呼
吸器疾患者の治療に役立ち、あるいは人工肺や人
工えらとして使用することができる。
The composite membrane for gas separation of the present invention can be stacked if it is in the form of a flat membrane, or bundled into a plurality of membranes if it is in the form of a tube or hollow fiber, and assembled into a module and further as an oxygen enrichment device to extract oxygen-enriched air from the atmosphere. Since it can be used in manufacturing, it can help improve the combustion efficiency of engines and heating equipment, it can also be useful in caring for premature babies and treating people with respiratory disorders, and it can also be used as artificial lungs and artificial gills.

また本発明の気体分離用複合膜は大気から酸素
富化空気を製造するに好適にあるに止まらず例え
ば二酸化炭素と空気から主として成る気体混合物
(例えば燃焼廃ガス)からの二酸化炭素の分離、
ヘリウム又はアルゴンと窒素ガスとから主として
成る気体混合物(例えば液化ヘリウム又はアルゴ
ンが気化して空気と混合したガス)からのヘリウ
ム又はアルゴンの分離、天然ガスからのヘリウム
濃縮、あるいは水素と一酸化炭素あるいはメタン
などを含む気体混合物(例えば水性ガスやプロセ
スガス)からの水素の分離等にも好適に使用する
ことができる。以下実施例をあげて本発明をさら
に説明するが本発明はこの実施例によつて何ら限
定されるものでない。
Furthermore, the composite membrane for gas separation of the present invention is suitable not only for producing oxygen-enriched air from the atmosphere, but also for separating carbon dioxide from a gas mixture mainly composed of carbon dioxide and air (e.g., combustion waste gas).
Separation of helium or argon from gas mixtures consisting primarily of helium or argon and nitrogen gas (e.g. liquefied helium or argon vaporized and mixed with air), helium enrichment from natural gas, or hydrogen and carbon monoxide or It can also be suitably used for the separation of hydrogen from gas mixtures containing methane and the like (for example, water gas and process gas). The present invention will be further explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例 1 密に織つたポリエステル製不織布(目付量180
g/m2)の上にポリスルホン(日産化学
udelP3500)15wt%、N−メチルピロリドン
85wt%からなる溶液を厚さ約0.35mmの層状にキヤ
ストし、直ちにポリスルホン層を20℃の水浴中に
てゲル化させることにより不織布補強ポリスルホ
ン多孔膜を得た。
Example 1 Densely woven polyester nonwoven fabric (basis weight 180
g/m 2 ) on top of polysulfone (Nissan Chemical
udelP3500) 15wt%, N-methylpyrrolidone
A solution consisting of 85 wt% was cast into a layer with a thickness of about 0.35 mm, and the polysulfone layer was immediately gelled in a water bath at 20°C to obtain a nonwoven reinforced polysulfone porous membrane.

ひきつづきこの多孔膜を流水中で2日間洗浄
し、残留溶媒を除いた。かくして得られたポリス
ルホン多孔膜を100℃の熱水中に2時間浸漬し熱
水処理をした。
Subsequently, the porous membrane was washed in running water for 2 days to remove residual solvent. The polysulfone porous membrane thus obtained was immersed in hot water at 100°C for 2 hours for hot water treatment.

この多孔膜の特性として、1Kg/cm2の圧力にお
いて25℃の純水の透過量をはかつたところ、水の
透過速度として1.41×10-2g/cm2・sec・atmであ
つた。
As for the characteristics of this porous membrane, when the amount of pure water permeated at 25° C. was measured at a pressure of 1 Kg/cm 2 , the water permeation rate was 1.41×10 −2 g/cm 2 ·sec·atm.

また100000倍で膜の表面電顕を撮影しその孔径
を求めたところ0.01〜0.02μであつた。
In addition, the pore diameter of the membrane was determined by surface electron microscopy at a magnification of 100,000 times and was found to be 0.01 to 0.02μ.

このポリスルホン多孔膜上にポリ−4−メチル
ペンテンのシクロヘキセン溶液(展開助剤として
シクロヘキセンルヒドロパーオキサイドを3wt%
を添加)を水面状に展開して製膜したポリ−4−
メチルペンテンの薄膜を数層重ね膜厚を約0.12μ
にして復合膜をつくつた。
A cyclohexene solution of poly-4-methylpentene (3wt% of cyclohexene hydroperoxide was added as a developing aid) on this polysulfone porous membrane.
poly-4-, which was formed by spreading it on the surface of water (with the addition of
Several thin films of methylpentene are stacked to a film thickness of approximately 0.12μ.
Then, I made a composite film.

この複合膜を25cm×50cmの大きさに切り取りア
ルミ板、ネツト、複合膜の順に重ね不織布側に連
通したノズル口をつけて四方をエポキシ樹脂で固
め分離膜エレメント(モジユール)とした。
This composite membrane was cut to a size of 25 cm x 50 cm, the aluminum plate, the net, and the composite membrane were stacked in that order, a nozzle opening was attached that communicated with the nonwoven fabric side, and the four sides were solidified with epoxy resin to form a separation membrane element (module).

膜を乾燥後ノズル口より160Torrに吸引して空
気分離をおこなつたところ、酸素濃度40.5%の酸
素富化空気が217c.c./分得られた。
After drying the membrane, air was separated by suctioning it to 160 Torr from the nozzle opening, and 217 c.c./min of oxygen-enriched air with an oxygen concentration of 40.5% was obtained.

ついでこのエレメントを80℃の熱風炉に入れ、
ノズル口より130Torr減圧に引いて3時間処理を
した。処理後さきと同じ条件で空気分離をおこな
つたところ酸素濃度は40.6%で酸素富化空気量は
228c.c./分であつた。
Next, put this element in a hot air oven at 80℃,
The pressure was reduced to 130 Torr from the nozzle opening and the treatment was carried out for 3 hours. When air separation was performed under the same conditions as before after treatment, the oxygen concentration was 40.6% and the amount of oxygen-enriched air was
It was 228c.c./min.

ついでこのエレレントをノズル口より吸引して
160Torrの減圧、温度23℃清浄空気雰囲気下で連
続して5000時間吸引したが、酸素濃度はかわら
ず、また流量も226c.c./分(保持率99%)と安定
していた。なお複合膜の熱処理をしない場合は、
同様の耐久テストではその流量保持率は93%であ
つた。
Next, suck this elelent from the nozzle opening.
Although suction was carried out continuously for 5,000 hours under a vacuum of 160 Torr and a clean air atmosphere at a temperature of 23°C, the oxygen concentration did not change and the flow rate remained stable at 226 c.c./min (retention rate 99%). If the composite membrane is not heat treated,
In a similar durability test, its flow retention rate was 93%.

比較例 1 熱水処理をしないポリスルホン多孔膜を用いた
以外は実施例1と同様の操作をおこない複合膜を
つくつた。この複合膜の熱水処理前の空気分離の
性能は酸素濃度40.6%、富化空気量208c.c./分で
あつた。この複合膜の熱処理後の性能は酸素濃度
40.5%富化空気量198c.c./分と低下した。また実
施例1と同じ耐久テストでは5000時間後の流量保
持率は95%であつた。
Comparative Example 1 A composite membrane was prepared in the same manner as in Example 1, except that a porous polysulfone membrane that was not subjected to hot water treatment was used. The air separation performance of this composite membrane before hydrothermal treatment was an oxygen concentration of 40.6% and an enriched air amount of 208 c.c./min. The performance of this composite membrane after heat treatment is determined by the oxygen concentration
The amount of enriched air decreased by 40.5% to 198 c.c./min. Further, in the same durability test as in Example 1, the flow rate retention rate after 5000 hours was 95%.

実施例 2 ポリ−2,6−ジメチルフエニルレンオキシド 2.0重量部、シクロヘキセニルヒドロパーオキ
サイド1.58重量部およびトリクロロエチレン97重
量部よりなる溶液を50℃に保持し、0.8mmφの注
射針の先から6.0c.c./分の流量で5℃に保持され
た水面上に針先を水面に接しながら連続的に供給
し、水面上にポリ−2,6−ジメチルフエニレン
オキシドの薄膜を形成せしめた。形成された薄膜
を針先から60cm離れたところで実施例1で使用し
たポリスルホン多孔質膜の上から押しつけること
によりポリスルホン多孔質膜上に引きあげて第1
層を形成した。膜厚は0.015μmと計算された。
Example 2 A solution consisting of 2.0 parts by weight of poly-2,6-dimethylphenylene oxide, 1.58 parts by weight of cyclohexenyl hydroperoxide and 97 parts by weight of trichlorethylene was maintained at 50°C, and 6.0 parts by weight was injected from the tip of a 0.8 mmφ injection needle. A thin film of poly-2,6-dimethylphenylene oxide was formed on the water surface by continuously supplying the needle tip onto the water surface maintained at 5° C. at a flow rate of cc/min. The formed thin film was pulled up onto the polysulfone porous membrane used in Example 1 by pressing it from above the polysulfone porous membrane used in Example 1 at a distance of 60 cm from the needle tip.
formed a layer. The film thickness was calculated to be 0.015 μm.

ついでポリジメチルシロキサン−ポリブタジエ
ン共重合体(引つ張り弾性率318Kg/cm2、PO21.5
×10-8c.c.・cm/cm2・sec・cmHg、α:2.0)7重
量部、シクロヘキセニルヒドロパーオキサイド5
重量部およびベンゼン88重量部よりなる溶液を同
様に水面上に連続的に供給し水面上にポリジメチ
ルシロキサン−ポリブタジエン共重合体の薄膜を
形成せしめた。この共重合体の薄膜を2枚、さき
の第1層の上に積層し中間層を形成せしめた。計
算したこの中間層の厚さは0.10μmであつた。さ
らにこの上にさきのポリ−2,6−ジメチルフエ
ニレンオキシドの層(厚さ0.015μm)を設けポリ
フエニレンオキシド−ポリジメチルラロキサン・
ポリブタジエン−ポリフエニレンオキシドの積層
した分離機能層をもつ複合膜をつくつた。
Next, polydimethylsiloxane-polybutadiene copolymer (tensile modulus 318 Kg/cm 2 , PO 2 1.5
×10 -8 cc・cm/cm 2・sec・cmHg, α: 2.0) 7 parts by weight, cyclohexenyl hydroperoxide 5
Similarly, a solution consisting of 88 parts by weight of benzene and 88 parts by weight of benzene was continuously supplied onto the water surface to form a thin film of polydimethylsiloxane-polybutadiene copolymer on the water surface. Two thin films of this copolymer were laminated on top of the first layer to form an intermediate layer. The calculated thickness of this intermediate layer was 0.10 μm. Furthermore, a layer of poly-2,6-dimethylphenylene oxide (thickness 0.015 μm) was applied on top of this, and polyphenylene oxide-polydimethyl raloxane layer was formed.
We created a composite membrane with a separation function layer made of polybutadiene-polyphenylene oxide.

この複合体を用い実施例1と同様に空気分離を
おこなつたところ(減圧160Torr)40.2%の酸素
濃度で412c.c./分の流量の酸素富化空気が得られ
た。これをノズル口より吸引して180Torrに減圧
し、80℃の温度雰囲気で3時間熱処理した。
When air separation was carried out using this composite in the same manner as in Example 1 (reduced pressure: 160 Torr), oxygen-enriched air with an oxygen concentration of 40.2% and a flow rate of 412 c.c./min was obtained. This was suctioned through the nozzle opening, the pressure was reduced to 180 Torr, and heat treatment was performed in an atmosphere at a temperature of 80° C. for 3 hours.

熱処理後空気分離をおこなつたところ(減圧
160Torr)、40.1%の酸素濃度で428c.c./分の流量
の酸素富化空気が得られた。
Air separation after heat treatment (reduced pressure)
160 Torr), oxygen enriched air with a flow rate of 428 c.c./min at an oxygen concentration of 40.1% was obtained.

実施例 3 ポリ−4−メチルペンテン−1(三井石油化学
(株)製、グレードDX845)3重量部、シクロヘキ
セニルヒドロパーオキサイド3重量部からなる溶
液を30℃に保持して、0.8mmφの注射針の先から
60c.c./分の流量で5℃に保持された水面上に針先
を水面に接しながら連続的に供給した。該ポリマ
ー溶液は水面上に薄膜が形成した。形成された薄
膜を針先から60cm離れたところで、実施例1で用
いたポリスルホン多孔膜をその上から連続的に押
しつけることによりポリスルホン多孔膜上に引き
げた。ついでポリジメチルシロキサン−ポリカー
ボネート共重合体(シロキサン含有率60モル%、
PO22×10-8c.c.・cm/cm2・sec・cmHg、α:2.2、
引つ張り弾性率260Kg/cm2)8重量部、シクロヘ
キセニルヒドロパーオキサイド5重量部およびベ
ンゼン87重量部からなる溶液を水面上に展開して
共重合体の薄膜を形成せしめ、さきのポリ4−メ
チルペンテンの薄層の上に積層し、さらにもう一
度重ね、厚さ0.108μの中間層を形成した。つぎに
この中間層の外側にさきと同じ方法で形成せしめ
たポリ4−メチルペンテン−1の0.017μの厚さの
薄膜を積層し、積層した分離機能層を有する複合
膜を得た。
Example 3 Poly-4-methylpentene-1 (Mitsui Petrochemical
Co., Ltd., grade DX845) and 3 parts by weight of cyclohexenyl hydroperoxide was maintained at 30°C and injected into the tip of a 0.8 mmφ syringe needle.
The needle tip was continuously supplied onto the water surface maintained at 5° C. at a flow rate of 60 c.c./min while being in contact with the water surface. The polymer solution formed a thin film on the water surface. The formed thin film was pulled onto the polysulfone porous membrane by continuously pressing the polysulfone porous membrane used in Example 1 from above at a distance of 60 cm from the needle tip. Next, polydimethylsiloxane-polycarbonate copolymer (siloxane content 60 mol%,
PO 2 2×10 -8 cc・cm/cm 2・sec・cmHg, α: 2.2,
A solution consisting of 8 parts by weight of tensile modulus (260 kg/cm 2 ), 5 parts by weight of cyclohexenyl hydroperoxide, and 87 parts by weight of benzene was spread on the water surface to form a thin film of the copolymer, and the poly4 - layered on top of a thin layer of methylpentene and layered once again to form an interlayer with a thickness of 0.108μ. Next, a thin film of poly4-methylpentene-1 having a thickness of 0.017 μm, which had been formed in the same manner as before, was laminated on the outside of this intermediate layer to obtain a composite membrane having a laminated separation functional layer.

この複合膜を用い分離機能層側に空気を送りそ
の反対側である多孔性支持体側を160Torrの減圧
にして空気の分離テストをおこなつたところ、
41.3%の酸素濃度の酸素富化空気が4.2/m2
の量得られた。これを80℃の温度雰囲気下ノズル
口より130Torrの減圧で吸引しながら3時間処理
した。
Using this composite membrane, we conducted an air separation test by sending air to the separation functional layer side and reducing the pressure to 160 Torr on the opposite side, the porous support side.
An amount of 4.2/m 2 of oxygen-enriched air with an oxygen concentration of 41.3% was obtained. This was treated in a temperature atmosphere of 80° C. for 3 hours while suctioning under a reduced pressure of 130 Torr from the nozzle opening.

処理後同様に空気分離をおこなつたところ、酸
素濃度41.3%の酸素富化空気が4.5/m2分の量
得られた。またこの処理した膜を、実施例1と同
じ条件で連続吸引テストをおこなつたところ、
5000時間後の流量保持率は99%以上であり、また
酸素濃度もかわらず安定していた。
After the treatment, air separation was performed in the same manner, and an amount of oxygen-enriched air with an oxygen concentration of 41.3% was obtained in an amount of 4.5/ m2 . In addition, when the treated membrane was subjected to a continuous suction test under the same conditions as in Example 1,
The flow rate retention rate after 5000 hours was over 99%, and the oxygen concentration remained stable.

実施例 4 密に織つたポリエステル製不織布(目付量135
g/m2)の上にポリスルホン(住友化学、
PES300P)15wt%、N−メチルピロリドン85wt
%からなる溶液を厚さ約0.3mmの層状にキヤスト
し、直ちにポリスルホン層を15℃の水浴中にてゲ
ル化させることにより、不織布補強ポリスルホン
多孔膜を得た。
Example 4 Densely woven polyester nonwoven fabric (basis weight 135
g/m 2 ) on top of polysulfone (Sumitomo Chemical,
PES300P) 15wt%, N-methylpyrrolidone 85wt
A nonwoven fabric-reinforced polysulfone porous membrane was obtained by casting a solution consisting of 100% of the polysulfone into a layer with a thickness of about 0.3 mm, and immediately gelling the polysulfone layer in a 15°C water bath.

この多孔膜を流水中で2日間洗浄し残留溶媒を
除き、ついで90℃の熱水中に10時間熱処理をおこ
なつた。この多孔膜の水の透過速度は3.1×10-3
(g/cm2・sec・atm)であり表面孔径は0.01μ以
下であつた。
This porous membrane was washed in running water for 2 days to remove residual solvent, and then heat-treated in 90°C hot water for 10 hours. The water permeation rate of this porous membrane is 3.1×10 -3
(g/cm 2 ·sec · atm), and the surface pore diameter was 0.01μ or less.

このポリスルホン多孔膜の上にポリ(アリル−
t−ブチルジメチルシラン−アリルトリメチルシ
ラン)共重合体(アリル−t−ブチルジメチルシ
ラン30モル%)の0.024μの薄膜、ついでポリメチ
ルシロキサン−ポリビニルトリメチルシラン共重
合体(ジメチルシロキサン含有率70モル%)の
0.10μの薄膜、ついでさきのポリ(アリル−t−
ブチルジメチルシラン−アリルトリメチルシラ
ン)共重合体の0.024μの薄膜をこの順に積層し複
合膜を得た。
On this polysulfone porous membrane, poly(allyl)
A 0.024μ thin film of t-butyldimethylsilane-allyltrimethylsilane) copolymer (allyl-t-butyldimethylsilane 30 mol%), followed by a 0.024μ thin film of polymethylsiloxane-polyvinyltrimethylsilane copolymer (dimethylsiloxane content 70 mol%) )of
0.10μ thin film, then poly(allyl-t-
A composite film was obtained by laminating 0.024μ thin films of butyldimethylsilane-allyltrimethylsilane copolymer in this order.

この複合膜の性能を調べるため空気分離をおこ
なつたところ(減圧50Torr)酸素濃度38.2%、
富化空気量1.50/m2・分であつた。
In order to investigate the performance of this composite membrane, air separation was performed (at reduced pressure of 50 Torr), and the oxygen concentration was 38.2%.
The enriched air amount was 1.50/m 2 ·min.

この複合膜を70℃の温度雰囲気下ノズル口より
120Torrの減圧に吸引し5時間熱処理した。さき
と同じ条件で空気分離をおこなつたところ、酸素
濃度38.2%、富化空気量1.53/m2・分であつ
た。
This composite film was applied through the nozzle opening in a temperature atmosphere of 70℃.
The mixture was vacuumed to a reduced pressure of 120 Torr and heat-treated for 5 hours. When air separation was performed under the same conditions as before, the oxygen concentration was 38.2% and the enriched air amount was 1.53/m 2 ·min.

実施例 5 ポリスルホン(日産化学、udelP3500)20wt
%、N−メチルピロリドン57wt%、塩化リチウ
ム3wt%、2−メトキシエタノール20wt%からな
る溶液を、30℃において芯液として水を用い環状
スリツトより吐出させ、25℃の水中に浸漬し凝固
させることにより、外径800μ、内径500μのポリ
スルホン中空糸多孔膜を得た。ついでこの中空多
孔膜を束ねて100℃の熱水中に4時間浸漬し、熱
水処理した。
Example 5 Polysulfone (Nissan Chemical, udelP3500) 20wt
%, N-methylpyrrolidone 57wt%, lithium chloride 3wt%, and 2-methoxyethanol 20wt% is discharged from an annular slit at 30°C using water as the core liquid, and immersed in water at 25°C to solidify. A polysulfone hollow fiber porous membrane with an outer diameter of 800 μm and an inner diameter of 500 μm was obtained. The hollow porous membranes were then bundled and immersed in hot water at 100°C for 4 hours for hot water treatment.

このポリスルホン中空多孔膜の水透過速度は、
4.0×10-3(g/cm2・sec・atm)であつた。中空糸
の内側および外側の表面孔径はいづれも、0.01〜
0.02μであつた。またこの中空糸多孔膜は、内側
および外側は緻密構造をもち、中側は中空のフイ
ンガー構造であつた。
The water permeation rate of this polysulfone hollow porous membrane is
It was 4.0×10 -3 (g/cm 2 sec atm). The inner and outer surface pore diameters of the hollow fibers are both 0.01~
It was 0.02μ. Moreover, this hollow fiber porous membrane had a dense structure on the inside and outside, and a hollow finger structure on the inside.

この中空多孔膜をポリカーボネート製のパイプ
中に詰め、両端部を接着剤で固め中空糸膜モジユ
ールを得た。
This hollow porous membrane was packed into a polycarbonate pipe, and both ends were hardened with adhesive to obtain a hollow fiber membrane module.

つぎにこのモジユールの中空糸多孔膜中に水を
含浸させたまま、ポリメチルペンテン(三井石油
化学(株)製グレードMX−002)の4wt%シクロヘ
キセン溶液を、モジユールのまま中空糸の内側に
流す。流したのちドレインして風乾し、又ポリマ
ー溶液を流すことを3回繰り返す。
Next, while the hollow fiber porous membrane of this module is impregnated with water, a 4wt% cyclohexene solution of polymethylpentene (grade MX-002 manufactured by Mitsui Petrochemicals Co., Ltd.) is poured inside the hollow fiber while the module is intact. . After flushing, drain and air dry, and flush the polymer solution again three times.

かくして得られた分離膜を乾燥し、ついで75℃
雰囲気下モジユールにおける中空糸の外側吸引口
より160Torrの減圧で吸引し、5時間熱処理し
た。160Torrの減圧で空気分離をしたところ酸素
濃度は38.8%、富化空気量は159c.c./m2・分であ
つた。実施例1と同様の雰囲気下で連続して吸引
することで耐久テストを実施したが、5000時間後
の流量保持率は98%以上であり、性能は安定して
いた。
The separation membrane thus obtained was dried and then heated to 75°C.
In an atmosphere, suction was applied from the outer suction port of the hollow fiber in the module at a reduced pressure of 160 Torr, and heat treatment was performed for 5 hours. When air was separated at a reduced pressure of 160 Torr, the oxygen concentration was 38.8% and the enriched air amount was 159 c.c./m 2 ·min. A durability test was conducted by continuously suctioning in the same atmosphere as in Example 1, and the flow rate retention rate after 5000 hours was 98% or more, indicating stable performance.

Claims (1)

【特許請求の範囲】 1 ポリスルホン系多孔膜と、その上に存在する
0.5μ以下の厚さの分離機能層からなる複合膜にお
いて、該ポリスルホン系多孔膜が湿式製膜により
製膜され、表面孔径が0.5μ以下で水の透過速度が
1×10-4(g/cm2・sec・atm)以上あり、かつ50
〜130℃の熱水中0.2時間以上処理されたものであ
り、そして該複合膜が複合膜を形成した後に該複
合膜の一面側の圧力を他面側の圧力よりも低くし
且つ該一面側の圧力を0.1〜400Torrとした気相
条件下、60〜200℃の温度で0.2時間以上熱処理さ
れたものであることを特徴とする気体分離用複合
膜。 2 該分離機能層が有機高分子化合物を含有する
有機溶媒溶液から形成された膜層であることを特
徴とする特許請求の範囲第1項記載の気体分離用
複合膜。 3 該他面側が分離機能層の側である特許請求の
範囲第1項記載の気体分離用複合膜。
[Claims] 1. A polysulfone-based porous membrane and
In a composite membrane consisting of a separation functional layer with a thickness of 0.5μ or less, the polysulfone porous membrane is formed by wet film forming, and has a surface pore size of 0.5μ or less and a water permeation rate of 1×10 -4 (g/ cm2・sec・atm) or more and 50
The composite membrane is treated in hot water at ~130°C for 0.2 hours or more, and after the composite membrane is formed, the pressure on one side of the composite membrane is lower than the pressure on the other side, and A composite membrane for gas separation, characterized in that it has been heat-treated at a temperature of 60 to 200°C for 0.2 hours or more under gas phase conditions at a pressure of 0.1 to 400 Torr. 2. The composite membrane for gas separation according to claim 1, wherein the separation functional layer is a membrane layer formed from an organic solvent solution containing an organic polymer compound. 3. The composite membrane for gas separation according to claim 1, wherein the other surface side is the separation functional layer side.
JP60165923A 1985-07-29 1985-07-29 Composite membrane for separating gas Granted JPS6227025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165923A JPS6227025A (en) 1985-07-29 1985-07-29 Composite membrane for separating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165923A JPS6227025A (en) 1985-07-29 1985-07-29 Composite membrane for separating gas

Publications (2)

Publication Number Publication Date
JPS6227025A JPS6227025A (en) 1987-02-05
JPH0378129B2 true JPH0378129B2 (en) 1991-12-12

Family

ID=15821576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165923A Granted JPS6227025A (en) 1985-07-29 1985-07-29 Composite membrane for separating gas

Country Status (1)

Country Link
JP (1) JPS6227025A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877421A (en) * 1987-11-02 1989-10-31 Union Carbide Corporation Treatment of permeable membranes
US4871378A (en) * 1987-12-11 1989-10-03 Membrane Technology & Research, Inc. Ultrathin ethylcellulose/poly(4-methylpentene-1) permselective membranes
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them
DE3839016A1 (en) * 1988-11-18 1990-05-23 Henkel Kgaa WASHING AND CLEANING AGENTS WITH SEK CONTENT. Dialkyl ether sulfates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144456A (en) * 1978-05-03 1979-11-10 Rhone Poulenc Ind Polymer composition for membrane
JPS5771606A (en) * 1980-10-23 1982-05-04 Kanegafuchi Chem Ind Co Ltd Dry polysulfone semipermeable membrane and manufacture thereof
JPS583830A (en) * 1981-06-30 1983-01-10 Teijin Ltd Manufacture of extremely thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144456A (en) * 1978-05-03 1979-11-10 Rhone Poulenc Ind Polymer composition for membrane
JPS5771606A (en) * 1980-10-23 1982-05-04 Kanegafuchi Chem Ind Co Ltd Dry polysulfone semipermeable membrane and manufacture thereof
JPS583830A (en) * 1981-06-30 1983-01-10 Teijin Ltd Manufacture of extremely thin film

Also Published As

Publication number Publication date
JPS6227025A (en) 1987-02-05

Similar Documents

Publication Publication Date Title
JP4050977B2 (en) Composite hollow fiber membrane reinforced by knitted fabric
JP3859464B2 (en) Method for producing a composite gas separation membrane from a perfluoropolymer
US5387378A (en) Integral asymmetric fluoropolymer pervaporation membranes and method of making the same
EP0732143B1 (en) Fluid separation membranes prepared from blends of polyimide polymers
CA2145451C (en) Process for producing composite membranes
JPH05212255A (en) Hollow fiber membrane
Chung A review of microporous composite polymeric membrane technology for air-separation
JPH0647058B2 (en) Gas selective permeable membrane
KR20160026070A (en) Manufacturing method of gas separator membrane
US5049169A (en) Polysulfone separation membrane
JPH0378129B2 (en)
JPH0478729B2 (en)
KR0149879B1 (en) Composite film for gas stripping and its manufacture
JPH0260370B2 (en)
JPH0122008B2 (en)
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
JPH0378128B2 (en)
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JPH0364176B2 (en)
JPH119974A (en) Composite hollow-yarn membrane for external pressure gas separation and method for producing the same
JP2004097918A (en) Polyetherimide conjugate hollow fiber membrane and its manufacturing method
JPH0226529B2 (en)
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JPS63264123A (en) Composite hollow fiber for removing steam from air or carbon dioxide
CN115245757B (en) Composite nanofiltration membrane and preparation method and application thereof