JPS62269312A - Hot wall furnace - Google Patents

Hot wall furnace

Info

Publication number
JPS62269312A
JPS62269312A JP11553386A JP11553386A JPS62269312A JP S62269312 A JPS62269312 A JP S62269312A JP 11553386 A JP11553386 A JP 11553386A JP 11553386 A JP11553386 A JP 11553386A JP S62269312 A JPS62269312 A JP S62269312A
Authority
JP
Japan
Prior art keywords
tube
gas
reaction
gas introducing
furnace core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11553386A
Other languages
Japanese (ja)
Inventor
Takeshi Nishizawa
西沢 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11553386A priority Critical patent/JPS62269312A/en
Publication of JPS62269312A publication Critical patent/JPS62269312A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the replacement of a furnace core tube by a method wherein a plurality of holes, to be used for introduction of gas, are provided in the region where the semiconductor wafers of a gas introducing tube will be arranged. CONSTITUTION:A furnace core tube is formed in tripple structure, an unmovable tube 2, a reaction tube 3, and a gas introducing tube 4, whereon gas introducing holes 4a are perforated on the circumference, are provided and a reaction gas introducing hole 6 is provided on both sides of the reaction tube 3. Accordingly, the pressure of gas located between the reaction tube and the gas introducing tube can be made uniform, the gas almost in the same state can be fed from the holes of the gas introducing tube, the distribution temperature can be improved, a wide flat zone can be obtained, and 50 wafers can be treated. Accordingly, if a cleaned furnace core tube is prepared, it can be replaced immediately in case of necessity, because the furnace core tube can be attached to the furnace easily, even when a polysilicon film is adhered to the reaction tube and the gas introducing tube.

Description

【発明の詳細な説明】 〔概要〕 半導体装置の製造工程の減圧エピタキシャル成長工程等
に使用するボットウオール炉において、炉芯管を三重構
造にして、炉体に挿着されている固定の炉芯管にはポリ
シリコン皮膜が付着しないようにし、ガスの導入を反応
管の両側より行なうホットウォール類。
[Detailed Description of the Invention] [Summary] In a Botwall furnace used in the low-pressure epitaxial growth process in the manufacturing process of semiconductor devices, the furnace core tube has a triple structure and is a fixed furnace core tube inserted into the furnace body. Hot walls are used to prevent polysilicon film from adhering to the tube, and gas is introduced from both sides of the reaction tube.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造工程における減圧エビクキシ
ャル成長工程等に使用するホットウォール類に関するも
のである。
TECHNICAL FIELD The present invention relates to hot walls used in a reduced pressure eviaxial growth process and the like in the manufacturing process of semiconductor devices.

減圧エピタキシャル成長工程はウェーハをカーボンサセ
プタ上に水平に置いて誘導加熱或いは赤外線ランプ加熱
により熱処理を行っているが、大量の処理には不向きで
あり、ホットウォール類によりウェーハを垂直に置いて
処理を行なっても、従来の炉芯管では温度分布制御が難
しく5〜6枚程度の処理が限度で、特に大量のウェーハ
をバッチ処理可能な装置の発明が要望されている。
In the low-pressure epitaxial growth process, the wafer is placed horizontally on a carbon susceptor and heat treated using induction heating or infrared lamp heating, but this is not suitable for large-volume processing, and the wafer is placed vertically using hot walls. However, with conventional furnace core tubes, temperature distribution control is difficult and processing is limited to about 5 to 6 wafers, so there is a particular need for an apparatus capable of batch processing a large number of wafers.

〔従来の技術〕[Conventional technology]

従来のホットウォール炉による減圧エピタキシャル成長
工程は、第2図に示すようにウェーハ10を載せたウェ
ーハバスケット9を、炉体1に挿着した−重の炉芯管1
1の中に入れ、ガス排気口13から排気し炉芯管工1内
の圧力をI Torrに保ち、水素ガス(11□)、塩
化水素ガス(IIc+)、 l−リフロールシラン(S
iHC1+)の混合気体をガス導入口12から炉芯管1
1の中に4人して1,000℃の加熱処理を行なってい
る。
In the low-pressure epitaxial growth process using a conventional hot wall furnace, as shown in FIG.
1 and exhaust from the gas exhaust port 13 to maintain the pressure inside the furnace core pipe 1 at I Torr, and hydrogen gas (11□), hydrogen chloride gas (IIc+), l-rerolled silane (S
iHC1+) gas mixture from the gas inlet 12 to the furnace core tube 1.
There were four people in the room performing the heat treatment at 1,000°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

収」二説明の従来のボットウオール炉による減圧エピタ
キシアル成長工程で問題となるのは、温度分布制御が難
しくて処理可能枚数が少ないことと、炉芯管壁にポリシ
リコン皮膜が付着すると膜厚・比抵抗分布制御が難しい
ために、安定した処理を行なうことが困難なことである
The problems with the low-pressure epitaxial growth process using the conventional Botwall furnace explained in Section 2 are that it is difficult to control the temperature distribution and that the number of sheets that can be processed is small, and that when the polysilicon film adheres to the wall of the furnace core tube, the film thickness increases. - It is difficult to perform stable processing because it is difficult to control the resistivity distribution.

更にポリシリコン皮膜の付着量が多くなると洗浄処理が
必要となるが、炉体から外した炉芯管を再び取りつける
際には炉芯管内の真空を保つためのシールを完全にする
のに多くの工数を必要とし、交換頻度が多くなると炉芯
管のシールが悪くなることである。
Furthermore, if the amount of polysilicon coating increases, cleaning treatment becomes necessary, but when reinstalling the furnace core tube that has been removed from the furnace body, many steps are required to completely seal the furnace core tube to maintain a vacuum inside the furnace core tube. This requires a lot of man-hours, and if the replacement frequency increases, the seal of the furnace core tube will deteriorate.

本発明はこのような状況に対して処理可能枚数か多く、
炉芯管壁へのポリシリコン皮膜の(−1着を防止する手
段の提供を目的としたものである。
The present invention can handle such situations by increasing the number of sheets that can be processed.
The purpose is to provide a means to prevent the polysilicon film from adhering to the wall of the furnace core tube.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記問題点は、第1図に示すように炉芯管を三重にして
1、固定管22反応管3及びガス導入のための孔4aを
管の周囲に穿孔したガス導入管4を設け、反応ガスのガ
ス導入口(b)6を反応管3の両側に設けた本発明のボ
ン)−ウオール炉によって解決される。
The above problem can be solved by triple-layering the furnace core tube 1, a fixed tube 22, a reaction tube 3, and a gas introduction tube 4 with holes 4a for introducing gas around the tube, as shown in Fig. 1. This problem is solved by the bone-wall furnace of the present invention in which gas inlets (b) 6 are provided on both sides of the reaction tube 3.

〔作用〕[Effect]

即ち本発明においては、炉芯管を三重管にして、反応ガ
スを反応管とガス導入管の間に両側より導入するので、
反応管とガス導入管の間のガス圧が均一化し、ガス導入
管の孔から略同じ状態でガスが供給されるので、温度分
布が良好になりフラットゾーンを広く取れるので50枚
のウェーハの処理が可能である。
That is, in the present invention, the furnace core tube is made into a triple tube, and the reaction gas is introduced from both sides between the reaction tube and the gas introduction tube.
The gas pressure between the reaction tube and the gas introduction tube becomes uniform, and the gas is supplied from the hole in the gas introduction tube in almost the same condition, resulting in good temperature distribution and a wide flat zone, making it possible to process 50 wafers. is possible.

固定管と反応管の間には水素ガスと塩化水素ガスの混合
気体を流しているので固定管にはポリシリコン皮膜が殆
ど付着しないから固定管を炉体がら外して洗浄する必要
が殆ど無くなる。
Since a mixed gas of hydrogen gas and hydrogen chloride gas is flowed between the fixed tube and the reaction tube, almost no polysilicon film adheres to the fixed tube, so there is almost no need to remove the fixed tube from the furnace body for cleaning.

反応管とガス導入管にはポリシリコン皮膜が何着するが
炉への取り付けが容易なので、洗浄済のものを準備して
おけば必要な時に即座に交換が可能となる。
Polysilicon coatings are applied to the reaction tube and gas introduction tube, but they are easy to attach to the furnace, so if you prepare cleaned ones, you can immediately replace them when necessary.

〔実施例〕〔Example〕

以下第1図について本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to FIG.

図において、炉体1には固定管2が挿着されており、そ
の中に反応管3とガス導入管4が組み合わせた状態で挿
入されている。
In the figure, a fixed tube 2 is inserted into a furnace body 1, into which a reaction tube 3 and a gas introduction tube 4 are inserted in combination.

ウェーハ10の挿入前の炉温は400℃にしておき、図
示しないボートローダを使用して、ウェーハ1o、50
枚を載置したウェーハバスケント9を、ガス導入管4の
中に挿入する。ウェーハ10の挿入後ゲートバルブ14
を閉じてガス排気口(b)8から排気して室内圧を減圧
し、炉温を1.000’cまで20分間でy温する。
The furnace temperature before inserting the wafers 10 is set at 400°C, and using a boat loader (not shown), wafers 1o and 50 are loaded.
The wafer bath Kent 9 with the wafers placed thereon is inserted into the gas introduction pipe 4. Gate valve 14 after inserting wafer 10
Close the gas exhaust port (b) 8 to reduce the indoor pressure, and increase the furnace temperature to 1.000'c in 20 minutes.

ガス導入管4のウェーハバスケット9載置位置の周囲に
は直径1(hnの孔4aが円周をへ等分して穿たれてい
る。
Holes 4a having a diameter of 1 (hn) are bored around the wafer basket 9 placement position of the gas introduction pipe 4, dividing the circumference into equal parts.

反応ガスのガス導入口(b)6は反応管3の両側の反応
管3とガス導入管4の間に設けられており次の設定条件
のもとでエピタキシアル成長が行われる。
The gas inlet (b) 6 for the reaction gas is provided between the reaction tube 3 and the gas inlet tube 4 on both sides of the reaction tube 3, and epitaxial growth is performed under the following set conditions.

管内圧−−−−−−−一−−−−−−−−−−−−へ一
一一−−−−−−−−−−−−・−−−−−−−−−−
−−−−−−−ITorrガス流量 ]・リフロールシラン(SiHCl x)−−−−−−
−14! /min塩化水素ガス(HCI) −−−−
−−−−−−・−−−11/win水素ガス(82) 
−−−−−−−−−−−−−−−−−−−−−−−−8
II /minフォスフイン(PH3) (5p111
11) −−−−−−−−−−−−5cc/win炉の
設定温度−−−−−−−−−−−−−−−−−−−一−
−−−−−−−−−−−−−−−−−一−−−−・−1
、000℃反応管3の外側に漏れた反応ガスは固定管2
と反応管3の間のガス導入口(a)5から導入された下
記のガスと共にガス排気口(a)7から排気されるので
固定管2の内壁にはポリシリコン皮膜は付着しない。
Inner pipe pressure--------------------------------・--------
---------ITorr gas flow rate]・Reflow silane (SiHCl x)------
-14! /min Hydrogen chloride gas (HCI) -----
---------・----11/win hydrogen gas (82)
−−−−−−−−−−−−−−−−−−−−8
II /min Phosphine (PH3) (5p111
11) -------------5cc/win furnace setting temperature-----------------1-
−−−−−−−−−−−−−−−−−1−−−−・−1
, 000℃The reaction gas leaked to the outside of the reaction tube 3 is transferred to the fixed tube 2.
The polysilicon film does not adhere to the inner wall of the fixed tube 2 because it is exhausted from the gas exhaust port (a) 7 along with the following gases introduced from the gas inlet port (a) 5 between the fixed tube 2 and the reaction tube 3.

塩化水素ガス(HCI) −−−−−−−−−一−−−
11! /min水素ガス(l(z) −−−−−−−
−−−−−−m−−−−−−−−−−11/min〔発
明の効果〕 以上説明したように本発明によれば炉芯管の構造を変更
すること番こより、安価な炉を使用して従来に比して桁
違いに大量のウェーハのバッチ処理が可能となり、ポリ
シリコン皮膜が付着した炉芯管洗浄のための炉芯管の交
換が非常に簡単になるので工業的に極めて有用である。
Hydrogen chloride gas (HCI) ----------
11! /min hydrogen gas (l(z) -------
--------m----------11/min [Effects of the Invention] As explained above, according to the present invention, by changing the structure of the furnace core tube, an inexpensive furnace can be produced. It is now possible to batch process an order of magnitude larger number of wafers than before, and it is very easy to replace the furnace core tube to clean the furnace core tube with the polysilicon film attached, making it industrially viable. Extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例を示す側断面図、第2図
は従来技術を示す側断面図である。 図において、 1は炉体、 2は固定管、 3は反応管、 4はガス導入管、 4aは孔、 5はガス導入口(al、 6はガス導入口(b)、 7はガス排気口(al、 8ばガス排気口fb)、 9はウェーハバスケット、 10はウェーハ、 11は炉芯管、 12はガス導入口、 13はガス排気口、 14ゲートバルブ、 を示す。
FIG. 1 is a side sectional view showing one embodiment of the present invention, and FIG. 2 is a side sectional view showing a conventional technique. In the figure, 1 is the furnace body, 2 is the fixed tube, 3 is the reaction tube, 4 is the gas inlet tube, 4a is the hole, 5 is the gas inlet (al), 6 is the gas inlet (b), 7 is the gas exhaust port (al, 8 is a gas exhaust port fb), 9 is a wafer basket, 10 is a wafer, 11 is a furnace core tube, 12 is a gas inlet, 13 is a gas exhaust port, 14 is a gate valve.

Claims (1)

【特許請求の範囲】  固定管(2)と、該固定管(2)内に配設された反応
管(3)と、該反応管(3)内に配設されたガス導入管
(4)と、該ガス導入管(4)と該反応管(3)の間の
部分の両側に反応ガスを導入するガス導入口(b)(6
)を有し、 前記ガス導入管(4)の半導体ウェーハが配置される領
域にガス導入用の複数の孔(4a)が設けられてなるこ
とを特徴とするホットウォール炉。
[Claims] A fixed tube (2), a reaction tube (3) disposed within the fixed tube (2), and a gas introduction tube (4) disposed within the reaction tube (3). and gas inlet ports (b) (6) for introducing the reaction gas into both sides of the portion between the gas inlet tube (4) and the reaction tube (3).
), wherein a plurality of holes (4a) for gas introduction are provided in a region of the gas introduction pipe (4) where semiconductor wafers are arranged.
JP11553386A 1986-05-19 1986-05-19 Hot wall furnace Pending JPS62269312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11553386A JPS62269312A (en) 1986-05-19 1986-05-19 Hot wall furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11553386A JPS62269312A (en) 1986-05-19 1986-05-19 Hot wall furnace

Publications (1)

Publication Number Publication Date
JPS62269312A true JPS62269312A (en) 1987-11-21

Family

ID=14664886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11553386A Pending JPS62269312A (en) 1986-05-19 1986-05-19 Hot wall furnace

Country Status (1)

Country Link
JP (1) JPS62269312A (en)

Similar Documents

Publication Publication Date Title
JPH02138473A (en) Treating device and treating method
JPH021116A (en) Heat treatment apparatus
EP0047112B1 (en) Method of forming phosphosilicate glass films
JPS62269312A (en) Hot wall furnace
JPS62263629A (en) Vapor growth device
JPS62214614A (en) Reduced pressure cvd device
JPH01309315A (en) Heat treatment equipment
JPS59159980A (en) Vapor growth device
JPS6168393A (en) Hot wall type epitaxial growth device
JPH04202091A (en) Vapor growth device of compound semiconductor
JPS6010621A (en) Depressurized epitaxial growing equipment
JPS6058608A (en) Heat processing furnace
JPS607378B2 (en) CVD equipment
JPH01123413A (en) Vapor growth apparatus
JPS6126217A (en) Vapor growth apparatus
JPH01161719A (en) Vapor growth apparatus
JPS60200531A (en) Processor
JPH04139820A (en) Vertical low pressure cvd apparatus
JPS61156725A (en) Vapor growth apparatus
JPH02268433A (en) Manufacture of semiconductor device
JPS632435Y2 (en)
JPS5838604Y2 (en) Reduced pressure vapor phase growth equipment
JPS58169907A (en) Apparatus for producting thin film
JPH01218010A (en) Vapor growth method and apparatus, and method of cleaning reactor in apparatus
JPH06145990A (en) Cleaning method for cvd apparatus