JPH02268433A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02268433A
JPH02268433A JP8992889A JP8992889A JPH02268433A JP H02268433 A JPH02268433 A JP H02268433A JP 8992889 A JP8992889 A JP 8992889A JP 8992889 A JP8992889 A JP 8992889A JP H02268433 A JPH02268433 A JP H02268433A
Authority
JP
Japan
Prior art keywords
tube
molecules
reduced pressure
sih4
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8992889A
Other languages
Japanese (ja)
Other versions
JP3119475B2 (en
Inventor
Yasuhide Den
田 康秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP01089928A priority Critical patent/JP3119475B2/en
Publication of JPH02268433A publication Critical patent/JPH02268433A/en
Application granted granted Critical
Publication of JP3119475B2 publication Critical patent/JP3119475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress generation of dust and to treat in mass production by continuous operation by forming a silicon oxide film on a semiconductor substrate in a core tube by a reduced pressure chemical vapor growing method, and then supplying oxygen into the tube under reduced pressure. CONSTITUTION:A wafer is mounted in a reaction tube 1 of a reduced pressure CVD unit, a hatch 3 is closed, the tube 1 is evacuated to vacuum via a discharge tube 13, nitrogen gas is introduced into the tube 1 through a supply tube 2 to temporarily prepare a nitrogen atmosphere in the tube 1. Then, mixture gas of SiH4 and N2O is supplied into the tube 1 through the tube 2 to grown a silicon oxide film on the surface of a wafer. In this case, unreacted SiH4 molecules 4 are adhered to the inner face of the tube 1. Then, oxygen gas is introduced into the tube 1 through the tube 2, remaining SiH4 is reacted with oxygen molecules 5 to generate silicon dioxide molecules 6. Thus, the molecules 6 are removed via the tube 13 to prevent dust from generating.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はシランガスを反応ガスとしてシリコン酸化膜(
以下、シラン系酸化膜という)を成長させる場合に好適
の半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the production of a silicon oxide film (
The present invention relates to a method of manufacturing a semiconductor device suitable for growing a silane-based oxide film (hereinafter referred to as a silane-based oxide film).

[従来の技術] 従来、減圧化学気相成長装置(以下、減圧CvD装置と
いう)によりシラン系酸化膜を形成する場合には、シリ
コン酸化膜を成長させた後、反応管内に減圧下にて窒素
を供給し、これを真空排気系で吸引することにより、ご
みの発生を防止せんとしている。
[Prior Art] Conventionally, when forming a silane-based oxide film using a reduced pressure chemical vapor deposition apparatus (hereinafter referred to as a reduced pressure CvD apparatus), after growing a silicon oxide film, nitrogen was introduced into a reaction tube under reduced pressure. The aim is to prevent the generation of dust by supplying water and suctioning it with a vacuum exhaust system.

第3図(a)及び(b)は−射的な減圧CVD装置の構
造を示し、第3図(a)はその前方開口部を示す模式図
、第3図(b)はその模式的側面図である。
3(a) and 3(b) show the structure of a radiation-reduced pressure CVD apparatus, FIG. 3(a) is a schematic diagram showing its front opening, and FIG. 3(b) is a schematic side view thereof. It is a diagram.

この減圧CVD装置においては、円筒状のヒータ9がそ
の軸方向を水平にして設置されており、このヒータ9内
に同軸的に円筒状の反応管1が設置されている。この反
応管1の一端側は開口部7となっていて、この開口部7
には反応ガス供給源に接続された反応ガス供給管2の先
端部が配設されている。これにより、反応ガス供給管2
を介して反応管1内に反応ガスを供給するようになって
いる。また、反応管1の開口部7には、第3図(a)に
示すように、円板状のハツチ3がその回動支点3aを中
心として揺動するように設置されており、このハツチ3
により開口部7を開閉するようになっている。
In this reduced pressure CVD apparatus, a cylindrical heater 9 is installed with its axial direction horizontal, and a cylindrical reaction tube 1 is installed coaxially within this heater 9. One end side of this reaction tube 1 is an opening 7, and this opening 7
A distal end portion of a reactive gas supply pipe 2 connected to a reactive gas supply source is disposed at. As a result, the reaction gas supply pipe 2
A reaction gas is supplied into the reaction tube 1 through the reaction tube 1. Further, as shown in FIG. 3(a), a disc-shaped hatch 3 is installed in the opening 7 of the reaction tube 1 so as to swing around its pivot point 3a. 3
The opening 7 is opened and closed by the opening 7.

一方、反応管1の他端部にはこの他端部から排出された
ガスを集めて真空排気系12へ送給する排出管13が配
設されている。この真空排気系12においては、排出管
13の上流側から下流側に向ケて圧力a整器12a1メ
カニカルブースターポンプ12b及びロータリーポンプ
12cが配置されている。また、ボート10には複数枚
のウェハ11が相互間に一定の間隔をおき、ボー)10
に対していずれも同一の角度で傾斜するように配置され
ている。このような複数個(図示例の場合は4個)のボ
ー)10は反応管1内にウェハ移送治具8を使用して装
入されるようになっている。
On the other hand, an exhaust pipe 13 is disposed at the other end of the reaction tube 1 to collect the gas discharged from the other end and send it to the evacuation system 12. In this evacuation system 12, a pressure regulator 12a, a mechanical booster pump 12b, and a rotary pump 12c are arranged from the upstream side to the downstream side of the exhaust pipe 13. In addition, a plurality of wafers 11 are placed in the boat 10 at a constant interval, and
They are all arranged so as to be inclined at the same angle with respect to each other. A plurality of such wafers (four in the illustrated example) 10 are loaded into the reaction tube 1 using a wafer transfer jig 8.

上述の如く構成される装置を使用してウェハ11上に薄
膜を減圧化学気相成長させる場合は、先ス、ウェハ11
を搭載したボート10をウェハ移送治具8により開口部
7から反応管1内に装入した後、ハツチ3を回動させて
反応管1の開口部7を閉じる。そして、真空排気系12
により排出管13を介して反応管1内を排気し、ヒータ
9により反応管1内のウェハ11を加熱すると共に、反
応ガス供給管2を介して反応ガスを加熱されたウェハ1
1の表面へ供給する。そうすると、反応ガスの熱分解反
応によりウェハ11の表面に薄膜が生成する。このよう
にして、薄膜をCVD成長させた後に、反応ガスの供給
を停止し、真空排気系の動作は継続しつつ、反応ガス供
給管2を介して窒素ガスを反応管1内に導入する。これ
により、ゴミの発生を防止した後、真空排気系12を停
止し、ハツチ3を開けて反応管1内に大気を導入する。
When depositing a thin film on the wafer 11 using the apparatus configured as described above, first step is to deposit the wafer 11 on the wafer 11.
After loading the boat 10 loaded with the wafer into the reaction tube 1 through the opening 7 using the wafer transfer jig 8, the hatch 3 is rotated to close the opening 7 of the reaction tube 1. And the vacuum exhaust system 12
The inside of the reaction tube 1 is exhausted through the exhaust pipe 13, the wafer 11 inside the reaction tube 1 is heated by the heater 9, and the heated wafer 1 is heated with the reaction gas through the reaction gas supply pipe 2.
Supply to the surface of 1. Then, a thin film is generated on the surface of the wafer 11 due to the thermal decomposition reaction of the reaction gas. After the thin film is grown by CVD in this manner, the supply of the reaction gas is stopped, and nitrogen gas is introduced into the reaction tube 1 through the reaction gas supply pipe 2 while the evacuation system continues to operate. After this prevents the generation of dust, the evacuation system 12 is stopped, the hatch 3 is opened, and the atmosphere is introduced into the reaction tube 1.

そして、ウェハ移送治具8によりボート10及びウェハ
11を反応管1内から取り出す。
Then, the boat 10 and the wafers 11 are taken out from the reaction tube 1 using the wafer transfer jig 8.

上述の如く、従来の減圧CVD装置によるシラン酸化膜
の成長工程においては、膜成長後、反応管1内に窒素ガ
スを供給し、これを真空排気系12により排気して反応
管1内を窒素ガスで置換することによって反応管1内に
ゴミが発生することを防止している。
As mentioned above, in the process of growing a silane oxide film using a conventional low-pressure CVD apparatus, after the film is grown, nitrogen gas is supplied into the reaction tube 1, and this is exhausted by the vacuum evacuation system 12, so that the inside of the reaction tube 1 is filled with nitrogen gas. By replacing the gas with gas, generation of dust in the reaction tube 1 is prevented.

[発明が解決しようとする課題] しかしながら、上述した従来方法によりシラン系酸化膜
を形成しようとすると、成膜時に反応管1の内面に未反
応の5t)14粒子が付着して残存してしまうという欠
点がある。このため、膜成長後に、ハツチを開けたとき
に、この未反応シラン粒子が大気中の酸素と反応し、所
謂ゴミを生成する。この管内に浮遊して残存するシラン
酸化物によるコミは、次順の膜成長工程において更にご
みの核となる。このため、連続運転のもとで成長回数が
増加すると、ごみも増大してしまう。そして、このよう
なごみの発生により、半導体装置の製造歩留が低減して
しまうため、従来の製造方法は量産処理に適さないとい
う問題点がある。
[Problems to be Solved by the Invention] However, when attempting to form a silane-based oxide film using the conventional method described above, unreacted 5t)14 particles adhere to and remain on the inner surface of the reaction tube 1 during film formation. There is a drawback. Therefore, when the hatch is opened after film growth, these unreacted silane particles react with oxygen in the atmosphere, producing so-called dust. The dust caused by silane oxide floating and remaining in this tube becomes a nucleus of dust in the next film growth process. Therefore, as the number of growth increases under continuous operation, the amount of waste also increases. The generation of such dust reduces the manufacturing yield of semiconductor devices, which poses a problem in that conventional manufacturing methods are not suitable for mass production.

本発明はかかる問題点に鑑みてなされたものであって、
ゴミの発生を抑制し、連続運転による量産処理に適した
半導体装置の製造方法を提供することを目的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a method for manufacturing semiconductor devices that suppresses the generation of dust and is suitable for mass production processing through continuous operation.

[課題を解決するための手段] 本発明に係る半導体装置の製造方法は、炉芯管内の半導
体基板にシリコン酸化膜を減圧化学気相成長法により形
成する工程と、減圧下にて前記炉芯管内に酸素を供給す
る工程と、を有することを特徴とする。
[Means for Solving the Problems] A method for manufacturing a semiconductor device according to the present invention includes a step of forming a silicon oxide film on a semiconductor substrate in a furnace core tube by a low pressure chemical vapor deposition method, and a step of forming a silicon oxide film on a semiconductor substrate in a furnace core tube under reduced pressure. The method is characterized by comprising a step of supplying oxygen into the pipe.

[作用] 本発明においては、膜成長後、減圧下にて炉芯管内に酸
素を供給し、膜成長工程にて管内面に付着したシランと
酸素とを反応させる。これにより、管内面の付着物は酸
化物となって除去され、次順の膜成長工程にてごみの核
となるものが除去されるので、連続運転においてもごみ
の発生が抑制される。
[Operation] In the present invention, after film growth, oxygen is supplied into the furnace core tube under reduced pressure, and the silane adhering to the inner surface of the tube in the film growth process is reacted with oxygen. As a result, the deposits on the inner surface of the tube are removed in the form of oxides, and what becomes the nucleus of dust is removed in the next film growth process, so that the generation of dust is suppressed even during continuous operation.

[実施例コ 次に、本発明の実施例について添付の図面を参照して説
明する。
[Embodiments] Next, embodiments of the present invention will be described with reference to the accompanying drawings.

先ず、反応ガスにシラン(SiH4)と亜酸化窒素(N
QO)との混合ガスを使用してシリコン酸化膜を形成す
る場合の実施例について説明する。
First, silane (SiH4) and nitrous oxide (N
An example in which a silicon oxide film is formed using a mixed gas with QO) will be described.

本実施例方法においても、第3図に示す減圧CVD装置
を使用する。第1図及び第2図はこの減圧CVD装置を
模式的に示して本実施例方法を工程順に説明する図であ
る。先ず、ウェハ11を反応管1内に設置し、ハツチ3
を閉じた後、反応管1内を真空排気系12により真空状
態まで排気し、更に供給管2を介して反応管1内に窒素
ガスを導入することにより、反応管1内を−旦窒素雰囲
気とする。次に、5IH4とN20の混合ガスを反応ガ
ス供給管2を介して反応管1内に供給してウェハ11の
表面に膜成長を行う。このとき、N20ガスが酸化性に
乏しいため、第1図に示すように反応管1の内面に未反
応のSiH4分子4が付着して残る。
In the method of this embodiment as well, the reduced pressure CVD apparatus shown in FIG. 3 is used. FIGS. 1 and 2 are diagrams schematically showing this reduced pressure CVD apparatus and explaining the method of this embodiment in the order of steps. First, the wafer 11 is placed in the reaction tube 1, and the hatch 3
After closing the reaction tube 1, the inside of the reaction tube 1 is evacuated to a vacuum state by the evacuation system 12, and nitrogen gas is introduced into the reaction tube 1 through the supply tube 2, thereby creating a nitrogen atmosphere inside the reaction tube 1. shall be. Next, a mixed gas of 5IH4 and N20 is supplied into the reaction tube 1 through the reaction gas supply pipe 2 to grow a film on the surface of the wafer 11. At this time, since the N20 gas has poor oxidizing properties, unreacted SiH4 molecules 4 remain attached to the inner surface of the reaction tube 1, as shown in FIG.

次いで、第2図に示すように、反応ガス供給管2を介し
て反応管1内に酸素ガスを導入し、残存するSiH4分
子4を酸素分子5と十分反応させて二酸化シリコン分子
6を生成する。そうすると、反応管1内は排出管13を
介して真空排気系により排気されているので、SiH4
分子4の反応生成物である二酸化シリコン分子6が排出
管13を介して除去される。これにより、成膜工程後に
、管内面に5IH4分子が残存することが抑制されるの
で、次順の成膜工程にてゴミの核となるものが減少し、
ゴミの発生が防止される。
Next, as shown in FIG. 2, oxygen gas is introduced into the reaction tube 1 through the reaction gas supply pipe 2, and the remaining SiH4 molecules 4 are sufficiently reacted with the oxygen molecules 5 to generate silicon dioxide molecules 6. . Then, since the inside of the reaction tube 1 is evacuated by the vacuum exhaust system via the exhaust pipe 13, the SiH4
Silicon dioxide molecules 6, which are reaction products of molecules 4, are removed via exhaust pipe 13. This prevents 5IH4 molecules from remaining on the inner surface of the tube after the film-forming process, reducing the number of particles that will become the nucleus of dust in the next film-forming process.
Garbage generation is prevented.

例えば、HTO膜(高温酸化膜;旧gh Temper
ature 0xlde)を温度790℃、圧力0.6
 Torrの条件下で成長させた後、酸素を10cc/
分で10分間流入させた場合、従来法では1回目の成長
で100個、2回目で500乃至tooo個、3回目で
2000乃至3000個と、ごみが増加するのに対し、
本実施例によれば連続運転を行っても2回目以降の成膜
工程でゴミの発生を200乃至300個程度に抑制する
ことができた。なお、従来方法でも、成膜後、大気状態
で約15時間放置することにより、付着SiH,s分子
は大気中に拡散し除去できるが、このような長時間の運
転休止は量産化には不適である。しかし、本実施例方法
によれば、連続運転してもゴミが増加しないため、量産
化することができる。
For example, HTO film (high temperature oxide film; former GH Temper
temperature 790℃, pressure 0.6
After growing under Torr conditions, oxygen was added at 10cc/
If the flow is allowed to flow for 10 minutes, in the conventional method, the amount of waste increases by 100 particles in the first growth, 500 to too many particles in the second growth, and 2000 to 3000 particles in the third growth.
According to this example, even if continuous operation was performed, the generation of dust could be suppressed to about 200 to 300 pieces in the second and subsequent film forming steps. In the conventional method, the attached SiH, s molecules can be diffused into the atmosphere and removed by leaving the film in the atmosphere for about 15 hours after film formation, but such a long suspension of operation is not suitable for mass production. It is. However, according to the method of this embodiment, the amount of dust does not increase even during continuous operation, so mass production is possible.

次に、反応ガスにSiH4と二酸化窒素(No□)との
混合ガスを用いた場合の他の実施例について説明する。
Next, another example will be described in which a mixed gas of SiH4 and nitrogen dioxide (No□) is used as the reaction gas.

NO2は酸化性に富んでいるため、500℃程度の低温
でシリコン酸化膜の形成が可能である。しかしながら、
従来の窒素ガスによるパージだけでは未反応SiH4を
完全に除去することはできない。そこで、成膜後に酸素
ガスを反応管1内に供給することにより、未反応SiH
4を十分に除去することができ、ゴミの発生を防止する
ことができる。
Since NO2 is highly oxidizing, it is possible to form a silicon oxide film at a low temperature of about 500°C. however,
Unreacted SiH4 cannot be completely removed by conventional nitrogen gas purging alone. Therefore, by supplying oxygen gas into the reaction tube 1 after film formation, unreacted SiH
4 can be sufficiently removed, and the generation of dust can be prevented.

例えば、成膜後に、酸素ガスを10cc/分の流量で5
分間供給して反応管1内をパージする。これにより、2
回目の成膜工程で、従来約500個のゴミが発生してい
たのに対し、本実施例方法においては、ゴミを100個
以下に抑制することができた。
For example, after film formation, oxygen gas is supplied at a flow rate of 10 cc/min for 5 cc/min.
The inside of the reaction tube 1 is purged by supplying it for a minute. This results in 2
Conventionally, about 500 pieces of dust were generated in the second film forming process, but in the method of this embodiment, the number of dust could be suppressed to 100 or less.

[発明の効果] 以上説明したように本発明によれば、シリコン酸化膜成
長後、炉芯管内に酸素を供給して、炉芯管内壁に付着し
た未反応のSiH4と反応させるから、次順の成膜工程
に先立ち、この未反応SiH4を除去することができ、
ごみの発生を防止することができる。また、これにより
半導体装置の製造歩留が向上し、かつ連続運転が可能に
なり、量産処理が可能となる等、本発明は極めて優れた
効果を奏する。
[Effects of the Invention] As explained above, according to the present invention, after the silicon oxide film is grown, oxygen is supplied into the furnace core tube and reacts with unreacted SiH4 attached to the inner wall of the furnace core tube. This unreacted SiH4 can be removed prior to the film formation step of
It is possible to prevent the generation of garbage. Further, the present invention has extremely excellent effects, such as improving the manufacturing yield of semiconductor devices, making continuous operation possible, and making mass production possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施例方法を工程順に説明
する模式図、第3図は減圧CVD装置の構造を示す図で
あり、第3図(a)はその前方開口部、第3図(b)は
その側面を示す模式図である。 1;反応管、2;反応ガス供給管、3;ハツチ、4;シ
ラン(SiH4)分子、5;酸素分子、6;二酸化シリ
コン分子、7;開口部、8;ウニ/1移送治具、9;ヒ
ータ、10;ボート、11;ウェハ、12:真空排気系
、12a;圧力調整器、12b;メカニカルブースター
ポンプ、12c;ロータリーポンプ
FIGS. 1 and 2 are schematic diagrams explaining the method according to the present invention step by step, and FIG. 3 is a diagram showing the structure of a low-pressure CVD apparatus, and FIG. 3(a) shows the front opening, the FIG. 3(b) is a schematic diagram showing the side surface thereof. 1; reaction tube, 2; reaction gas supply pipe, 3; hatch, 4; silane (SiH4) molecule, 5; oxygen molecule, 6; silicon dioxide molecule, 7; opening, 8; sea urchin/1 transfer jig, 9 ; Heater, 10; Boat, 11; Wafer, 12: Vacuum exhaust system, 12a; Pressure regulator, 12b; Mechanical booster pump, 12c; Rotary pump

Claims (1)

【特許請求の範囲】[Claims] (1)炉芯管内の半導体基板にシリコン酸化膜を減圧化
学気相成長法により形成する工程と、減圧下にて前記炉
芯管内に酸素を供給する工程と、を有することを特徴と
する半導体装置の製造方法。
(1) A semiconductor characterized by comprising the steps of: forming a silicon oxide film on a semiconductor substrate in a furnace core tube by low pressure chemical vapor deposition; and supplying oxygen into the furnace core tube under reduced pressure. Method of manufacturing the device.
JP01089928A 1989-04-10 1989-04-10 Method for manufacturing semiconductor device Expired - Fee Related JP3119475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01089928A JP3119475B2 (en) 1989-04-10 1989-04-10 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01089928A JP3119475B2 (en) 1989-04-10 1989-04-10 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02268433A true JPH02268433A (en) 1990-11-02
JP3119475B2 JP3119475B2 (en) 2000-12-18

Family

ID=13984361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01089928A Expired - Fee Related JP3119475B2 (en) 1989-04-10 1989-04-10 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3119475B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928428A (en) * 1996-02-23 1999-07-27 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for manufacturing a semiconductor device
JP2007073626A (en) * 2005-09-05 2007-03-22 Toshiba Corp Cleaning method of semiconductor manufacturing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500258B2 (en) * 2003-02-07 2010-07-14 東京エレクトロン株式会社 Semiconductor processing method and apparatus for processing substrate to be processed

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621333A (en) * 1979-07-31 1981-02-27 Fujitsu Ltd Cleaning method of equipment for manufacturing semiconductor element
JPS63244739A (en) * 1987-03-31 1988-10-12 Toshiba Corp Detection of cleaning end point in semiconductor manufacturing equipment
JPH01278732A (en) * 1988-05-02 1989-11-09 Fujitsu Ltd Chemical vapor deposition process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621333A (en) * 1979-07-31 1981-02-27 Fujitsu Ltd Cleaning method of equipment for manufacturing semiconductor element
JPS63244739A (en) * 1987-03-31 1988-10-12 Toshiba Corp Detection of cleaning end point in semiconductor manufacturing equipment
JPH01278732A (en) * 1988-05-02 1989-11-09 Fujitsu Ltd Chemical vapor deposition process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928428A (en) * 1996-02-23 1999-07-27 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for manufacturing a semiconductor device
JP2007073626A (en) * 2005-09-05 2007-03-22 Toshiba Corp Cleaning method of semiconductor manufacturing device

Also Published As

Publication number Publication date
JP3119475B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
US5584963A (en) Semiconductor device manufacturing apparatus and cleaning method for the apparatus
JP3265042B2 (en) Film formation method
US20070292974A1 (en) Substrate Processing Method and Substrate Processing Apparatus
JPS61117841A (en) Formation of silicon nitride film
JPS632330A (en) Chamical vapor growth
JPH04326512A (en) Forming method of doped thin film
JPH02268433A (en) Manufacture of semiconductor device
JP3118737B2 (en) Processing method of the object
JPH0786173A (en) Film deposition
US6333266B1 (en) Manufacturing process for a semiconductor device
US6531415B1 (en) Silicon nitride furnace tube low temperature cycle purge for attenuated particle formation
JPH03206618A (en) Manufacture of semiconductor device
JPH03223464A (en) Reduced pressure vapor growth device
JPH03196524A (en) Formation of silicon nitride film
JP2579166B2 (en) Plasma CVD apparatus and film forming method
JPH0689863A (en) Formation of thin film
JPH07109574A (en) Formation of silicon nitride film
JP2004095940A (en) Method of manufacturing semiconductor device
JP2968085B2 (en) Vapor phase growth equipment
JPS62296426A (en) Cvd thin film formation apparatus
JPH03196525A (en) Formation of silicon nitride film
JPH06181205A (en) Method of manufacturing semiconductor device
JPH06208991A (en) Method and apparatus for treating semiconductor substrate
JPH03126874A (en) Film formation of bpsg film
JPH05251347A (en) Film formation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees