JPH0689863A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH0689863A
JPH0689863A JP24054592A JP24054592A JPH0689863A JP H0689863 A JPH0689863 A JP H0689863A JP 24054592 A JP24054592 A JP 24054592A JP 24054592 A JP24054592 A JP 24054592A JP H0689863 A JPH0689863 A JP H0689863A
Authority
JP
Japan
Prior art keywords
gas
thin film
reactor
shaped tube
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24054592A
Other languages
Japanese (ja)
Inventor
Takashi Yano
尚 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP24054592A priority Critical patent/JPH0689863A/en
Publication of JPH0689863A publication Critical patent/JPH0689863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To pile up reaction gas on a substrate by thermal decomposition while arranging a plurality of base bodies in a tubular reactor in the vertical direction and using an exhaust system. CONSTITUTION:During thermal decomposition of reactive gas by using a vertical CVD device, inert gas is simultabeously introduced so as to suppress particles generated from an L-shaped tube without oxidizing the base body surfaces. Thereby, reliability and yield of a semiconductor device can be improved by in every way preventing adhesion of particles to the base body surfaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複数の基体上に薄膜を形
成する方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for forming a thin film on a plurality of substrates.

【0002】[0002]

【従来の技術】近年、複数の基体を管状反応器に横方向
に配置した横型CVD装置に変わり縦型CVD装置が、
薄膜を減圧状態で熱反応させる、いわゆる、減圧CVD
法の主流となってきた。
2. Description of the Related Art In recent years, a vertical CVD apparatus has been replaced with a horizontal CVD apparatus in which a plurality of substrates are horizontally arranged in a tubular reactor.
So-called low-pressure CVD in which a thin film is thermally reacted under reduced pressure
Has become the mainstream of law.

【0003】以下、従来の技術について図2の工程図と
図3の縦型CVD装置概要断面図を用いて説明する。
A conventional technique will be described below with reference to the process chart of FIG. 2 and the schematic sectional view of the vertical CVD apparatus of FIG.

【0004】図3において、マニーホールド1には複数
のガス導入口2,3が配設されており、これより反応ガ
スが反応器内に導入される。反応器内は石英内管4と石
英外管5により形成されており、ボート6により複数の
基体が固定され、熱反応によりこれら基体の表面に薄膜
が形成される。残余の反応ガスはその後、石英内管4と
石英外管5の間を経由し、排気口7より排気システムに
排気される。又、石英内管4と石英外管5との間にはマ
ニーホールド1よりL字管8が接続されており、石英ボ
ート6を反応器内に出し入れする際、このL字管8を通
じて窒素を多量に流すことにより、基体表面が酸化され
るのを防止している。
In FIG. 3, the manifold 1 is provided with a plurality of gas introduction ports 2 and 3, through which reaction gas is introduced into the reactor. The inside of the reactor is formed by a quartz inner tube 4 and a quartz outer tube 5, a plurality of substrates are fixed by a boat 6, and a thin film is formed on the surfaces of these substrates by thermal reaction. The remaining reaction gas then passes between the quartz inner tube 4 and the quartz outer tube 5 and is exhausted from the exhaust port 7 to the exhaust system. Further, an L-shaped tube 8 is connected from the manifold 1 between the quartz inner tube 4 and the quartz outer tube 5, and when the quartz boat 6 is taken in and out of the reactor, nitrogen is passed through the L-shaped tube 8. By flowing a large amount, the surface of the substrate is prevented from being oxidized.

【0005】図2に従来技術により薄膜が形成される過
程を示す。石英ボート6を反応管に出し入れする際には
L字管8及びガス導入口2及び3より窒素を流してお
り、熱分解を起こさせる際にはガス導入口2及び3より
反応ガスのみを流している。又、反応性ガス排気ではL
字管8及びガス導入口2及び3共に何もガスは流してい
ない。
FIG. 2 shows a process of forming a thin film by a conventional technique. When the quartz boat 6 is taken in and out of the reaction tube, nitrogen is flown from the L-shaped tube 8 and the gas introduction ports 2 and 3, and when the thermal decomposition is caused, only the reaction gas is flown from the gas introduction ports 2 and 3. ing. Also, in reactive gas exhaust, L
No gas is flowing through the character tube 8 and the gas inlets 2 and 3.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では、熱分解及び反応性ガス排気の際にL字管
8の内部にも、反応性ガスが回り込み、薄膜が形成され
て石英ボート6を反応器内に出し入れする時、L字管8
より窒素ガスを多量に流すと主に、L字管8の内面に付
着している薄膜材の剥離物、いわゆるパーティクルが基
体表面に付着するという問題があった。又、窒素ガスを
流さないと、パーティクルは付着しないが、基体表面が
酸化されるという問題があった。
However, in the above-mentioned conventional method, the reactive gas also flows into the inside of the L-shaped tube 8 at the time of thermal decomposition and exhaust of the reactive gas, and a thin film is formed to form the quartz boat 6. L tube 8 when putting in and out of the reactor
When a larger amount of nitrogen gas is flowed, there is a problem in that mainly exfoliated material of the thin film material, so-called particles, which adheres to the inner surface of the L-shaped tube 8 adheres to the surface of the substrate. Further, if nitrogen gas was not flown, the particles would not adhere, but there was a problem that the surface of the substrate was oxidized.

【0007】本発明は上記課題を解決するもので、基体
表面を酸化させずに、かつL字管8より発生するパーテ
ィクルを押え、基体表面にパーティクルを極力付着しな
い薄膜形成方法を提供し、半導体装置の信頼性と歩留り
を向上することを目的とする。
The present invention solves the above problems by providing a method for forming a thin film that does not oxidize the surface of a substrate, suppresses particles generated from an L-shaped tube 8 and prevents the particles from adhering to the surface of the substrate as much as possible. The purpose is to improve the reliability and yield of the device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明では、薄膜形成過程における熱分解中あるいは
その後の反応性ガス排気の際、L字管より少量の不活性
ガスを反応器内に流すようにした。
In order to achieve the above object, according to the present invention, a small amount of an inert gas is fed from the L-shaped tube into the reactor during reactive gas exhaust during or after thermal decomposition in a thin film forming process. I tried to flush it.

【0009】[0009]

【作用】上記手段により反応器内に反応性ガスが流れて
きてもL字管より不活性ガスを流すことにより、L字管
内部に反応性ガスが回り込まず、薄膜が形成されないの
で、石英ボートの出し入れの際、L字管より窒素を流し
ても基体にパーティクルが付着しない。
By the above-mentioned means, even if the reactive gas flows into the reactor, the inert gas is caused to flow from the L-shaped tube so that the reactive gas does not flow into the L-shaped tube and a thin film is not formed. Particles do not adhere to the substrate even when nitrogen is flowed from the L-shaped tube during the loading and unloading.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1と図3を用い
て窒化珪素膜を形成する場合について説明する。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 and 3 for forming a silicon nitride film.

【0011】ウェハ搬送過程で、予め洗浄された直径約
150cmのシリコンウェハを石英ボート6上に配置す
る。次いでボートロード過程で石英ボート6を反応器内
の石英内管4の中に窒素をL字管8から約10リットル
/分、ガス導入管2及び同3より、それぞれ、約1リッ
トル/分の速度で流しながら、反応器内へ導入した。反
応器内は加熱器9を用いて、約780℃の温度設定がな
されている。次いで真空引きIの過程で反応器内を10
ミリトール以下に排気し、ガス導入管2及び同3より窒
素を流しながら反応器内を300ミリトールの圧力で約
30分間放置し、これを温度安定過程とし、温度安定を
待った。次いで再び、真空引きIIの過程により、反応器
内の窒素を排気し、圧力を10ミリトール以下に下げ
た。成膜(熱分解)過程では、導入口2よりアンモニア
を750cc/分、導入口3よりジクロルシランを75cc
/分の速度で導入した。この間には、同時にL字管8よ
り窒素を約50cc/分の速度で導入し、反応器内圧力を
約300ミリトールとし、約50分後にL字管より窒素
を流したまま、アンモニア及びジクロルシランの流れを
止めた。さらに、真空引きIIIの過程で、残余の反応ガ
スを約15分間排気した後、窒素ガスを停止し、反応器
内をさらに10ミリトール以下に排気した。次いで真空
排気弁を閉じ、大気圧復帰過程に移り、反応器内をガス
導入口2及び同3より窒素を逆充填し、大気圧力(約7
60トール)とした。次いで、ボートアンロード過程で
は、石英ボート6を反応器内の石英内管4内に窒素をL
字管8から約10リットル/分、ガス導入管2及び同3
よりそれぞれ約1リットル/分の速度で流しながら取り
出した。そして、ウェハ搬送過程でウェハを石英ボート
6上より取り出し、評価した。これらのウェハには約1
600Åの窒化珪素膜が堆積しており、約0.3μm以
上のパーティクルも10個以下であることを確認した。
In the wafer transfer process, a silicon wafer having a diameter of about 150 cm that has been cleaned in advance is placed on the quartz boat 6. Next, in the boat loading process, the quartz boat 6 was charged with nitrogen into the quartz inner tube 4 in the reactor from the L-shaped tube 8 at about 10 liters / minute, and from the gas introduction tubes 2 and 3 at about 1 liter / minute, respectively. It was introduced into the reactor while flowing at a speed. A temperature of about 780 ° C. is set in the reactor by using the heater 9. Then, in the process of vacuum evacuation I
The reactor was evacuated to less than or equal to millitorr, and the inside of the reactor was left at a pressure of 300 millitorr for about 30 minutes while flowing nitrogen through the gas introduction pipes 2 and 3, and this was made a temperature stabilization process, and the temperature stabilization was waited. Then, again in the process of evacuation II, the nitrogen in the reactor was evacuated and the pressure was lowered to 10 mTorr or less. During the film formation (pyrolysis) process, ammonia was introduced through the inlet 2 at 750 cc / min, and dichlorosilane was introduced at 75 cc through the inlet 3.
Introduced at a rate of / min. During this period, nitrogen was simultaneously introduced from the L-shaped tube 8 at a rate of about 50 cc / min, the pressure inside the reactor was set to about 300 mTorr, and after about 50 minutes, while nitrogen was flowing from the L-shaped tube, ammonia and dichlorosilane were removed. The flow stopped. Further, in the process of evacuation III, after the remaining reaction gas was exhausted for about 15 minutes, nitrogen gas was stopped and the inside of the reactor was further exhausted to 10 mTorr or less. Then, the vacuum exhaust valve was closed, and the process was returned to atmospheric pressure. The inside of the reactor was back-filled with nitrogen from the gas inlets 2 and 3, and the atmospheric pressure (about 7
60 torr). Next, in the boat unloading process, the quartz boat 6 is charged with nitrogen in the quartz inner tube 4 in the reactor.
Approximately 10 liters / minute from the character tube 8, gas introduction tubes 2 and 3
Each of them was taken out while flowing at a rate of about 1 liter / minute. Then, the wafer was taken out from the quartz boat 6 during the wafer transfer process and evaluated. About 1 for these wafers
It was confirmed that a 600 Å silicon nitride film was deposited and the number of particles of about 0.3 μm or more was 10 or less.

【0012】本実施例では、L字管8より導入するガス
として窒素を用いたが、これに限るわけではなく、ヘリ
ウム、アルゴン等不活性ガスであれば良い。
In this embodiment, nitrogen is used as the gas introduced from the L-shaped tube 8. However, the gas is not limited to this, and an inert gas such as helium or argon may be used.

【0013】[0013]

【発明の効果】以上のように、本発明の薄膜形成方法に
よれば、基体表面を酸化することなく、薄膜形成の過程
でパーティクルの混入が低減でき、半導体装置の信頼性
と歩留りを向上することができる。
As described above, according to the thin film forming method of the present invention, it is possible to reduce the mixing of particles in the process of forming the thin film without oxidizing the surface of the substrate, thereby improving the reliability and yield of the semiconductor device. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による薄膜形成過程の概略図FIG. 1 is a schematic view of a thin film forming process according to the present invention.

【図2】従来技術による薄膜形成過程の概略図FIG. 2 is a schematic view of a thin film forming process according to a conventional technique.

【図3】縦型CVD装置の概要断面図FIG. 3 is a schematic sectional view of a vertical CVD apparatus.

【符号の説明】[Explanation of symbols]

1 マニーホールド 2 ガス導入口 3 ガス導入口 4 石英内管 5 石英外管 6 石英ボート 7 排気口 8 L字管 9 加熱器 1 Manihold 2 Gas inlet 3 Gas inlet 4 Quartz inner tube 5 Quartz outer tube 6 Quartz boat 7 Exhaust port 8 L-shaped tube 9 Heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の基体を管状反応器に縦方向に配置
し、排気システムを用い、反応性ガスを前記基体上に熱
分解堆積させる薄膜形成過程における前記反応性ガスの
熱分解中または薄膜形成過程における反応性ガス導入終
了後の排気中に不活性ガスを前記管状反応器内に導入す
ることを特徴とする薄膜形成方法。
1. A plurality of substrates are vertically arranged in a tubular reactor, and an exhaust system is used to pyrolyze and deposit the reactive gas on the substrate during the pyrolysis or thin film formation of the reactive gas. A method for forming a thin film, which comprises introducing an inert gas into the tubular reactor during the exhaust after the introduction of the reactive gas in the forming process.
JP24054592A 1992-09-09 1992-09-09 Formation of thin film Pending JPH0689863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24054592A JPH0689863A (en) 1992-09-09 1992-09-09 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24054592A JPH0689863A (en) 1992-09-09 1992-09-09 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH0689863A true JPH0689863A (en) 1994-03-29

Family

ID=17061125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24054592A Pending JPH0689863A (en) 1992-09-09 1992-09-09 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH0689863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708224A2 (en) 1994-10-19 1996-04-24 Sumitomo Metal Industries, Ltd. Thread joint for tubes
JP2009170827A (en) * 2008-01-21 2009-07-30 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708224A2 (en) 1994-10-19 1996-04-24 Sumitomo Metal Industries, Ltd. Thread joint for tubes
US5649725A (en) * 1994-10-19 1997-07-22 Sumitomo Metal Industries Limited Thread joint for tube
JP2009170827A (en) * 2008-01-21 2009-07-30 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP3067940B2 (en) Silicon nitride thin film deposition
US4650698A (en) Method of forming a thin film of a metal or metal compound on a substrate
US8598047B2 (en) Substrate processing apparatus and producing method of semiconductor device
CN109417048A (en) Flowable amorphous silicon film for gap filling application
TW201729283A (en) Self-aligned shielding of silicon oxide
JPH0689863A (en) Formation of thin film
US6531415B1 (en) Silicon nitride furnace tube low temperature cycle purge for attenuated particle formation
JP2001156065A (en) Method and apparatus for manufacturing semiconductor device
JPS6010108B2 (en) Method for pyrolytically depositing silicon nitride onto a substrate
JPH11260734A (en) Manufacture of semiconductor device
JP3119475B2 (en) Method for manufacturing semiconductor device
JP3202392B2 (en) CVD equipment
JP3534676B2 (en) Method and apparatus for forming Cu or Cu-containing film
JP4415005B2 (en) Substrate processing equipment
JPH04177830A (en) Horizontal low pressure vapor growth device
JPH0689874A (en) Manufacture of semiconductor device
JPH03206618A (en) Manufacture of semiconductor device
JP2579166B2 (en) Plasma CVD apparatus and film forming method
JPH07109574A (en) Formation of silicon nitride film
JPH07116609B2 (en) Chemical vapor deposition equipment
JP2005064538A (en) Substrate processing device and method of manufacturing semiconductor device
JP2005197541A (en) Substrate processor
JPH0625859A (en) Cvd film forming device and plasma cleaning method
JPS62230981A (en) Formation of thin film
JPH05211123A (en) Growth method of silicon epitaxial film