JPH04177830A - Horizontal low pressure vapor growth device - Google Patents

Horizontal low pressure vapor growth device

Info

Publication number
JPH04177830A
JPH04177830A JP30691090A JP30691090A JPH04177830A JP H04177830 A JPH04177830 A JP H04177830A JP 30691090 A JP30691090 A JP 30691090A JP 30691090 A JP30691090 A JP 30691090A JP H04177830 A JPH04177830 A JP H04177830A
Authority
JP
Japan
Prior art keywords
carrying
pressure vapor
hatch
reactor
electrode wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30691090A
Other languages
Japanese (ja)
Inventor
Mikio Okamura
岡村 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamaguchi Ltd
Original Assignee
NEC Yamaguchi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamaguchi Ltd filed Critical NEC Yamaguchi Ltd
Priority to JP30691090A priority Critical patent/JPH04177830A/en
Publication of JPH04177830A publication Critical patent/JPH04177830A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the oxidation of a contact hole in the case of making a polycrystalline silicon film for electrode wiring formation so as to reduce contact resistance by providing a means for putting the inside of a carry part in inert gas atmosphere. CONSTITUTION:The carry part 11A at the front of a reactor 1 is composed of a cover 12, which is provided with a hatch 12 for carrying in and carrying out the boat 5 carrying a wafer, nitride pipes 3, which have nozzles 3A-3H for introducing nitride gas into this, and lower exhaust pipes 4A-4F. Accordingly, it becomes possible to lower the concentration of oxygen in the vicinity of the silicon wafer carried in the furnace. Hereby, in the case of using a polycrystalline silicon film for electrode wiring, the oxidation of the contact hole is prevented, and the contact resistance is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は横型減圧気相成長装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a horizontal reduced pressure vapor phase growth apparatus.

〔従来の技術〕[Conventional technology]

従来の横型減圧気相成長装置は、第3図に示すように、
反応炉1の一端にはパックハツチ窒素配管6や真空排気
管7が設けられ、他端にはハツチ12と排気管8を有す
る搬送部11が設けられた構造となっている。半導体基
板(以下ウェハーという)を載せたボートは、この搬送
部11より反応炉1内に搬送される。
The conventional horizontal reduced pressure vapor phase growth apparatus, as shown in Fig. 3,
The reactor 1 has a structure in which a pack hatch nitrogen pipe 6 and a vacuum exhaust pipe 7 are provided at one end, and a conveying section 11 having a hatch 12 and an exhaust pipe 8 is provided at the other end. A boat carrying semiconductor substrates (hereinafter referred to as wafers) is transported into the reactor 1 from this transport section 11.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の横型減圧気相成長装置における反応炉手
前の搬送部11は、単に排気管8が設けられた構造であ
るため、ハツチ12をあけてウェーハを搬入した場合、
反応炉1の炉口における雰囲気は酸素濃度が高くなる。
The transfer section 11 in front of the reactor in the conventional horizontal reduced pressure vapor phase growth apparatus described above has a structure in which only the exhaust pipe 8 is provided, so when the hatch 12 is opened and the wafer is carried in,
The atmosphere at the mouth of the reactor 1 has a high oxygen concentration.

このためウェハーとウェハーの間に酸素が残留する状態
となる。この状態で600〜650℃の炉内にウェハー
を搬入し、例えばウェハーに形成されたコンタクトホー
ル上に電極配線形成用の多結晶シリコン膜を形成する場
合、コンタクトホール部が酸化され、この酸化膜の為電
極配線のコンタクト抵抗が高くなるという欠点があった
Therefore, oxygen remains between the wafers. In this state, when the wafer is carried into a furnace at 600 to 650°C and a polycrystalline silicon film for forming electrode wiring is formed over the contact hole formed in the wafer, the contact hole portion is oxidized, and this oxide film Therefore, there was a drawback that the contact resistance of the electrode wiring became high.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の横型減圧気相成長装置は、反応炉の一方の端部
に設けられた搬送部より半導体基板を搬送する横型減圧
気相成長装置において、前記搬送部内を不活性ガス雰囲
気にするための手段を設けたものである。
The horizontal reduced pressure vapor phase growth apparatus of the present invention is a horizontal reduced pressure vapor phase growth apparatus in which a semiconductor substrate is transferred from a transfer section provided at one end of a reactor, and a method for creating an inert gas atmosphere in the transfer section. This means that a means has been established.

〔実施例〕〔Example〕

次に本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の横断面図である。FIG. 1 is a cross-sectional view of a first embodiment of the invention.

第1図において、反応炉1の前面の搬送部11Aは、ウ
ェハーをのせたボート5を出し入れするためのハツチ1
2が設けられたカバー12と、この内に窒素ガスを導入
するノズル3A〜3Hを有する窒素配管3と、4個の下
部排気管4A〜4Fとから構成されている。なお2はヒ
ータ、6はパックハツチ窒素配管、7は真空排気管であ
る。
In FIG. 1, a conveyance section 11A on the front side of the reactor 1 includes a hatch 1 for taking in and taking out a boat 5 carrying wafers.
2, a nitrogen pipe 3 having nozzles 3A to 3H for introducing nitrogen gas into the cover 12, and four lower exhaust pipes 4A to 4F. Note that 2 is a heater, 6 is a pack hatch nitrogen pipe, and 7 is a vacuum exhaust pipe.

次に本実施例の効果を確認するため、シリコン半導体基
板上に部分的にn“拡散層を形成し、次にリン珪酸ガラ
ス膜を被着形成した後、写真蝕刻法によりn+拡散層領
域のみコンタクトホールを形成し、この状態で従来の装
置と本実施例とを使用して多結晶シリコン膜を500〜
1000人成長させ、次にスパッタ法によりアルミを被
着させ、写真蝕41法によりアルミ電極配線パターンの
形成を行ないコンタクト抵抗を測定した。
Next, in order to confirm the effect of this example, an n" diffusion layer was partially formed on a silicon semiconductor substrate, a phosphosilicate glass film was deposited, and only the n+ diffusion layer region was formed by photolithography. A contact hole is formed, and in this state, a polycrystalline silicon film with a thickness of 500 to
After 1000 layers were grown, aluminum was deposited by sputtering, an aluminum electrode wiring pattern was formed by photolithography, and the contact resistance was measured.

マスク上のコンタクトサイズは0.8μm2゜1.0μ
m2.1.4μm2の3種類てコンタクト数は500個
である。又多結晶シリコン膜の成長条件は、成長温度6
00〜650°Cモノシラン流量1.0〜2.Off/
minて、製品入力のスピードは100〜200cm/
m1n−入炉時は炉内の酸素濃度を低減させる為50〜
] 00 e /minの窒素をバックバッチ窒素配管
6より流した。又本実施例における搬送部11Aの窒素
流量は、圧力6kg。
The contact size on the mask is 0.8μm2゜1.0μ
The number of contacts is 500 in three types of m2 and 1.4 μm2. Also, the growth conditions for the polycrystalline silicon film are a growth temperature of 6
00~650°C Monosilane flow rate 1.0~2. Off/
min, product input speed is 100-200cm/
m1n - 50~ to reduce the oxygen concentration in the furnace when entering the furnace
] 00 e/min nitrogen was flowed from the back batch nitrogen pipe 6. Further, the nitrogen flow rate of the conveying section 11A in this embodiment is 6 kg in pressure.

0m2て1つのノズルにつき30ff/minの条件で
行なった。
The test was carried out under conditions of 0 m2 and 30 ff/min per nozzle.

その結果第4図に示すように、従来の装置に比へ実施例
ては、コンタク抵抗を極端に低くすることかできた。
As a result, as shown in FIG. 4, the contact resistance of this embodiment could be made extremely low compared to the conventional device.

第2図は本発明の第2の実施例の継断面図である。FIG. 2 is a cross-sectional view of a second embodiment of the present invention.

前述した第1の実施例では搬送部を窒素で置換すること
により酸素濃度を低くする方式のものであるが、本第2
の実施例ではカバー12に密閉用ハツチ12Aとフロン
トハツチ9とを設けて密閉式にして、ボート5を入炉す
る前に搬送部11Aをロータリーポンプ10で真空にし
た後、窒素配管3からの窒素により大気圧まで到達させ
る方式としたものである。本第2の実施例においても第
1の実施例と同様の効果を得られる。
In the first embodiment described above, the oxygen concentration is lowered by replacing the conveying section with nitrogen, but in this second embodiment,
In this embodiment, the cover 12 is provided with a sealing hatch 12A and a front hatch 9 to make it airtight, and before the boat 5 enters the furnace, the transfer section 11A is evacuated with the rotary pump 10, and then the nitrogen pipe 3 is removed. The system uses nitrogen to reach atmospheric pressure. The second embodiment also provides the same effects as the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、反応炉手前の搬送部内を
不活性ガス雰囲気にするための手段を設けることにより
、炉内に搬入されたシリコンウェハー付近の酸素濃度を
低くすることが可能となり、多結晶シリコン膜を電極配
線に使用する場合において、コンタクトホール部の酸化
を防止できコンタクト抵抗を低減できる効果がある。
As explained above, the present invention makes it possible to lower the oxygen concentration near the silicon wafers carried into the reactor by providing a means for creating an inert gas atmosphere in the transport section before the reactor. When a polycrystalline silicon film is used for electrode wiring, oxidation of the contact hole portion can be prevented and contact resistance can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1及び第2の実施例の断
面図、第3図は従来例の断面図、第4図は実施例及び従
来例によるコンタクトホールの面積とコンタクト抵抗と
の関連を示す図である。 1・・・反応炉、2・・・ヒータ、3・・・窒素配管、
3A〜3D・・・ノズル、4A〜4F・・・下部排気管
、5・・・ボート、6・・パックハツチ窒素配管、7・
・真空排気管、8,8A・・・排気管、9・・・フロン
トハツチ、10・・・ロータリーポンプ、11.IIA
・・・搬送部、12・・・ハツチ、12A・・・密閉用
ハツチ9代理人 弁理士  内 原  音 ゛く          刊啄 ゝN \ 0.8   1.0        1.4コンタクF
ホールの面R(Am2) 第4図
1 and 2 are sectional views of the first and second embodiments of the present invention, FIG. 3 is a sectional view of the conventional example, and FIG. 4 is the area and contact resistance of the contact hole according to the embodiment and the conventional example. FIG. 1... Reaction furnace, 2... Heater, 3... Nitrogen piping,
3A to 3D... Nozzle, 4A to 4F... Lower exhaust pipe, 5... Boat, 6... Pack hatch nitrogen piping, 7.
・Vacuum exhaust pipe, 8,8A...Exhaust pipe, 9...Front hatch, 10...Rotary pump, 11. IIA
...Conveyance section, 12...Hatch, 12A...Sealing hatch 9 Agent Patent attorney Uchihara Sound Publication number N \ 0.8 1.0 1.4 Contact F
Hole surface R (Am2) Fig. 4

Claims (1)

【特許請求の範囲】[Claims]  反応炉の一方の端部に設けられた搬送部より半導体基
板を搬送する横型減圧気相成長装置において、前記搬送
部内を不活性ガス雰囲気にするための手段を設けたこと
を特徴とする横型減圧気相成長装置。
A horizontal reduced pressure vapor phase growth apparatus for transporting a semiconductor substrate from a transport section provided at one end of a reactor, characterized in that a means for creating an inert gas atmosphere in the transport section is provided. Vapor phase growth equipment.
JP30691090A 1990-11-13 1990-11-13 Horizontal low pressure vapor growth device Pending JPH04177830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30691090A JPH04177830A (en) 1990-11-13 1990-11-13 Horizontal low pressure vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30691090A JPH04177830A (en) 1990-11-13 1990-11-13 Horizontal low pressure vapor growth device

Publications (1)

Publication Number Publication Date
JPH04177830A true JPH04177830A (en) 1992-06-25

Family

ID=17962745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30691090A Pending JPH04177830A (en) 1990-11-13 1990-11-13 Horizontal low pressure vapor growth device

Country Status (1)

Country Link
JP (1) JPH04177830A (en)

Similar Documents

Publication Publication Date Title
TW202014547A (en) Method and system for selectively forming film
JPS63125681A (en) Thin film forming device
KR100865581B1 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2636817B2 (en) Single wafer type thin film forming method and thin film forming apparatus
JP3118737B2 (en) Processing method of the object
JPH04177830A (en) Horizontal low pressure vapor growth device
JPH0689863A (en) Formation of thin film
JP3173698B2 (en) Heat treatment method and apparatus
JPH0831743A (en) Method and equipment for preventing contamination of cvd system
JP2000058530A (en) Vacuum processing device
JPH0774104A (en) Reaction chamber
JP3008577B2 (en) Chemical vapor deposition method and apparatus
JPH10256183A (en) Manufacture of semiconductor device
JPH11219908A (en) Substrate processor and method therefor
JPH01230250A (en) Cvd apparatus
JP3123494B2 (en) Semiconductor device and manufacturing method thereof
JPS6273707A (en) Semiconductor manufacturing apparatus
JP2003100731A (en) Manufacturing method for semiconductor device
KR950012636A (en) Method for depositing a tungsten silicide thin film on a semiconductor substrate using dichlorosilane and tungsten hexafluoride
JPH07109574A (en) Formation of silicon nitride film
JP2001214271A (en) Film forming device
JPH06132281A (en) Manufacture of silicon oxide film
TW202113933A (en) Film formation method, film formation apparatus, and method for cleaning treatment vessel
JPH02268433A (en) Manufacture of semiconductor device
JPH07288238A (en) Multi-chamber processor