JPS6273707A - Semiconductor manufacturing apparatus - Google Patents
Semiconductor manufacturing apparatusInfo
- Publication number
- JPS6273707A JPS6273707A JP21243385A JP21243385A JPS6273707A JP S6273707 A JPS6273707 A JP S6273707A JP 21243385 A JP21243385 A JP 21243385A JP 21243385 A JP21243385 A JP 21243385A JP S6273707 A JPS6273707 A JP S6273707A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- reaction
- substrate
- gas
- chambers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は複数の反応室と一個の基板搬送室とからなるア
モルファス半導体製造装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an amorphous semiconductor manufacturing apparatus comprising a plurality of reaction chambers and one substrate transfer chamber.
従来のこの種製造装置は、例えばジャパニーズジャーナ
ルオプアプライドフイジックス(Japa−nes;e
Journal of Applied Ph1si
cs )第21巻5号413頁(I9B2)に記載され
ているように、使用する反応ガスの組合せごとにそれぞ
れ反応室を設けることにより、他室で用いるガスによる
反店家の汚染を防止し7、不純物制御性の高いアモルフ
ァス半導体を積層するように構成されていた。Conventional manufacturing equipment of this type is, for example, the Japanese Journal Op Applied Physics (Japanese Journal Op Applied Physics).
Journal of Applied Ph1si
cs) Vol. 21, No. 5, page 413 (I9B2), by providing a reaction chamber for each combination of reaction gases used, contamination of the storehouse by gases used in other rooms can be prevented. , it was configured to stack amorphous semiconductors with high impurity control properties.
しかし、種類の異なる5〜100Aの薄膜を多数積層す
る、いわゆる超格子構造を作成する場合には、1層ごと
に反応ガスを真空ポンプで排気L〜、次の反応室に搬送
しなければならないので、多大の時間を要し、かつ多量
の反応ガスを無駄に排気する恐れがあった。However, when creating a so-called superlattice structure in which many different types of thin films of 5 to 100 A are laminated, the reaction gas must be evacuated from each layer by a vacuum pump and transported to the next reaction chamber. Therefore, it takes a lot of time and there is a risk that a large amount of reaction gas will be exhausted unnecessarily.
さらに、プラズマCVD装置(半導体製造装置)では、
放電開始直後のプラズマが不安定な時に析出した膜は、
プラズマの安定してから析出したものと物性を異にする
場合があシ、極薄膜を積層する場合には、特に膜質が安
定しない問題点があった。Furthermore, in plasma CVD equipment (semiconductor manufacturing equipment),
The film deposited when the plasma was unstable immediately after the start of discharge was
The physical properties may differ from those deposited after the plasma has stabilized, and when extremely thin films are laminated, there is a problem that the film quality is not particularly stable.
本発明は上記のような従来技術の問題点を解消し、安定
した膜厚制御性を有する極薄膜の多層積層構造を迅速に
作成することが可能である半導体製造装置を提供するこ
とを目的とするものである。It is an object of the present invention to solve the problems of the prior art as described above, and to provide a semiconductor manufacturing apparatus that can quickly create a multilayer stacked structure of ultra-thin films with stable film thickness controllability. It is something to do.
本発明は上記目的を達成するために、複数の反応室と一
個の基板搬送室とからなる半導体製造装[Iにおいて、
該反応室の開口部のコンダクタンスを小さくすると共に
、該反応室の周囲から内部へ不活性ガスを導入し、かつ
前記各反応室の反応ガスが互に混合しないようにすると
共に、反応の進行状態のもとで基板を移動させるように
構成したことを特徴とする。In order to achieve the above object, the present invention has a semiconductor manufacturing system [I] comprising a plurality of reaction chambers and one substrate transfer chamber.
The conductance of the opening of the reaction chamber is reduced, an inert gas is introduced into the reaction chamber from the periphery, and the reaction gases in each reaction chamber are prevented from mixing with each other, and the progress of the reaction is controlled. The present invention is characterized in that the substrate is moved under the following conditions.
以下、本発明の一実施例を図面について説明するに先っ
て、本発明の理念について詳述する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before explaining one embodiment of the present invention with reference to the drawings, the concept of the present invention will be explained in detail below.
アモルファス半導体は、公知のように超格子構造のよう
な多層構造からなり、該構造を短時間で形成するには、
反応ガスを導入したまま放電を連続した状態で、反応室
間を基板が搬送されるようにすればよい。この際、別個
の反応室で使用されている反応ガスが混入しないように
する必要がある。該反応ガスの混入を防止するためには
、へ、リウム、アルゴン等の不活性ガスを反応室の開口
部に帯状に導入し、反応室内へ向う流れを作って反応ガ
スが反応室から流出するのを防止する手段があり、また
、相隣る反応室間に、該両室から流出したガスを排気す
る装置を設置してもよい。As is well known, amorphous semiconductors consist of a multilayer structure such as a superlattice structure, and in order to form this structure in a short time,
The substrate may be transported between the reaction chambers while the discharge continues while the reaction gas is introduced. At this time, it is necessary to prevent reaction gases used in separate reaction chambers from mixing. In order to prevent the reaction gas from getting mixed in, an inert gas such as hydrogen, lium, or argon is introduced in a band shape into the opening of the reaction chamber to create a flow into the reaction chamber so that the reaction gas flows out from the reaction chamber. There is a means to prevent this, and a device may be installed between adjacent reaction chambers to exhaust the gas flowing out from both chambers.
一方、低周波または高周波放電および直流放電を利用し
たプラズマCVDでは、通常0.1〜1.0Torrの
反応圧力で膜形成を行っており、該圧力領域では、前記
のような反応ガスの混入防止手段は実用上十分に有効で
ある。このような手段で反応室分離を行えば、放電を連
続して行うことができ、かつ膜質も安定したものかえら
れる。基板上に形成される薄膜の膜厚は、該基板が反応
室内に存在する時間により制限することが可能である。On the other hand, in plasma CVD using low frequency or high frequency discharge and direct current discharge, film formation is usually performed at a reaction pressure of 0.1 to 1.0 Torr, and in this pressure range, it is necessary to prevent the mixing of reaction gases as described above. The means are sufficiently effective in practice. If the reaction chambers are separated by such means, discharge can be performed continuously and the film quality can be stabilized. The thickness of the thin film formed on the substrate can be limited by the time the substrate remains in the reaction chamber.
また、基板を装着した基板搬送円板と反応室との間に固
定マスクを設け、該円板を介して基板を連続的に移動さ
せることにより、成膜時間を実効的に変えることができ
る。さらに、膜の析出速度は、使用する反応ガスの種類
および成膜条件により異なるので、各膜厚をそれぞれ制
御するには、固定マスクの開口面積と基板の送り速度を
必要に応じて変更すればよい。Further, by providing a fixed mask between the substrate transport disk mounted with the substrate and the reaction chamber, and continuously moving the substrate via the disk, the film forming time can be effectively changed. Furthermore, the deposition rate of the film varies depending on the type of reaction gas used and the film formation conditions, so in order to control each film thickness, it is necessary to change the opening area of the fixed mask and the feeding speed of the substrate as necessary. good.
上記基板の着脱時に真空装置内を常圧に戻すことは、該
装置内の清浄度を保持するために極力回避すべきである
。そこで、基板の着脱に使用する予備室を設け、該予備
室をロードロック式とすることが望ましい。Returning the inside of the vacuum device to normal pressure when attaching and detaching the substrate should be avoided as much as possible in order to maintain the cleanliness inside the device. Therefore, it is desirable to provide a preliminary chamber used for mounting and removing the substrate, and to make the preliminary chamber a load-lock type.
なお、使用する反応ガスとしては、シラン、ジシラン等
のけい素化合物および必要に応じてメタン、アセチレン
、エチレン等の炭素化合物、アンモニア等の窒素化合物
などのバンドギャップを広くするような原料、ゲルマン
等のゲルマニウム化合物などのバンドギャップを狭くす
るような原料を使用する。また価電子制御のためにホス
フィン。In addition, the reaction gases used include silicon compounds such as silane and disilane, and if necessary, carbon compounds such as methane, acetylene, and ethylene, raw materials that widen the band gap such as nitrogen compounds such as ammonia, germane, etc. Use raw materials that narrow the band gap, such as germanium compounds. Also phosphine for valence control.
ジボラン等のドーピングガスを用いてもよい。A doping gas such as diborane may also be used.
上述した理念に基づいてなされた具体例を第1図ないし
第3図について説明する。第1図は下面図、第2図は第
1図のA−A’断面図、第5図第2図のB部(反応室3
部)の詳細図である。A specific example based on the above-mentioned concept will be explained with reference to FIGS. 1 to 3. Fig. 1 is a bottom view, Fig. 2 is a sectional view taken along line AA' in Fig. 1, and Fig. 5 is a section B in Fig. 2 (reaction chamber 3).
FIG.
同図において、排気ロIA、排気溝1Bおよび後述する
複数個のパージガス導入管1Cを備える基板搬送室1(
以下搬送室と称す)内には、モータ19によp回転され
、かつヒータ17を内蔵する基板搬送円板1(以下円板
と称す)および基板弁え18が設けられている。前記搬
送室1の側部にはゲートバルブ4を介して予備室2が一
体に結合されると共に、下部には複数(図では4個)の
反応室3が一体に結合されている。In the same figure, a substrate transfer chamber 1 (
A substrate transfer disk 1 (hereinafter referred to as a disk) which is rotated by a motor 19 and has a built-in heater 17 and a substrate valve 18 are provided in the transfer chamber (hereinafter referred to as a transfer chamber). A preliminary chamber 2 is integrally connected to the side of the transfer chamber 1 via a gate valve 4, and a plurality of (four in the figure) reaction chambers 3 are integrally connected to the lower part.
上記予備室2はリークバルブ11と排気口10を備え、
上面にはふた12が着脱可能に取付けられておシ、かつ
内部に基板15をつかむマニピュレータ5が挿入されて
いる。また、上記反応室3は前記搬送室1に設けた4個
のパージガス導入管1Cによ9周まれた内、外室5A・
3Bを有する二重構造からなり、該内室3A内には反応
ガス導入管7に接続する多孔板電極21が設けられ、か
つ内室3Aはその上、下部にそれぞれ設けた開口8A・
8Bを介して搬送室1および外室6Bにそれぞれ連通し
ている。一方、前記外室3Bの上・下部は、搬送室1お
よび反応ガス排気管乙にそれぞれ連通している。また、
前記開口8A部には固定マスク15が設けられている。The preliminary chamber 2 includes a leak valve 11 and an exhaust port 10,
A lid 12 is removably attached to the top surface, and a manipulator 5 for gripping a substrate 15 is inserted inside. Further, the reaction chamber 3 is surrounded nine times by four purge gas introduction pipes 1C provided in the transfer chamber 1, and an outer chamber 5A.
The inner chamber 3A has a double structure with 3B, and a porous plate electrode 21 connected to the reaction gas introduction pipe 7 is provided in the inner chamber 3A.
It communicates with the transfer chamber 1 and the outer chamber 6B via 8B. On the other hand, the upper and lower parts of the outer chamber 3B communicate with the transfer chamber 1 and the reaction gas exhaust pipe B, respectively. Also,
A fixed mask 15 is provided in the opening 8A.
次に上記のような構成からなる本実施例の動作について
説明する。Next, the operation of this embodiment having the above configuration will be explained.
まず、予備室2の一リークバルブ11を開いてリークし
た後、ふた12を除去して予備室2内に基板13を挿入
してマニピュレータ5につかませる。First, after opening the leak valve 11 of the preparatory chamber 2 to allow leakage, the lid 12 is removed and the substrate 13 is inserted into the preparatory chamber 2 and gripped by the manipulator 5.
ついで、ふた12を取付けて予備室2を密閉し、排気口
10よシ真空排気して予備室2の真空度が上昇した後に
、ゲートバルブ4を開いて基板15をマニピュレータ5
によシ円板14に差し込んで基板弁え18を介し2て固
定する。この固定後にマニピュレータ5を後退させ、ゲ
ートバルブ4を閉じて反応準備を終了する。この際、搬
送室1内は真空排気口1Aおよび反応ガス排気管6に連
通し、反応ガスが流通しない時には、搬送室1は1O−
6Torr 程度の真空度に保持されている。Next, the lid 12 is attached to seal the preliminary chamber 2, and the exhaust port 10 is evacuated to increase the degree of vacuum in the preliminary chamber 2. After that, the gate valve 4 is opened and the substrate 15 is moved to the manipulator 5.
It is inserted into the circular plate 14 and fixed via the base plate valve 18. After this fixation, the manipulator 5 is moved back and the gate valve 4 is closed to complete the reaction preparation. At this time, the inside of the transfer chamber 1 is communicated with the vacuum exhaust port 1A and the reaction gas exhaust pipe 6, and when the reaction gas is not flowing, the transfer chamber 1 is 1O-
The vacuum level is maintained at approximately 6 Torr.
上記のように基板13を円板14に装着した後、パージ
ガス導入管1Cを経てノズル16より搬送室1内に帯状
に噴出された反応ガスは、反応室6の方向へ流れ、該反
応室1の外室5B内を流通して反応ガス排気管6よす排
気される。一方、反応室3と反対の方向へ流出したガス
は、搬送室排気溝IBK流入・して排気口1Aよシ排気
される。After the substrate 13 is attached to the disk 14 as described above, the reaction gas ejected in a band shape from the nozzle 16 into the transfer chamber 1 through the purge gas introduction pipe 1C flows toward the reaction chamber 6. The reaction gas flows through the outer chamber 5B and is exhausted through the reaction gas exhaust pipe 6. On the other hand, the gas flowing out in the direction opposite to the reaction chamber 3 flows into the transfer chamber exhaust groove IBK and is exhausted through the exhaust port 1A.
このような状態において、各反応室3にそれぞれ必要な
反応ガスを、各反応ガス導入ロアよシ各反応室3の内室
3A内に設けた多孔板電極21内に導入し、ついで前記
内室3A内へ吹き出させ、さらに内室6の開口8Aおよ
び外室3Bを経て反応ガス排気口6よシ排気させる。こ
の場合、多孔板電極21に高周波を印加してグロー放電
することによシ反応が行われる。また、スリップリング
20を介してヒータ17に電力を供給することにより、
円板14に装着した基板13を400′Cまで加熱する
。In this state, the reaction gas required for each reaction chamber 3 is introduced into the perforated plate electrode 21 provided in the inner chamber 3A of each reaction chamber 3 through each reaction gas introduction lower, and then The reactant gas is blown out into the reaction gas exhaust port 6 through the opening 8A of the inner chamber 6 and the outer chamber 3B. In this case, the reaction is performed by applying high frequency to the porous plate electrode 21 to cause glow discharge. Furthermore, by supplying power to the heater 17 via the slip ring 20,
The substrate 13 mounted on the disk 14 is heated to 400'C.
上記のように各反応室3で連続放電を行い、反応を持続
した状態で円板14を回転することにより、基板13の
薄膜の積層を行う。該薄膜の膜厚の制御は、円板14の
回転速度と固定マスク15による反応室3の開口部8A
の開口面積とにょυ行われる。すなわち、円板14の回
転を速くすると、前記膜厚は薄くなり、逆に円板14の
回転を遅くすると、前記膜厚は厚くなる。また、固定マ
スク15による前記開口面積は反応室ごとに変更するこ
とができ、開口部8Aの面積が大きい反応室で形成され
た薄膜積層の膜厚は厚いが、逆に前記開口面積が小さい
反応室で形成された薄膜積層の膜厚は薄くなる。As described above, continuous discharge is performed in each reaction chamber 3, and the disk 14 is rotated while the reaction is maintained, thereby laminating the thin films of the substrate 13. The thickness of the thin film is controlled by the rotation speed of the disk 14 and the opening 8A of the reaction chamber 3 by the fixed mask 15.
The aperture area of υ is done. That is, if the rotation of the disk 14 is made faster, the film thickness becomes thinner, and conversely, if the rotation of the disk 14 is made slower, the film thickness becomes thicker. Further, the opening area formed by the fixed mask 15 can be changed for each reaction chamber, and the thickness of the thin film stack formed in the reaction chamber where the opening 8A has a large area is thick, but conversely, the thickness of the thin film stack formed in the reaction chamber where the opening 8A has a large area is large; The thickness of the thin film stack formed in the chamber is reduced.
反応終了後に放電を停止し、反応室6への反応ガスの導
入を停止すると共に、該反応室5内を排気した後、パー
ジガスとして用いたアルゴンガスの導入を停止し、搬送
室1をさらに高真空に排気する。そして、10−6To
rr程度まで排気した後、ゲートパルプ4を開いてマニ
ピュレータ5を後退させ、基板13を円板14より離脱
させて予備室2内に戻す。次にゲートバルブ4を閉じる
と共に、リークバルブ11を開いて予備室2内をリーク
した後、ふた12を除去して基板13を予備室2から取
出す。After the reaction is completed, the discharge is stopped, the introduction of the reaction gas into the reaction chamber 6 is stopped, and after the inside of the reaction chamber 5 is evacuated, the introduction of argon gas used as a purge gas is stopped, and the transfer chamber 1 is further heated. Evacuate to vacuum. And 10-6To
After exhausting to about rr, the gate pulp 4 is opened and the manipulator 5 is moved backward, and the substrate 13 is separated from the disk 14 and returned to the preliminary chamber 2. Next, the gate valve 4 is closed and the leak valve 11 is opened to leak the inside of the preparatory chamber 2, and then the lid 12 is removed and the substrate 13 is taken out from the preparatory chamber 2.
本実施例において、1個の反応室にシランガスを毎分1
0ffl導入すると共に、別個の反応室にアンモニアを
毎分8dおよびシランガスを毎分27導入し、多孔板電
極に高周波(I A56MHz 、 10W)を印加し
て反応圧(15Torrで反応を行わせ、円板を6分で
1回転させれば、1層の膜厚が約30Aの積層構造に製
作することができた。In this example, silane gas was supplied to one reaction chamber at 1 minute rate.
At the same time, ammonia was introduced at 8 d/min and silane gas at 27 d/min into a separate reaction chamber, and a high frequency (IA56 MHz, 10 W) was applied to the porous plate electrode to carry out the reaction at a reaction pressure (15 Torr). By rotating the plate once every 6 minutes, it was possible to create a laminated structure with each layer having a thickness of approximately 30A.
以上説明したように、本発明によれば、基板忙性質の異
なる薄膜を容易に、かつ迅速に積層することができ、し
かも薄膜中の成分の混合を防止することができる。As described above, according to the present invention, thin films having different substrate properties can be laminated easily and quickly, and mixing of components in the thin films can be prevented.
また、上記薄膜の膜厚を良好に制御することができるの
で、アモルファス半導体による超格子構造を容易に作成
することが可能である。Furthermore, since the thickness of the thin film can be well controlled, it is possible to easily create a superlattice structure using an amorphous semiconductor.
第1図は本発明の半導体製造装置の一実施例を示す下面
図、第2図は第1図のA−A’断面図%第3図第2図の
B部の詳細図である。
1・・・・・・基板搬送室
1C・・・・・・パージガス導入管
5・−・・・・反応室
8A・・・・・・開口部
13・・・・・・基板
14・・・・・・基板搬送円板
15・・・・・・固定マスク
1゛FIG. 1 is a bottom view showing an embodiment of the semiconductor manufacturing apparatus of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA' in FIG. 1. FIG. 3 is a detailed view of section B in FIG. 2. 1... Substrate transfer chamber 1C... Purge gas introduction pipe 5... Reaction chamber 8A... Opening 13... Substrate 14... ... Substrate transport disk 15 ... Fixed mask 1゛
Claims (1)
置において、該反応室の開口部のコンダクタンスを小さ
くすると共に、該反応室の周囲から内部へ不活性ガスを
導入し、かつ前記基板搬送室を高真空に排気して、前記
各反応室の反応ガスが互に混合しないようにすると共に
、反応の進行状態のもとで基板を移動させるように構成
したことを特徴とする半導体製造装置。 2、上記基板を回転可能に設けた基板搬送円板に装着し
、該円板を反応室の開口部に近接して該開口部を覆うよ
うに設置し、該反応室の開口部のコンダクタンスが小さ
くなるようにしたことを特徴とする特許請求の範囲第1
項記載の半導体製造装置。 3、上記基板搬送円板に装着された基板を、2種類以上
の反応室へ順次に繰返し搬送し、該基板に2種類以上の
薄膜を繰返し積層するようにしたことを特徴とする特許
請求の範囲第2項記載の半導体製造装置。 4、上記基板を装着した基板搬送円板と反応室との間に
、該基板の一部を覆うような固定マスクを介設し、該基
板が前記反応室を通過する際に該基板上に形成される薄
膜の膜厚を制御するようにしたことを特徴とする特許請
求の範囲第2項記載の半導体製造装置。[Claims] 1. In a semiconductor manufacturing apparatus consisting of a plurality of reaction chambers and a substrate transfer chamber, the conductance of the opening of the reaction chamber is reduced, and an inert gas is introduced from the periphery of the reaction chamber into the inside. and the substrate transfer chamber is evacuated to a high vacuum to prevent the reaction gases in each reaction chamber from mixing with each other, and the substrate is moved as the reaction progresses. Features of semiconductor manufacturing equipment. 2. The above substrate is mounted on a rotatable substrate transport disk, and the disk is placed close to the opening of the reaction chamber so as to cover the opening, and the conductance of the opening of the reaction chamber is Claim 1 characterized in that it is made smaller.
Semiconductor manufacturing equipment as described in . 3. The substrate mounted on the substrate transport disk is repeatedly transported sequentially to two or more types of reaction chambers, and two or more types of thin films are repeatedly laminated on the substrate. A semiconductor manufacturing apparatus according to scope 2. 4. A fixed mask covering a part of the substrate is interposed between the substrate transport disk on which the substrate is mounted and the reaction chamber, so that when the substrate passes through the reaction chamber, a fixed mask is placed on the substrate. 3. The semiconductor manufacturing apparatus according to claim 2, wherein the thickness of the formed thin film is controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21243385A JPS6273707A (en) | 1985-09-27 | 1985-09-27 | Semiconductor manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21243385A JPS6273707A (en) | 1985-09-27 | 1985-09-27 | Semiconductor manufacturing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6273707A true JPS6273707A (en) | 1987-04-04 |
Family
ID=16622518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21243385A Pending JPS6273707A (en) | 1985-09-27 | 1985-09-27 | Semiconductor manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6273707A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63289926A (en) * | 1987-05-22 | 1988-11-28 | Canon Inc | Device for forming deposited film |
JPH02224221A (en) * | 1989-02-27 | 1990-09-06 | Hitachi Ltd | Manufacture of semiconductor device, substrate treatment apparatus and semiconductor device manufacturing apparatus |
-
1985
- 1985-09-27 JP JP21243385A patent/JPS6273707A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63289926A (en) * | 1987-05-22 | 1988-11-28 | Canon Inc | Device for forming deposited film |
JPH02224221A (en) * | 1989-02-27 | 1990-09-06 | Hitachi Ltd | Manufacture of semiconductor device, substrate treatment apparatus and semiconductor device manufacturing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7273526B2 (en) | Thin-film deposition apparatus | |
US7828900B2 (en) | Vacuum film-forming apparatus | |
EP0637058B1 (en) | Method of supplying reactant gas to a substrate processing apparatus | |
US5895530A (en) | Method and apparatus for directing fluid through a semiconductor processing chamber | |
US4565157A (en) | Method and apparatus for deposition of tungsten silicides | |
JP4422295B2 (en) | CVD equipment | |
JP2760717B2 (en) | Method for manufacturing semiconductor device | |
KR20010034921A (en) | Substrate support member with a purge gas channel and pumping system | |
JPWO2006041169A1 (en) | Substrate processing apparatus and semiconductor device manufacturing method | |
JPH07201762A (en) | Gas feeder for manufacturing semiconductor element | |
KR20050117574A (en) | Substrate treatment appratus and method of manufacturing semiconductor device | |
JP4410497B2 (en) | Deposition method | |
US5814153A (en) | Semiconductor device manufacturing apparatus | |
JP2011142288A (en) | Method of manufacturing semiconductor device and substrate processing apparatus | |
CN109868459B (en) | Semiconductor device | |
KR102708014B1 (en) | Substrate treatment apparatus | |
JP4151308B2 (en) | Gas introduction method for processing equipment | |
JPH04370924A (en) | Cvd device | |
JP2004288899A (en) | Method for depositing film and substrate processing apparatus | |
JPS6273707A (en) | Semiconductor manufacturing apparatus | |
TWI501296B (en) | A semiconductor device manufacturing method, a semiconductor device, and a substrate processing device | |
JP2009246405A (en) | Film foming method | |
JPH10168569A (en) | Formation of composite film and device therefor | |
JP2007109685A (en) | Apparatus and method for manufacturing compound semiconductor | |
JP3718297B2 (en) | Thin film manufacturing method and thin film manufacturing apparatus |