JPS62268391A - Induction motor - Google Patents

Induction motor

Info

Publication number
JPS62268391A
JPS62268391A JP61111854A JP11185486A JPS62268391A JP S62268391 A JPS62268391 A JP S62268391A JP 61111854 A JP61111854 A JP 61111854A JP 11185486 A JP11185486 A JP 11185486A JP S62268391 A JPS62268391 A JP S62268391A
Authority
JP
Japan
Prior art keywords
rotor
stator
conductors
induction motor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61111854A
Other languages
Japanese (ja)
Other versions
JP2516337B2 (en
Inventor
Toshihiko Satake
佐竹 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP61111854A priority Critical patent/JP2516337B2/en
Publication of JPS62268391A publication Critical patent/JPS62268391A/en
Application granted granted Critical
Publication of JP2516337B2 publication Critical patent/JP2516337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To improve efficiency in the range of a low speed, by arranging connecting members conducted electrically by the application of arbitrary voltage between rotor cores, on an induction motor having a plurality of stators and changing the phase of the stators to control a speed. CONSTITUTION:Rotor cores 2, 3 made of iron cores are fitted on a rotor shaft 4 by setting an arbitrary space between them, and between the rotor cores 2, 3, a non-magnetic unit core 9 is set. A plurality of conductors 5 arranged on the rotor cores 2, 5 are respectively connected in series, and a rotor 8 is integrally formed, and both the end sections of a plurality of the conductors 5 connected in series are connected to short-circuit rings 6, 7. On the non- magnetic unit core section 9, a plurality of the conductors 5 are respectively short-circuited via the resistance members r of Nichrome wires, carbon-mixed coppers, conductive ceramics, and the like as connecting members conducted electrically by the application of arbitrary voltage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、トルク特性および効率が良く速度制御が容易
な誘導電動機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an induction motor with good torque characteristics and efficiency and easy speed control.

従来技術とその問題点 誘導電動機の速度を制御する方法の一つとして電゛源周
波数を変える方法がある。この方法は連続的かつ広範囲
な速度制御が可能である半面、この方法で必要とする周
波数変換装置を高価とし、また周波数変換装置により交
流を直流に変換して再度交流に変換する過程において一
般に高調波および電波が発生し、これらによってコンビ
コーター、その地名種電気制御機器の誤動作あるいはコ
ンデンサーの過熱等の障害を招くことがあり、このうら
高調波障害に対しでは、フィルターを設置することによ
り対策を講じることもできるが、フィルターの設置には
コストがかかる。また低速時において一般に性能が不十
分となる等の欠点を有するものである。
Prior Art and Its Problems One method of controlling the speed of an induction motor is to change the power supply frequency. Although this method allows for continuous and wide-range speed control, the frequency converter required by this method is expensive, and the process of converting alternating current to direct current and then converting it back to alternating current with the frequency converter generally requires high frequency adjustment. Waves and radio waves are generated, and these can cause problems such as malfunction of the Combi Coater and its electrical control equipment or overheating of the capacitor. Measures against harmonic interference can be taken by installing a filter. However, installing filters is costly. Additionally, they have drawbacks such as generally insufficient performance at low speeds.

また、電動機の極数を変えて速度を制御する方法は、極
数の変換によって段階的に速度を変えることができても
、無段階的に滑かな速度制御をすることができない欠点
がある。
Furthermore, the method of controlling the speed by changing the number of poles of the electric motor has the disadvantage that even if the speed can be changed stepwise by changing the number of poles, it is not possible to control the speed steplessly and smoothly.

また、電源の電圧を変えて速度を制御する方法では、速
度制御が連続的に行える半面特に低速度領域において効
率が悪くなる欠点がある。
Further, although the method of controlling the speed by changing the voltage of the power supply allows the speed to be controlled continuously, it has the disadvantage that the efficiency is poor especially in the low speed range.

そして巻線型電動機において二次抵抗を変化させすべり
を変えて速度制御を行う方法は、比較的簡単に連続的な
′a度副制御可能である半面、外部からブラシとスリッ
プリングを介して回転子巻線回路へ抵抗を挿入するため
に、ブラシの消耗による保守点検を必要とし、また、か
ご形誘導電動機は、二次抵抗を変化させて速度制御を行
うことができない欠点がある。
In a wire-wound electric motor, the method of controlling the speed by changing the secondary resistance and changing the slip is relatively easy to perform continuous sub-control. Inserting a resistor into the winding circuit requires maintenance and inspection due to brush wear, and squirrel cage induction motors have the disadvantage that speed control cannot be performed by changing the secondary resistance.

さらに、固定子を固着固定子と可動固定子との2組に分
割し大々同一巻線となし同一電源に接続し、又回転子−
52組に分割し回転子導体は夫々中央部を幅広くなした
る羽状導体にて接続し両端を短絡環に(接続し、前記可
動固定子を回動し他方の固衿固定子により2次に誘導す
る2次誘導電圧に対し同−導体内に位相電流を4−ぜし
め、二つのヴエクトル和の電流が回転子導体に2次電流
として通ずる如くなし、任意に電動機の速度を可変(る
如くなしたる可変速誘導電動機が特公昭27−4357
号公報として知られるが、このものは、可動固定子の回
動操作により回転子導体内に異相電流を生ぜしめ、2次
電流を可変し、簡単に電動機の速度を任意可変調節でき
、また起動電流を少なくできる等の特徴を有するが、可
動固定子の回動量を大ぎくした低回転速度領域において
大ぎなトルクを出′t!ない欠点を未解決としていた。
Furthermore, the stator is divided into two sets, a fixed stator and a movable stator, with roughly the same windings and connected to the same power supply, and the rotor -
The rotor conductors are divided into 52 groups, and the rotor conductors are connected at the center with a wide wing-like conductor, and both ends are connected to short-circuit rings, and the movable stator is rotated, and the secondary A phase current is generated in the same conductor in response to the secondary induced voltage induced in the rotor conductor, so that the current of the sum of the two vectors passes through the rotor conductor as a secondary current, and the speed of the motor can be arbitrarily varied. The variable speed induction motor that was created was published in 1987-4357.
This is known as Publication No. 1, and it generates a different-phase current in the rotor conductor by rotating the movable stator, changes the secondary current, and easily adjusts the speed of the motor as desired. Although it has features such as being able to reduce the current, it generates a large amount of torque in the low rotational speed region where the amount of rotation of the movable stator is increased! There were no shortcomings left unresolved.

発明の目的 本発明は、上記従来技術の欠点を改善し、速度制御領域
を広範囲に且つその速度制御を連続的に実施できると共
に、特に低速度領域においてトルク特性の良い誘導動電
動機を提供することにある。
OBJECTS OF THE INVENTION It is an object of the present invention to provide an induction motor that can improve the drawbacks of the prior art described above, can continuously control the speed over a wide range of speeds, and has good torque characteristics especially in the low speed range. It is in.

なお、本発明の誘導電動機は、単相または3相電源等に
接続して使用され、回転子の形態は、普通かご形、二重
かご形、深溝かご形、特殊かご形9巻線形等のいずれの
形式のものにも適用できるものであり、本発明の説明に
用いる導体とは、かご形回転子コアに装設した導体、お
よび巻線形回転子コアに巻装した巻線のそれぞれを総称
するものである。
The induction motor of the present invention is used by being connected to a single-phase or three-phase power supply, and the rotor has a rotor shape such as a normal squirrel cage type, a double squirrel cage type, a deep groove cage type, a special squirrel cage type with 9 windings, etc. The conductor used in the description of the present invention is a general term for the conductor installed in the squirrel cage rotor core and the winding wound around the wound rotor core. It is something to do.

問題点を解決するための手段 上記目的を達成するために本発明は、それぞれに巻線を
施した複数個の固定子を任意の間隔を設け′C機枠に並
設し、前記複数個の固定子のうち少なイとも1個を回転
子軸と同心的に回動自在に形設し、複数個の回転子コア
を前記複数個の固定子に対峙する内周面に配して前記回
転子軸に装着し、前記複数個の回転子:1アにそれぞれ
装設した複数個の導体のそれぞれを連結して一体的な回
転子に形成し、前記固定子と対峙しない前記複数個の回
転子コアの空間または非磁性体コア部において、前記複
数個の導体のそれぞれを任意の電圧が加わると通電する
連結材を介し短絡して問題点を解決する手段とした。
Means for Solving the Problems In order to achieve the above object, the present invention provides a method in which a plurality of stators each having a winding are arranged in parallel on a machine frame at arbitrary intervals, and the plurality of stators are At least one of the stators is formed to be rotatable concentrically with the rotor shaft, and a plurality of rotor cores are arranged on an inner circumferential surface facing the plurality of stators to rotate the rotor. The plurality of rotors are connected to each other to form an integral rotor, and the plurality of rotors that do not face the stator are connected to each of the plurality of conductors installed on the child shaft and installed on the plurality of rotors. The problem is solved by short-circuiting each of the plurality of conductors in the space of the child core or the non-magnetic core through a connecting member that conducts electricity when a given voltage is applied.

作  用 上記構成により、回転子と同心的に回動自在とした固定
子と他方の固定子とに通電づ−ると、回転磁界が生じて
回転子に電圧が誘起され、回転子コアに装設しIこ導体
に電流が流れで回転子は回転する。回動側固定子の回動
をゼロとして他方の固定子とに回動差がないときには、
イれぞれの固定子間に回転磁界の位相に差がなく、回転
子の導体に流れる電11−は連結材には流れないから一
般の誘導゛電動機と同一のトルク特性を示すが、回動側
固定子を回動操作すると、他方の固定子との間に生じる
回転磁界の位相にずれを生じ、位相のずれに応じて回動
側固定子に対峙する部分の回転子導体に誘起する電圧と
、他方の固定子に対峙する部分の回転子導体に誘起する
合成電圧に応じて回転子の回転速度は変化し、合成電圧
の順誠に伴ってすべり率を大きくし力率およびトルクが
低下する。
Operation With the above configuration, when the stator, which is rotatable concentrically with the rotor, and the other stator are energized, a rotating magnetic field is generated, a voltage is induced in the rotor, and a voltage is applied to the rotor core. The rotor rotates when current flows through the conductor. When the rotation of the rotation side stator is set to zero and there is no rotation difference between it and the other stator,
There is no difference in the phase of the rotating magnetic field between the stators, and the current flowing through the rotor conductor does not flow through the connecting material, so it exhibits the same torque characteristics as a general induction motor. When the moving side stator is rotated, a phase shift occurs in the rotating magnetic field generated between it and the other stator, and according to the phase shift, it is induced in the rotor conductor of the part facing the rotating side stator. The rotation speed of the rotor changes depending on the voltage and the combined voltage induced in the rotor conductor in the part facing the other stator, and as the combined voltage increases, the slip factor increases and the power factor and torque decrease. do.

しかしながら、任意の電圧が加わると通電する連結材を
介して複数個の導体のそれぞれを固定子と対峙しない位
置において短絡しであるので、回動側固定子の回動に伴
い回転磁界に位相のずれを生じ、回動側固定子に対峙す
る部分の回転子導体に誘起する電圧と、他方の固定子に
対峙する部分の回転子導体に誘起する電圧とに位相のず
れを生じると、連結材に電圧が加わり連結材を介し複数
個の導体間に短絡して電流が流れる作用により、力率を
改善すると共に低速回転領域における大きなトルクを確
保することができる。
However, since each of the plurality of conductors is short-circuited at a position that does not face the stator via a connecting member that conducts electricity when a given voltage is applied, there is a phase shift in the rotating magnetic field as the rotating stator rotates. If a shift occurs and a phase shift occurs between the voltage induced in the rotor conductor in the part facing the rotating stator and the voltage induced in the rotor conductor in the part facing the other stator, the coupling member When a voltage is applied to the conductor, a short circuit occurs between the plurality of conductors through the connecting member, and a current flows, thereby improving the power factor and ensuring a large torque in the low-speed rotation region.

実施例 本発明の実施例を第1図〜第20図に基づき説明する。Example Embodiments of the present invention will be described based on FIGS. 1 to 20.

第1図および第2図に示1符号1は誘導電動機であり、
該誘導電動機1は以下のように構成しである。鉄心から
なる回転子コア2,3を任意の間隔を設置jで回転子軸
4に装着し、回転子]ア2,3間に非磁性体]ア9を介
設しである。
Reference numeral 1 shown in FIGS. 1 and 2 is an induction motor,
The induction motor 1 is constructed as follows. Rotor cores 2 and 3 made of iron cores are mounted on a rotor shaft 4 at an arbitrary interval, and a non-magnetic material 9 is interposed between the rotors 2 and 3.

回転子コア2.3に装設した複数個の導体5・・・のそ
れぞれを直列に連結して一体的イ家回転子8を形成し、
その直列に連結した複数個の導体5・・・の両端部を短
絡環6.7に連結しである。また回転子コア2.3.9
に回転子8の両側部10.11に連#8覆る複数個の通
風胴12・・・を設4t 、通風胴12・・・から直交
状に回転子8の外周部に貫通する複数個の通気孔13・
・・を穿設しである。回転子8は第3図に示す如く、回
転子コア2.3間の非磁性体コア9部において、複数個
の導体5・・・のそれぞれを任意の電圧が加わると通電
する連結材としてニクロム線、炭素混入鋼1通電性セラ
ミック等の抵抗材r・・・を介して短絡し一〇ある。(
第1図、第2図参照)円筒状の機枠14の両側部に設け
た軸受盤15.16を連結棒17・・・にナツト18・
・・留めして一体的に組付け、回転子8の両側部に冷却
用翼車19゜20を装着し、回転子軸4の両端部を軸受
盤15.16に嵌装した軸受21,21に軸支し、回転
子4を回転自在としである。
Each of the plurality of conductors 5 installed in the rotor core 2.3 is connected in series to form an integral I-family rotor 8,
Both ends of the plurality of conductors 5 connected in series are connected to a short circuit ring 6.7. Also rotor core 2.3.9
A plurality of ventilation cylinders 12... are installed on both sides 10, 11 of the rotor 8 to cover the series #8, and a plurality of ventilation cylinders 12... are installed perpendicularly to the outer circumference of the rotor 8 from the ventilation cylinders 12... Ventilation hole 13・
... is installed. As shown in FIG. 3, the rotor 8 has a non-magnetic core 9 between the rotor cores 2 and 3 using nichrome as a connecting material that conducts electricity when an arbitrary voltage is applied to each of the plurality of conductors 5. There are 10 short circuits through wires, carbon-containing steel, 1 resistive material such as conductive ceramic, etc. (
(See Figures 1 and 2) Bearing discs 15 and 16 provided on both sides of the cylindrical machine frame 14 are connected to connecting rods 17 by nuts 18 and 16.
・Bearings 21, 21 are fastened and assembled integrally, cooling impellers 19 and 20 are attached to both sides of the rotor 8, and both ends of the rotor shaft 4 are fitted into bearing discs 15 and 16. The rotor 4 is rotatably supported.

回転子コア2,3に対峙する外側部に巻線22.23を
施した第1固定子24と第2固定子25を配設し、機枠
14と第1固定子24.第2固定子25との間にすべり
軸受26.27を装設し、すべり軸受26.27を機枠
14に嵌装したストップリング28〜31によって固定
し、第2固定子25の一側外周部に移動防止環32を嵌
着し、また第2同定子25を機枠14に螺装したボルト
34によって回動をロック覆る。第1固定子24の一側
外周面にギヤー33を嵌着し、機枠14の外周部に固設
したパルスモータ−35につA−ムギャー36を軸着し
、機枠14の開口rtB 37からつ井−ムギV−36
を挿入してギr −33に係合させ、第1固定子24を
回転子8(こIJ L r I+il心的に回動自イf
どしである。38は聞[」部37に設Gプだカバー、ご
39は排風孔、40は軸受盤15.16に複数個穿設し
た通風孔である。
A first stator 24 and a second stator 25 having windings 22 and 23 are disposed on the outer side facing the rotor cores 2 and 3, and the machine frame 14 and the first stator 24. A sliding bearing 26.27 is installed between the second stator 25 and the sliding bearing 26.27 is fixed by stop rings 28 to 31 fitted to the machine frame 14, and the outer periphery of one side of the second stator 25 is fixed. A movement prevention ring 32 is fitted to the part, and rotation of the second identifier 25 is locked by a bolt 34 screwed into the machine frame 14. A gear 33 is fitted to the outer peripheral surface of one side of the first stator 24, and an A-mgya 36 is pivoted to a pulse motor 35 fixed to the outer peripheral part of the machine frame 14. Karatsui-Mugi V-36
is inserted and engaged with the gear r-33, and the first stator 24 is inserted into the rotor 8 (this IJ L r
That's it. Reference numeral 38 indicates a cover provided in the rear part 37, reference numeral 39 indicates an exhaust hole, and reference numeral 40 indicates a plurality of ventilation holes drilled in the bearing plate 15 and 16.

以下に上記構成にa3ける作用を説明する。The effect of a3 in the above configuration will be explained below.

第1.第2(i!il定子24.25の巻線22.23
に通電すると、固定子24.25に回転磁界が生じて回
転子8に電圧が誘起され、回転子8の導体5・・・に電
流が流れで回転子8は回転りる。
1st. 2nd (i!il constantor 24.25 winding 22.23
When energized, a rotating magnetic field is generated in the stator 24, 25, voltage is induced in the rotor 8, current flows through the conductors 5 of the rotor 8, and the rotor 8 rotates.

第2固定子25に対して第1固定子24の回動量をゼロ
としたときには、それぞれの固定子24.25の巻線2
2.23に人力する回転磁界の位相にはずれがイrく、
イの詳細は後述する如く連結材となず抵抗材r・・・に
は電流が流れないので、一般の誘導電動機と同一のトル
ク特性を持つものである。
When the amount of rotation of the first stator 24 with respect to the second stator 25 is set to zero, the winding 2 of each stator 24.25
2.23 The phase of the manually applied rotating magnetic field is out of phase.
As will be described in detail later, since no current flows through the resistor material r, which is not a connecting member, it has the same torque characteristics as a general induction motor.

次に、第2固定子25に対して第1固定子24を位相角
でθだけ回動した場合について説明−10= する。第1固定子24と第2固定子25が作る回転磁界
の磁束φ1.φ2の位相はθだけずれており、そのため
第1固定子24と第2固定子25により回転子8の導体
5・・・に誘起される電圧61.62の位相はθだけず
れている。今、第2固定子25によって回転子8の導体
5・・・に誘起される電圧ωを基準にとし、該電圧をt
a2= S Eとする。ここでSはすべり、Eはすべり
 1のときの誘起電圧である。このとき第1固定子24
によって導体5Aに誘起される電圧61は、6l−8E
εjOとなる。
Next, a case where the first stator 24 is rotated by a phase angle of θ with respect to the second stator 25 will be explained as follows. The magnetic flux φ1 of the rotating magnetic field created by the first stator 24 and the second stator 25. The phase of φ2 is shifted by θ, and therefore the phase of the voltages 61, 62 induced in the conductors 5 of the rotor 8 by the first stator 24 and the second stator 25 is shifted by θ. Now, using the voltage ω induced in the conductor 5 of the rotor 8 by the second stator 25 as a reference, the voltage is set to t.
Let a2=SE. Here, S is slip and E is the induced voltage when slip is 1. At this time, the first stator 24
The voltage 61 induced in the conductor 5A by 6l-8E
εjO.

(E−すべり1の時の誘起電圧) 第4図に示すものは、非磁性体コア9部において複数個
の導体5・・・を短絡する抵抗材r・・・が装着されて
いない場合の回転子8のずべりSと回転子入力の有効電
力Pとの関係を示すもので、電圧の位相がθ−0°のと
き有効電力Pは最大となり、0°ぐθイ180°のとき
はそれよりも小さイ1ものとなる。ここで導体5・・・
の抵抗およびインダクタンスをRおよび[とし、電源の
角周波数をωとずれば、イ1効電力[〕の極大はS= 
(R/ωL) のとき現われる。
(Induced voltage when E-slip 1) What is shown in Fig. 4 is the case where the resistive material r... that short-circuits the plurality of conductors 5... is not installed in the non-magnetic core 9 section. This shows the relationship between the slippage S of the rotor 8 and the active power P of the rotor input. When the voltage phase is θ-0°, the active power P is maximum, and when the voltage phase is 0° - 180°, It will be smaller than that. Here conductor 5...
If the resistance and inductance of is R and [, and the angular frequency of the power source is ω, then the maximum of the effective power [] is S=
Appears when (R/ωL).

有効電力[)は誘導電動機1の駆動トルクと比例するの
で、第1固定子24を回動させることによって速度を連
続的に制m−iすることができる。
Since the active power [) is proportional to the driving torque of the induction motor 1, the speed can be continuously controlled by rotating the first stator 24.

次に、回転子8の導体5・・・の短絡環6.7から連結
材までのそれぞれの抵抗をR1,R2、またインダクタ
ンスをLl、L2とし、電源の角周波数をωとし、各導
体5・・・のそれぞれを短絡する抵抗材の抵抗をrとす
れば、回転子8の電気的等価回路は第5図のようになり
、符号I+、I2.13は各枝路を流れる電流を示すも
のである。
Next, let R1 and R2 be the respective resistances from the short-circuit rings 6.7 of the conductors 5 of the rotor 8 to the connecting members, let Ll and L2 be the inductances, let ω be the angular frequency of the power supply, and let each conductor 5 If the resistance of the resistive material that short-circuits each of ... is r, the electrical equivalent circuit of the rotor 8 is as shown in Fig. 5, and the symbols I+ and I2.13 indicate the current flowing through each branch. It is something.

次に、第5図に示づものを両固定子24.25側からみ
たη価回路に変換すると第6図のようになり、R+ =
R2,LI=L2でθ=0゜のときには13=I+−1
2= Oとなり抵抗材rには電流が流れイiいことにな
る。このことはθ=0°のとぎに番1トルク1−はrが
ないとぎの値に等しいことを意味している。従ってθ−
0°のとぎは従来の誘導電動機と同一のトルク特性を持
つことになる。
Next, if we convert what is shown in Fig. 5 into an η value circuit viewed from both stator 24 and 25 sides, it becomes as shown in Fig. 6, and R+ =
When R2, LI=L2 and θ=0°, 13=I+-1
2=O, and current flows through the resistor material r. This means that when θ=0°, the number 1 torque 1- is equal to the value when r is absent. Therefore θ−
A 0° sharpening has the same torque characteristics as a conventional induction motor.

次に、R1=R2,LI=L2でθ−180゜のときに
は、I+= −I2.l3=I+−12=21+となり
、従来の誘導電動機において回転子導体の抵抗をRI=
R2=RとすればRはR+2rに増加したと同様な結果
となっている。
Next, when R1=R2, LI=L2 and θ-180°, I+=-I2. l3=I+-12=21+, and in the conventional induction motor, the resistance of the rotor conductor is RI=
If R2=R, the result is the same as if R were increased to R+2r.

以上の結果から、そのトルク特性はS=1.0からS−
Oの範囲において第7図のようになり、第1固定子24
を回動して位相角を変えるとトルクが変化することにな
る。
From the above results, the torque characteristics range from S=1.0 to S-
In the range of O, as shown in FIG. 7, the first stator 24
If you change the phase angle by rotating , the torque will change.

今、誘導電動機1の回転子軸4に連結した負荷の反抗ト
ルクが第7図に示すTrである場合は、第1固定子24
の回動角θを変えることにより、回転子8のすべりを8
1から82まで変化させること、即ち回転子8の回転速
度を変えることができる。また抵抗rは速度制御領域に
応じてその設定値を変えることにより回転子8の速度範
囲をさらに拡大でき、また低速回転詩における大ぎなト
ルクを発生することができる。
Now, if the reaction torque of the load connected to the rotor shaft 4 of the induction motor 1 is Tr shown in FIG.
By changing the rotation angle θ of the rotor 8, the slip of the rotor 8 can be reduced by 8
1 to 82, that is, the rotational speed of the rotor 8 can be changed. Further, by changing the set value of the resistance r depending on the speed control region, the speed range of the rotor 8 can be further expanded, and a large torque can be generated during low speed rotation.

上記回転子8の回転により、軸受1!!15.16に穿
設した通風口40・・・から冷却用翼車19゜20によ
り機枠14内に外気を吸引し、冷却用翼車19.20に
より固定子24.25、巻線22.23に通風して冷却
し、また通風胴12・・・を介し通気孔13・・・に流
通させる風により回転子コア2,3、導体5・・・、抵
抗材r・・・等を冷却してそれぞれの機能を安定的に作
用させる。
Due to the rotation of the rotor 8, the bearing 1! ! Outside air is sucked into the machine frame 14 by cooling impellers 19, 20 through ventilation holes 40 bored in holes 15, 16, and the stators 24, 25, windings 22, . The rotor cores 2, 3, conductors 5..., resistance material r..., etc. are cooled by the air flowing through the ventilation holes 13... through the ventilation barrel 12... to ensure that each function operates stably.

また、第1固定子24の回動はパルスモータ−35をス
イッチにより正・逆転させて行うが、パルスモータ−3
5に限定されるものではなく、手動ハンドルによって操
作する場合もある。
Further, the first stator 24 is rotated by rotating the pulse motor 35 in forward and reverse directions using a switch.
5, and may be operated using a manual handle.

次に、第8図によって複数個の導体のそれぞれを短絡す
る連結材をダイオードとした回転子の別実施例につき説
明J−る。回転子コア2.3に装設した複数個の導体5
・・・のそれぞれを直列に連結して一体的(7複数個の
導体5・・・とじ、該複数個の導体5・・・の両側端部
を短絡環に連結して一体的な回転子8Aを形成し、第1
.第2固定子2°4,25と対峙しない回転子コア2.
3間の非磁性コア9部において、複数個の導体5・・・
のそれぞれを連結して短絡する連結材を任意電圧値で作
動する逆極性に直列に連結した1組の定電圧ダイオード
D・・・としである。その電気的等価回路は第9図に示
すとおりで、第1固定子24で操作した電圧の位相角θ
が1806で、R+=Rz、L+=L2のとぎには、1
1−一12となり、複数個の導体のそれぞれを短絡する
連結材となす1組の定電圧ダイオードD・・・が通電状
態にあるときには、l3−I+−T2−2I+の電流が
流れるので、θ=180°でも大ぎなトルクを出すこと
ができる。
Next, referring to FIG. 8, another embodiment of a rotor in which diodes are used as connecting members for short-circuiting each of a plurality of conductors will be explained. A plurality of conductors 5 installed in the rotor core 2.3
Each of the conductors 5... are connected in series to form an integral rotor (7 plurality of conductors 5... are tied together, and both ends of the plurality of conductors 5... are connected to a short-circuit ring to form an integral rotor). 8A and the first
.. Rotor core 2. which does not face the second stator 2°4,25.
A plurality of conductors 5...
A pair of constant voltage diodes D are connected in series with opposite polarity and operate at an arbitrary voltage value. The electrical equivalent circuit is as shown in FIG. 9, and the phase angle θ of the voltage operated by the first stator 24 is
is 1806, and when R+=Rz and L+=L2, 1
1-112, and when a set of constant voltage diodes D, which serve as connecting members that short-circuit each of the plurality of conductors, are in a energized state, a current of l3-I+-T2-2I+ flows, so θ It can produce a large amount of torque even at 180°.

第10図は、この実施例における1〜ルク特性を示すも
ので、実線で示す曲線は短絡する連結材を1組のダイオ
ードD・・・としたときのトルク特性であり、点線部分
は複数個の導体5・・・のそれぞれを短絡しない場合の
低速度領域におけるトルク特性である。このトルク曲線
からも判る如く、電圧の位相角がθ−0°のときには複
数個の導体5・・・のそれぞれを短絡する連結材とした
1組の中電圧ダイオードD・・・には電流が流れず、−
設電動機と同一のトルク特定を示し、それぞれの位相差
における低速回転領域においてはトルク特性と共に効率
も大幅に改善される。
Fig. 10 shows the torque characteristics of this example. The curve shown by the solid line is the torque characteristic when the connecting material to be short-circuited is a pair of diodes D... This is the torque characteristic in the low speed region when each of the conductors 5 . . . is not short-circuited. As can be seen from this torque curve, when the phase angle of the voltage is θ-0°, there is no current in the pair of medium voltage diodes D, which are used as connecting members to short-circuit each of the plurality of conductors 5. Does not flow, -
It exhibits the same torque specification as the installed motor, and in the low-speed rotation range at each phase difference, both torque characteristics and efficiency are significantly improved.

第11図に示1 t>のは、複数個の導体のそれぞれを
短絡する連結材として抵抗材と逆極性に直列に連結した
1紺のダイオードを直列に連結した回転子の別実施例で
ある。
1t> shown in FIG. 11 is another embodiment of a rotor in which a navy blue diode of opposite polarity is connected in series with a resistive material as a connecting material to short-circuit each of a plurality of conductors. .

回転子コア2.3に装設した複数個の導体5・・・のそ
れぞれを直列に連結して一体的な複数個の導体5・・・
とし、複数個の導体5・・・の両側端部を短絡環に連結
して一体的な回転子8Bを形成し、第1.第2固定子2
4.25と対峙しない回転子コア2.3間の非磁性体コ
ア9部において、複数個の導体5・・・のそれぞれを連
結して短絡する連結材として、任意の電圧が加わると通
電1−るニクロム線、鉄りローム線、炭素混入鋼等の抵
抗材r・・・と、同じく任意の電圧が加わると通電する
逆極性に直列に連結した1組の定電圧ダイオードD・・
・とを直列に連結しである。
Each of the plurality of conductors 5 installed in the rotor core 2.3 is connected in series to form an integral plurality of conductors 5...
The both ends of the plurality of conductors 5... are connected to the short circuit ring to form an integral rotor 8B. Second stator 2
4.25, the non-magnetic core 9 between the rotor cores 2 and 3 that do not face each other serves as a connecting member that connects and short-circuits each of the plurality of conductors 5, and when an arbitrary voltage is applied, the energization 1 - Resistance material R such as nichrome wire, ferrous roam wire, carbon mixed steel etc. and a set of constant voltage diodes D connected in series with opposite polarity which also conducts electricity when an arbitrary voltage is applied.
・And are connected in series.

この実施例における電気的等価回路は第12図に示す通
りであり、回転子8の導体5・・・に誘起される電圧の
位相差により、前記1組の定電圧ダイオードD・・・に
電圧が加わり、その電圧値がダイオードD・・・に設定
された電圧値よりも大ぎくなると、複数個の導体5・・
・のそれぞれに抵抗材r・・・および前記1組の定電圧
ダイオードD・・・を介して電流が短絡して流れ、第1
3図に示すトルク曲線の如く、低速回転時において複数
個の導体5・・・のそれぞれを短絡する抵抗材r・・・
に直列に1組のダイオードD・・・を設けない場合を点
線で示すそれぞれの位相差におけるトルク値T1〜T4
に対し、連結材として抵抗材r・・・と1組の定電圧ダ
イオードD・・・を設けたそれぞれの位相差におけるト
ルク値T+’〜T4’ は大きくなり、低速回転領域に
おいても大きなトルクを確保する。なお、抵抗材rと1
組の定電圧ダイオードDとの直列に連結するものは実施
例図と逆になってもよい。
The electrical equivalent circuit in this embodiment is as shown in FIG. is applied and the voltage value becomes larger than the voltage value set for the diode D..., the plurality of conductors 5...
A current is short-circuited and flows through each of the resistive materials r... and the set of voltage regulator diodes D..., and the first
As shown in the torque curve shown in Figure 3, a resistive material r... which short-circuits each of the plurality of conductors 5... during low speed rotation.
Torque values T1 to T4 at each phase difference are shown by dotted lines when a set of diodes D... are not provided in series with
On the other hand, when a resistive material r... and a set of voltage regulating diodes D... are provided as connecting members, the torque values T+' to T4' at each phase difference become large, and a large torque can be generated even in the low speed rotation region. secure. In addition, the resistance material r and 1
What is connected in series with the set of constant voltage diodes D may be reversed to that in the embodiment diagram.

次に、第14図に示すものは、複数個の導体のそれぞ桔
を短絡Jる連結材として抵抗材と1組のダイオードのそ
れぞれを並設した回転子のさらに別実施例(・ある。
Next, FIG. 14 shows still another embodiment of a rotor in which a resistive material and a set of diodes are arranged side by side as connecting members for short-circuiting the respective frames of a plurality of conductors.

第1.第2固定子24.25と対峙しない非磁性体コア
9部において、回転子2.3間に連通して装設した複数
個の導体5・・・のそれぞれを連結して短絡Jる連結材
となす抵抗r・・・と逆極性に直列に連結した1組の定
電圧ダイオードD・・・とを並設し、一体向な回転子8
Cに形成しである。
1st. A connecting member that connects and short-circuits each of the plurality of conductors 5 installed in communication between the rotors 2, 3 in the non-magnetic core 9 portion that does not face the second stator 24, 25. A resistor r... and a set of constant voltage diodes D... connected in series with opposite polarity are arranged in parallel, and the rotor 8 is integrally oriented.
It is formed into C.

この実施例における電気的等価回路は第15図に示すと
おりで、第1固定子24の回動量に伴い回転子8の導体
5・・・に誘起する電圧の位相差が順増する任意時点か
ら抵抗材r・・・に短絡して電流が流れ、抵抗材r・・
・の作用により力率を改善し、また電圧の位相のずれが
大きくなり逆極性に直列に連結した1組の定電圧ダイオ
ードD・・・にも電流が流れると、低速度領域における
トルク特性を改善ザることができ、そのトルク曲線ば第
16図に示すとおりである。この実施例におけるトルク
特性は、1組の定電圧ダイオードD・・・に通電がない
間は抵抗材r・・・のみが作用する第3図に示J実施例
と同様になり、1組の定電圧ダイオードD・・・に電圧
が加わり通電すると第8図に示す実施例に近い特性にな
るという特色があり、それぞれの実施例において、負荷
を駆動する速度の制御領域に基づいて、その回転速度に
適応する領域における特性を勘案していずれかを選択し
採用するものである。
The electrical equivalent circuit in this embodiment is as shown in FIG. 15, and starts from an arbitrary point in time when the phase difference between the voltages induced in the conductors 5 of the rotor 8 gradually increases with the amount of rotation of the first stator 24. A short circuit occurs to the resistive material r..., current flows, and the resistive material r...
・The power factor is improved by the action of The torque curve can be improved as shown in FIG. The torque characteristics in this embodiment are similar to the J embodiment shown in FIG. When a voltage is applied to and energizes the constant voltage diode D..., the characteristics are similar to those of the embodiment shown in FIG. One of these is selected and adopted in consideration of the characteristics in the area that adapts to the speed.

次に第17図、第18図によって巻線形回転子とその巻
線のそれぞれを連結Jる結線につぎ説明する。
Next, the connections between the wound rotor and its windings will be explained with reference to FIGS. 17 and 18.

回転子軸4に鉄心からなる2個の回転子コア41.42
を第1固定子24と第2固定子25ど対峙するように軸
装し、回転子コア41.42に巻線/1.3.44を施
し、第18図に示すように、導体となす巻線43.44
とを直列に連結する回路45中に、逆極性に直列に連結
したダイオードD・・・を介設してそれぞれの巻線間を
短絡し、更に必要に応じて前記定電圧ダイオードD・・
・に抵抗材r・・・を直列に連結してもよい。
Two rotor cores 41 and 42 made of iron core on the rotor shaft 4
are mounted so that the first stator 24 and the second stator 25 face each other, and windings/1.3.44 are applied to the rotor core 41.42 to form a conductor as shown in FIG. Winding 43.44
are connected in series with diodes D... connected in series with opposite polarities to short-circuit the respective windings, and if necessary, the voltage regulator diodes D...
・A resistive material r... may be connected in series.

巻線43.44.ダイオードD・・・、抵抗材r・・・
が回転子47の回転に伴う遠心作用によって振出されな
いように、連結部45に非磁性材のカバー46を装着し
て一体的な回転子47に形成しである。回転子=174
1.42には、それぞれの両端部に貫通りる複数個の通
風胴48・・・。
Winding 43.44. Diode D..., resistance material r...
A cover 46 made of a non-magnetic material is attached to the connecting portion 45 so that the rotor 47 is not swung out due to the centrifugal action accompanying the rotation of the rotor 47. Rotor = 174
1.42, a plurality of ventilation cylinders 48 passing through each end portion.

49・・・を開設してあり、カバー46の周面に複数個
の排風孔50・・・を穿設しである。上記以外の構成は
第1図、第2図と同一であり、それぞれの巻線43.4
4の回路45を短絡する連結材を1組の定電圧ダイオー
ドD・・・とじたその作用は前記第8図に示す実施例と
同一であり、また、連結材を抵抗材r・・・と1組の定
電圧ダイオードD・・・とを直列に連結した場合の作用
は第11図実施例とf’iJ−であるので、その詳細説
明を省略する。
49... are opened, and a plurality of exhaust holes 50... are bored in the circumferential surface of the cover 46. The configuration other than the above is the same as in FIGS. 1 and 2, and each winding 43.4
The connection material that short-circuits the circuit 45 of No. 4 is connected to a set of constant voltage diodes D... The effect thereof is the same as the embodiment shown in FIG. 8, and the connection material is connected to a resistance material R... Since the effect when a set of constant voltage diodes D, . . . are connected in series is the same as that of the embodiment in FIG.

第19図に示4ものは、誘導電動機1の機枠14内に並
設した2個の固定子58.59を共に回動自在とした実
施例である。巻線60.61を施した固定子58.59
をすべり軸受26゜27に嵌装して固定子58.59を
回転子8に対して同心的に回動自在とし、すべり軸受2
6゜27のそれぞれはストップリング28〜31によっ
て機枠14に固定されている。機枠14に装着したパル
スモータ−35に駆動歯車62を軸着し、機枠14に開
設した開口部から駆動歯車62を機枠14内に挿入して
固定子58の一側外周部に嵌着したギヤー33に係合さ
せである。機枠14の外側部に装着した軸受台63に中
継軸64を回転自在に軸装し、中継軸64の一側部に軸
着した中継歯車65に駆動歯車62と一体的に形成した
連動歯車66を係止させ、中継軸64の他側部に軸着し
だ回動用歯車67を固定子59の一側外周部に嵌着した
ギヤー30に係合させ、パルスモータ−35の作動によ
り固定子58と固定子59とはそれぞれ回動方向を反対
にしである。
The fourth embodiment shown in FIG. 19 is an embodiment in which two stators 58 and 59 arranged in parallel in the machine frame 14 of the induction motor 1 are both rotatable. Stator 58.59 with winding 60.61
is fitted into the slide bearing 26°27 so that the stator 58, 59 can freely rotate concentrically with respect to the rotor 8, and the slide bearing 2
6.degree. 27 are each fixed to the machine frame 14 by stop rings 28-31. The drive gear 62 is pivotally attached to the pulse motor 35 mounted on the machine frame 14, and the drive gear 62 is inserted into the machine frame 14 through an opening provided in the machine frame 14 and fitted onto the outer periphery of one side of the stator 58. This is to engage the gear 33 that has arrived. A relay shaft 64 is rotatably mounted on a bearing stand 63 mounted on the outer side of the machine frame 14, and an interlocking gear is integrally formed with a drive gear 62 on a relay gear 65 rotatably mounted on one side of the relay shaft 64. 66 is engaged with the other side of the relay shaft 64, and the rotating gear 67 is engaged with the gear 30 fitted on the outer periphery of one side of the stator 59, and fixed by the operation of the pulse motor 35. The child 58 and the stator 59 rotate in opposite directions.

この実施例における特徴は、固定子58と固定子59と
を互いに異る方向に回動するように形設しであるので、
パルスモータ−35の正・逆転作用により、両固定子5
8.59の回動量を少なくして敏速に所望回転速度に制
御でき、変速制御を頻繁に反復する必要がある場合特に
効果的である。
The feature of this embodiment is that the stator 58 and the stator 59 are configured to rotate in different directions.
By the forward/reverse action of the pulse motor 35, both stators 5
8.59 It is possible to quickly control the rotational speed to a desired speed by reducing the amount of rotation, and this is particularly effective when it is necessary to repeat speed change control frequently.

また、小範囲でしかも正確な回転速度の制御を必要とす
る場合には、パルスモータ−35に連結する歯車類を適
宜組合せ、両固定子58゜59を同一方向に回動させる
と共に、それぞれの固定子58.59を周速回動するよ
うに形設すればよい。
In addition, when accurate rotational speed control is required in a small range, gears connected to the pulse motor 35 are appropriately combined to rotate both stators 58 and 59 in the same direction. The stators 58 and 59 may be configured to rotate at a circumferential speed.

なお、上記それぞれの実施例の説明において、第1固定
子24のみを回動Jるものとして説明したが、第2固定
子24の代りに第2固定子25を回動するように形設し
ても同様の作用が得られるものであり、固定子および回
転子は2個のみに限定されるものではなく、固定子およ
び回転子を複数個設け、そのうちの任意数の固定子を機
枠に固設すると共に任意数の固定子を回動自在に形設す
ることは電動機の容吊、目的等によって自由に選択でき
るものである。そして、第1固定子24と第2固定子2
5の容量を同一としたことに限定してその作用を説明し
たが、いずれかの固定子の容量を大きくする場合もある
In addition, in the description of each of the above embodiments, only the first stator 24 was described as being rotatable, but the second stator 25 may be configured to rotate instead of the second stator 24. However, the number of stators and rotors is not limited to two, but it is also possible to provide a plurality of stators and rotors and attach any number of them to the machine frame. It is possible to freely select whether the stator is fixedly installed or an arbitrary number of stators are rotatably provided depending on the sizing of the electric motor, the purpose, etc. Then, the first stator 24 and the second stator 2
Although the operation has been explained by limiting the capacitance of stators 5 to 5 to be the same, the capacitance of one of the stators may be increased.

また、固定子および回転子」アに施す巻線はスター結線
あるいはデルタ結線のいずれをも選択できることは勿論
であり、そして上記に説明した導体によって形成する巻
線の連絡回路中に介設する定電圧ダイオードは1組に限
定されることなく複数組でもよく、さらに定電圧ダイオ
ードに限定されるものではなく、上記に説明した作用を
達成できるダイオードを適宜選択して使用できるもので
ある。そして、抵抗材、定電圧ダイオードの容量は速度
制御領域に求められるトルク特性によって種々変更でき
、また、連結材として必ずしも複数個の導体全てに連結
されなくても相応に作用効果が得られる。
In addition, it goes without saying that the windings connected to the stator and rotor can be either star connected or delta connected. The number of voltage diodes is not limited to one set, but may be a plurality of sets. Further, the number of voltage diodes is not limited to constant voltage diodes, and any diode that can achieve the above-described effect can be appropriately selected and used. The capacitance of the resistive material and the constant voltage diode can be varied depending on the torque characteristics required in the speed control region, and the corresponding effect can be obtained even if the connecting material is not necessarily connected to all of the plurality of conductors.

次に第1図、第2図および第20図によって誘導電動機
の自動制御について説明する。
Next, automatic control of the induction motor will be explained with reference to FIGS. 1, 2, and 20.

誘導雷、動機1の第1固定子24および第2固定子25
に施した巻線22.23の端子を機枠14内から延長し
てスイッチ51を介し3相商用電源a、b、cに連結し
である。負荷の回転速度に対応する誘導電動機1の速度
等を設定する制御値設定盤5)2を記憶回路、比較演算
回路を備えた制til+装置53に連結し、電動機1の
回転子軸4に装設したり:]ゼネレーター等の速度検出
器54と、第1固定了24を回動制御するパルスモータ
−35ど、スイッチ51と、送風管を軸受盤16の通風
口40・・・に連通さVた送風機57を駆動Jる電動1
!155と、機枠14内の温度を検出する温度検出器5
6のそれぞれを制御装置53に連結しである。
Induced lightning, first stator 24 and second stator 25 of motive 1
The terminals of the windings 22 and 23 are extended from inside the machine frame 14 and connected to three-phase commercial power sources a, b, and c via a switch 51. A control value setting panel 5) 2 for setting the speed, etc. of the induction motor 1 corresponding to the rotational speed of the load is connected to a control device 53 equipped with a memory circuit and a comparison calculation circuit, and is mounted on the rotor shaft 4 of the motor 1. A speed detector 54 such as a generator, a pulse motor 35 for rotationally controlling the first fixing member 24, a switch 51, and a blower pipe are connected to the ventilation port 40 of the bearing board 16. Electric blower 57 is driven by electric motor 1.
! 155, and a temperature detector 5 that detects the temperature inside the machine frame 14.
6 are connected to a control device 53.

上記構成により、電動機1の速度制御値と、第1固定子
24を回動量る各回動角に対するパルスモータ−35の
パルス制御値とを制御値設定盤52から制御装置53に
人力する。制御装置53からの出力信号をスイッチ51
に連絡して電動機1を起動すると共に、回転子4の速度
を速度検知器54によって検知し、その検知値を連絡し
た制御装置53において、回転子80回転速度が入力さ
れた速度制御値と異なる場合には、速度制御値となるよ
うに第1固定子24による回動角を算出すると共に、パ
ルスモータ−35の作動パルス数が演算され、その演算
値を制御装置53の出力信号によりパルスモータ−35
を作動し、第1固定子24を回動して所望回転速度に制
御する。そして負荷の回転速度を制御する信号を制御値
設定盤52を介して自動的に入力する場合もあり、この
場合は電動機1の回転速度制御値により、速度検知器5
4を介すことな(、パルスモータ−35の作動により所
望回転数に自動制御されて無人運転により効率的に電動
機1を使用することができる。
With the above configuration, the speed control value of the electric motor 1 and the pulse control value of the pulse motor 35 for each rotation angle of the first stator 24 are manually input from the control value setting panel 52 to the control device 53. The output signal from the control device 53 is transferred to the switch 51.
In the control device 53 that communicated the speed of the rotor 4 to start the electric motor 1, detected the speed of the rotor 4 with the speed detector 54, and communicated the detected value, the rotation speed of the rotor 80 is different from the input speed control value. In this case, the rotation angle of the first stator 24 is calculated so as to obtain the speed control value, and the number of operating pulses of the pulse motor 35 is calculated, and the calculated value is used as the output signal of the control device 53 to control the pulse motor 35. -35
is operated to rotate the first stator 24 and control it to a desired rotational speed. In some cases, a signal for controlling the rotation speed of the load is automatically input via the control value setting board 52. In this case, the rotation speed control value of the electric motor 1 is used to control the rotation speed of the motor 1.
By operating the pulse motor 35, the motor 1 is automatically controlled to a desired rotation speed without using the motor 4, and the electric motor 1 can be used efficiently by unmanned operation.

また、制御装置53に設定した温度値よりも機枠14内
の温度が上昇したことを温度検出値56が検出し、その
検出値を制御装置53に連絡した出力信号により電動機
55を起動し、送風作用により固定子2回転子、導体、
ダイオ−ド、抵抗材等を冷却する。なお、送風機57に
は空気冷却装置を連結することもあり、渇庶検出器56
に無関係に送風機54を作用させることもある。
Further, the temperature detection value 56 detects that the temperature inside the machine frame 14 has risen above the temperature value set in the control device 53, and the electric motor 55 is started by an output signal that communicates the detected value to the control device 53. Due to the blowing action, the stator, two rotors, conductors,
Cools diodes, resistance materials, etc. Note that an air cooling device may be connected to the blower 57, and the drought detector 56
The blower 54 may be operated regardless of the situation.

発明の効果 上記に説明した如く本発明によれば、回動側の固定子を
回動操作して他方の固定子との回転磁界の位相を変化さ
lることにより、回転子の速度を任意速JI[制御16
作用中に、固定子と対峙しない回転子117間の空間ま
たは非磁性体コア部において、複数個の導体それぞれを
軒かの電圧が加わると通電する連結材を介して短絡しで
あるので、l!1lljJ側の固定子の回動量を大きく
して回転磁界の位相を大きくずらした低速度領域におい
て、効率を改善すると共に大きなトルクを得ることがで
き、起動、停止および変速制御を頻繁に反復する動力源
に用いて顕著な効果を奏する。
Effects of the Invention As explained above, according to the present invention, the speed of the rotor can be adjusted arbitrarily by rotating the stator on the rotary side to change the phase of the rotating magnetic field with respect to the other stator. Speed JI [control 16
During operation, in the space between the rotor 117 that does not face the stator or in the non-magnetic core part, each of the plurality of conductors is short-circuited via a connecting member that conducts electricity when a voltage is applied. ! In the low speed region where the rotation amount of the stator on the 1lljJ side is increased and the phase of the rotating magnetic field is significantly shifted, efficiency can be improved and large torque can be obtained, and the power is used to frequently repeat starting, stopping and speed change control. It has a remarkable effect when used as a source.

【図面の簡単な説明】[Brief explanation of drawings]

第1゛図〜第20図は本発明の実施例図であり、第1図
は本発明の誘導電動機の側断面図、第2図は固定子の回
動機構を示す側面図、第3図は第1図の部分拡大図、第
4図は回転子のすべりと有効電力の関係を示す図、第5
図は回転子の電気的等価回路図、第6図は固定子側から
みた電気的等価回路図、第7図は複数個の導体のそれぞ
れを短絡する連結材を抵抗材とした場合の速度とトルク
の関係を示す図、・第8図は回転子の別実施例を示す部
分拡大図、第9図は電気的等価回路図、第10図は速度
とトルク特性との関係を示す図、第11図は回転子の別
実施例を示す部分拡大図、第12図は電気的等価回路図
、第13図は位相角とトルク特性の関係を示す図、第1
4図は回転子の別実施例を示す部分拡大図、第15図は
電気的等価回路図、第16図は位相角とトルク位相角と
トルク特性の関係を示す図、第17図は回転子を巻線形
とした部分拡大図、第18図は第17図の巻線それぞれ
の結線を示す図、第19図は両方の固定子を共に回動制
御する実施例図、第20図は誘導電動機の自動制御を示
すブロック図である。
1 to 20 are illustrations of embodiments of the present invention, in which FIG. 1 is a side sectional view of the induction motor of the present invention, FIG. 2 is a side view showing the rotation mechanism of the stator, and FIG. is a partially enlarged view of Figure 1, Figure 4 is a diagram showing the relationship between rotor slip and active power, and Figure 5 is a diagram showing the relationship between rotor slip and active power.
Figure 6 is an electrical equivalent circuit diagram of the rotor, Figure 6 is an electrical equivalent circuit diagram seen from the stator side, and Figure 7 shows the speed and speed when the connecting material used to short-circuit each of the multiple conductors is a resistive material. Figure 8 is a partially enlarged view showing another embodiment of the rotor; Figure 9 is an electrical equivalent circuit diagram; Figure 10 is a diagram showing the relationship between speed and torque characteristics; FIG. 11 is a partially enlarged view showing another embodiment of the rotor, FIG. 12 is an electrical equivalent circuit diagram, FIG. 13 is a diagram showing the relationship between phase angle and torque characteristics, and FIG.
Figure 4 is a partially enlarged view showing another embodiment of the rotor, Figure 15 is an electrical equivalent circuit diagram, Figure 16 is a diagram showing the relationship between phase angle and torque phase angle and torque characteristics, and Figure 17 is the rotor. Fig. 18 is a diagram showing the connection of each winding in Fig. 17, Fig. 19 is an example of controlling the rotation of both stators, and Fig. 20 is an induction motor. FIG. 2 is a block diagram showing automatic control of the FIG.

Claims (6)

【特許請求の範囲】[Claims] (1)、それぞれに巻線を施した複数個の固定子を任意
の間隔を設けて機枠に並設し、前記複数個の固定子のう
ち少なくとも1個を回転子軸と同心的に回動自在に形設
し、複数個の回転子コアを前記複数個の固定子に対峙す
る内周面に配して前記回転子軸に装着し、前記複数個の
回転子コアにそれぞれ装設した複数個の導体のそれぞれ
を連結して一体的な回転子に形成し、前記固定子と対峙
しない前記複数個の回転子コア間の空間または非磁性体
コア部において、前記複数個の導体のそれぞれを任意の
電圧が加わると通電する連結材を介して短絡したことを
特徴とする誘導電動機。
(1) A plurality of stators each having a winding are arranged in parallel on the machine frame at an arbitrary interval, and at least one of the plurality of stators is rotated concentrically with the rotor shaft. a plurality of rotor cores arranged on an inner circumferential surface facing the plurality of stators and mounted on the rotor shaft; and a plurality of rotor cores mounted on the plurality of rotor cores, respectively. Each of the plurality of conductors is connected to form an integral rotor, and each of the plurality of conductors is connected in a space between the plurality of rotor cores or in a non-magnetic core portion that does not face the stator. An induction motor is characterized in that it is short-circuited through a connecting member that becomes energized when a given voltage is applied.
(2)、前記連結材を抵抗材とした特許請求の範囲第(
1)項記載の誘導電動機。
(2) Claim No. (2), wherein the connecting material is a resistance material.
The induction motor described in item 1).
(3)、前記連結材を逆極性に直列に連結した少なくと
も1組のダイオードとした特許請求の範囲第(1)項記
載の誘導電動機。
(3) The induction motor according to claim (1), wherein the connecting member is at least one set of diodes connected in series with opposite polarities.
(4)、逆極性に直列に連結した少なくとも1組のダイ
オードと抵抗材を直列に連結して前記連結材とした特許
請求の範囲第(1)項記載の誘導電動機。
(4) The induction motor according to claim (1), wherein the connecting member is formed by connecting in series at least one set of diodes connected in series with opposite polarities and a resistive material.
(5)、逆極性に直列に連結した少なくとも1組のダイ
オードと抵抗材とを並設して前記連結材とした特許請求
の範囲第(1)項記載の誘導電動機。
(5) The induction motor according to claim (1), in which the connecting member is formed by arranging at least one set of diodes connected in series with opposite polarities and a resistive material.
(6)、前記ダイオードを定電圧ダイオードとした特許
請求の範囲第(1)項〜第(5)項のいずれかに記載の
誘導電動機。
(6) The induction motor according to any one of claims (1) to (5), wherein the diode is a constant voltage diode.
JP61111854A 1986-05-15 1986-05-15 Induction motor Expired - Lifetime JP2516337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111854A JP2516337B2 (en) 1986-05-15 1986-05-15 Induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111854A JP2516337B2 (en) 1986-05-15 1986-05-15 Induction motor

Publications (2)

Publication Number Publication Date
JPS62268391A true JPS62268391A (en) 1987-11-20
JP2516337B2 JP2516337B2 (en) 1996-07-24

Family

ID=14571824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111854A Expired - Lifetime JP2516337B2 (en) 1986-05-15 1986-05-15 Induction motor

Country Status (1)

Country Link
JP (1) JP2516337B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144342A (en) * 1987-11-28 1989-06-06 Satake Eng Co Ltd Cooling device for multiple-stator induction motor
JPH01231637A (en) * 1988-03-11 1989-09-14 Satake Eng Co Ltd Cooler for variable speed induction motor
JPH01231681A (en) * 1988-03-08 1989-09-14 Satake Eng Co Ltd Variable speed induction motor
JPH01234094A (en) * 1988-03-15 1989-09-19 Satake Eng Co Ltd Variable-speed induction motor
JPH01238492A (en) * 1988-03-17 1989-09-22 Satake Eng Co Ltd Variable speed induction motor
JPH01248995A (en) * 1988-03-28 1989-10-04 Satake Eng Co Ltd Variable speed induction motor
JPH01248994A (en) * 1988-03-28 1989-10-04 Satake Eng Co Ltd Variable speed induction motor
JPH01255498A (en) * 1988-04-05 1989-10-12 Satake Eng Co Ltd Speed controller for variable-speed induction motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144342A (en) * 1987-11-28 1989-06-06 Satake Eng Co Ltd Cooling device for multiple-stator induction motor
JPH01231681A (en) * 1988-03-08 1989-09-14 Satake Eng Co Ltd Variable speed induction motor
JPH01231637A (en) * 1988-03-11 1989-09-14 Satake Eng Co Ltd Cooler for variable speed induction motor
JPH01234094A (en) * 1988-03-15 1989-09-19 Satake Eng Co Ltd Variable-speed induction motor
JPH01238492A (en) * 1988-03-17 1989-09-22 Satake Eng Co Ltd Variable speed induction motor
JPH01248995A (en) * 1988-03-28 1989-10-04 Satake Eng Co Ltd Variable speed induction motor
JPH01248994A (en) * 1988-03-28 1989-10-04 Satake Eng Co Ltd Variable speed induction motor
JPH01255498A (en) * 1988-04-05 1989-10-12 Satake Eng Co Ltd Speed controller for variable-speed induction motor

Also Published As

Publication number Publication date
JP2516337B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
JPH0227920B2 (en)
JPS62262690A (en) Induction motor
JPS62268391A (en) Induction motor
JP2571367B2 (en) Variable speed induction motor
JPS62260590A (en) Induction motor
JPS62268390A (en) Variable speed induction motor
JP2516398B2 (en) Variable speed induction motor
JP2919478B2 (en) Multiple stator induction motor
JPS6311089A (en) Adjust speed induction motor
JPH01177848A (en) Plural stator induction motor
JPS637157A (en) Variable speed induction motor
JPH01144375A (en) Multiple-stator induction motor
JP2845366B2 (en) 2 Stator induction motor braking device
JPS6318985A (en) Variable speed induction motor
JP2516393B2 (en) 2 stator induction motor
JPH01107636A (en) Cooling device for variable speed induction motor
JPH01126195A (en) Controller for varying speed for variable speed induction motor
JP2516383B2 (en) Variable speed induction motor
JPS631353A (en) Variable speed induction motor
JPH01234092A (en) Variable-speed induction motor
JPS62268389A (en) Variable speed induction motor
JPH01110089A (en) Controller for variable speed induction motor
JPH01227691A (en) Variable speed induction motor
JPH0223094A (en) Induction motor with a plurality of stator
JPH01248993A (en) Variable speed induction motor