JPS62268009A - Reaction-free superconductor - Google Patents

Reaction-free superconductor

Info

Publication number
JPS62268009A
JPS62268009A JP61110404A JP11040486A JPS62268009A JP S62268009 A JPS62268009 A JP S62268009A JP 61110404 A JP61110404 A JP 61110404A JP 11040486 A JP11040486 A JP 11040486A JP S62268009 A JPS62268009 A JP S62268009A
Authority
JP
Japan
Prior art keywords
superconducting wire
unreacted
unreacted superconducting
titanate
silanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61110404A
Other languages
Japanese (ja)
Other versions
JPH0789454B2 (en
Inventor
田中 靖三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61110404A priority Critical patent/JPH0789454B2/en
Publication of JPS62268009A publication Critical patent/JPS62268009A/en
Publication of JPH0789454B2 publication Critical patent/JPH0789454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は無機絶縁破覆を有する未反応超電導線の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement of an unreacted superconducting wire having an inorganic insulation breakdown.

(従来の技術) 化合物超電導線はNb、Sn、 V、(:ra、 Nb
+AAなどの超電導化合物がNb、Taなどの隔壁を介
してCo、AZなどの隔壁を介してCu、Alなどのマ
トリックス金属中に多数本存在する超電導線である。し
かしてこの化合物超電導線はその表面は電気的に絶縁す
る必要がある。
(Prior art) Compound superconducting wires are made of Nb, Sn, V, (:ra, Nb
It is a superconducting wire in which a large number of superconducting compounds such as +AA exist in a matrix metal such as Cu or Al via partitions such as Nb or Ta and partitions such as Co or AZ. However, the surface of the compound superconducting wire used as a lever must be electrically insulated.

従来一般に行われている絶縁は第5図(a)に示すよう
な未反応超電導線(1)の金属表面に酸化銅(2)を設
けたもの、(b)のように未反応超電導線(1)の金属
表面にガラス編組(3)を設けたもの、(C)のように
未反応超電導線(1)の金属表面に5LOf、B+ O
+、PbO,!40゜Ayp hなどの酸化物粉(4)
を設けたものなどがある。
The insulation that has been commonly used in the past is one in which copper oxide (2) is provided on the metal surface of an unreacted superconducting wire (1) as shown in FIG. 5(a), and an unreacted superconducting wire (2) as shown in FIG. 1) with a glass braid (3) on the metal surface, and (C) with 5LOf, B+ O on the metal surface of the unreacted superconducting wire (1).
+, PbO,! Oxide powder such as 40゜Ayph (4)
There are some that have .

しかし上記(2L)については酸化膜が1μm程度と薄
く高温に加熱すると真空中で分解する。(b)について
は金属表面との密着性が悪く高温に加熱すると軟化し変
形する。また(C) Kついては金属表面との密着性が
悪く塗布乾燥後導体表面つ・ら剥離し、曲げ加工により
脱落するなどの欠点があった。
However, the above (2L) has a thin oxide film of about 1 μm and decomposes in vacuum when heated to a high temperature. Regarding (b), it has poor adhesion to the metal surface and becomes soft and deformed when heated to high temperatures. Furthermore, (C) K had drawbacks such as poor adhesion to the metal surface, peeling off from the conductor surface after coating and drying, and falling off during bending.

また有機系の絶縁被膜も考えられたが、高温の加熱に耐
えられないなどの欠点があっていずれも満足すべきもの
はなかった。
Organic insulating coatings have also been considered, but none of them have been satisfactory, as they have drawbacks such as being unable to withstand high-temperature heating.

(発明が解決しようとする問題点) そこで上記の量産を種々検討した結果、Nb、Sn、V
sC?L、Nb5Atなどの前記の化合物生成熱処理前
の未反応の訓電導線に設ける絶縁被膜については(2L
)10〜100μmの範囲で被膜厚さが容易に制御でき
ること。(b)  室温で最大曲げ歪率で0.5%以上
の可撓性があること。(C)化合物生成熱処理の500
〜800℃に加熱しても寸法や被膜の脱落などによる電
気絶縁特性が劣化しないこと。(cl)(c)の後エポ
キシなど有機樹脂との濡れ性が良好なこと。などの緒特
性を満たすことが必要であることが判った。
(Problem to be solved by the invention) As a result of various studies on the above mass production, we found that Nb, Sn, V
sC? Regarding the insulating coating provided on the unreacted training conductor wire before the above-mentioned compound generation heat treatment such as L, Nb5At, etc. (2L
) The coating thickness can be easily controlled within the range of 10 to 100 μm. (b) It has flexibility of 0.5% or more at maximum bending strain rate at room temperature. (C) Compound generation heat treatment 500
Even when heated to ~800°C, the electrical insulation properties do not deteriorate due to dimensions or coating falling off. (cl) Good wettability with organic resins such as epoxy after (c). It was found that it is necessary to satisfy the following characteristics.

(問題点を解決する手段) 本発明は前記の問題点を解決したもので未反応超電導線
の金属表面が加水分解基(OH)を有するゲル状シラノ
ール、チタネート、アルミネートの何れか1種または2
種以上により覆われていることを特徴とする未反応超電
導線である。ここで本発明は、ゲル状シラノール、チタ
ネート、アルミネートの中にZr0t、N1tO雪、T
id!などの金属酸化物が含まれているものであり、ま
た3 1m N 4、BN、SICなどの窒化物、ホウ
化物、炭水化物が含まれていてもよく、さらに未反応超
電導線の金属表面が薄い金属酸化物層で覆われていても
よいものである。
(Means for Solving the Problems) The present invention solves the above problems, and the metal surface of the unreacted superconducting wire is made of one of gel-like silanol, titanate, and aluminate having hydrolyzable groups (OH), or 2
This is an unreacted superconducting wire characterized by being covered with more than one species. Here, the present invention provides Zr0t, N1tO snow, T
ID! It contains metal oxides such as 31mN4, BN, SIC, etc., nitrides, borides, and carbohydrates, and furthermore, the metal surface of the unreacted superconducting wire is thin. It may be covered with a metal oxide layer.

本発明の未反応超電導線とは化合物生成処理をする前に
、つまり化合物が生成していない未反応の超電導線を云
うものであるが、これは一般に化合物超電導線において
は未反応の超電導線として販売され、ユーザーにおいて
コイルに成形してから前記の化合物生成熱処理を行う場
合が多いので、本発明においては未反応超電導線を対象
とするものである。しかしこの後の化合物生成熱処理に
よって何ら特性が劣化せず、組成的な変化もないもので
ある。
The unreacted superconducting wire of the present invention refers to an unreacted superconducting wire that has not been subjected to compound generation treatment, that is, no compounds have been generated. In many cases, the superconducting wire is sold and the user performs the above-mentioned compound-forming heat treatment after forming it into a coil, so the present invention targets the unreacted superconducting wire. However, the subsequent heat treatment for compound formation causes no deterioration in properties and no change in composition.

したがって本発明の未反応超電導線は、この後の化合物
熱処理を行なったものも含まれるものである。
Therefore, the unreacted superconducting wire of the present invention includes those that have been subjected to subsequent compound heat treatment.

本発明の無機絶縁被膜の基本構造は未反応超電導線の金
属表面に7ラノール、チタネート、アルミネートなどの
1種または2種以上の被膜を形成するものであり、第2
図(b)に示すように−OH基を基本として未反応超電
導線の金属表面と81、T1、Ae基とリンクさせると
ころが特徴であり従来の金属表面に酸化物もしくは酸化
物粉を構成するものとは基本的に異なるものである。
The basic structure of the inorganic insulating film of the present invention is to form a film of one or more types of 7ranol, titanate, aluminate, etc. on the metal surface of an unreacted superconducting wire.
As shown in Figure (b), the feature is that the metal surface of the unreacted superconducting wire is linked to the 81, T1, and Ae groups based on -OH groups, and the conventional method consists of oxide or oxide powder on the metal surface. This is fundamentally different.

しかして上記シラノール、チタネート、アルミネート等
の濃度は05〜5重量%がよくこの範囲未満では絶縁の
効果が薄く、またこの範囲を超えると被膜の剥離を生じ
る。したがってこの範囲でちれば複数のものを形成して
も同様の効果がある。
However, the concentration of the above-mentioned silanol, titanate, aluminate, etc. is preferably from 0.5 to 5% by weight, and if it is less than this range, the insulation effect will be weak, and if it exceeds this range, the coating will peel off. Therefore, even if a plurality of layers are formed within this range, the same effect can be obtained.

また上記シラノール、チタネート、アルミネートなどに
金属酸化物例えばZrO*、AltO1%T10.など
または窒化物、例えばSl、N、、BN、 SiCなど
を995〜95重量係添加しても同様の効果がある。し
かして未反応超電導線の表面は通常の製造工程において
薄い金属酸化物層が形成されているものであるが、シラ
ノールなどの付着性を増すために、未反応超電導線の表
面に予め金属酸化物層を形成すると好い結果が得られる
In addition, metal oxides such as ZrO*, AltO1%T10. A similar effect can be obtained by adding nitrides such as Sl, N, BN, SiC, etc. by weight of 995 to 95%. However, a thin metal oxide layer is formed on the surface of the unreacted superconducting wire during the normal manufacturing process, but in order to increase the adhesion of silanol, etc., the surface of the unreacted superconducting wire is coated with a metal oxide layer in advance. Good results can be obtained by forming layers.

(実施例1) 第1図に示すようにNb5Snの超電導線多数本を有す
る表面が銅の外径0.7wmの未反応超電導線(1)を
アルカリ溶液中で黒色酸化させこれを5i(CCHs)
+4、5 % 、HtOおよびCH,OHを主成分とす
る溶液中を通過させ次いて1120℃の乾燥炉を通過さ
せて文 乾燥して絶縁被膜(5)とした得られた未反応超電導線
の線径は0.70mnである。この未反応超電導線をX
線で分析したところ−si (OH) 、基が主成分で
あり、5101は検出されなかった。すなわち31(Q
C)l、)4、HtOlC,H、OHが加水分解を起こ
し、一部縮重合していることが判った。この未反応超電
導線をマニドレルに巻付けて歪率を測定した結果最大歪
率ば12チまで被膜の剥離はなかった。さらにこの絶縁
被膜付未反応超電導線を650℃で100時間化合物生
成熱処理を施した結果、被膜の脱落はなかった。
(Example 1) As shown in Fig. 1, an unreacted superconducting wire (1) with a copper surface and an outer diameter of 0.7 wm, which has many Nb5Sn superconducting wires, is oxidized black in an alkaline solution to form 5i (CCHs). )
The resulting unreacted superconducting wire was passed through a solution containing +4.5%, HtO, and CH, OH as main components, and then passed through a drying oven at 1120°C and dried to form an insulating coating (5). The wire diameter is 0.70 mm. This unreacted superconducting wire is
Line analysis revealed that -si(OH) group was the main component, and 5101 was not detected. That is, 31 (Q
It was found that C)l, )4, HtOlC,H, and OH were hydrolyzed and partially condensed and polymerized. This unreacted superconducting wire was wound around a mandrel and the strain rate was measured. As a result, there was no peeling of the coating up to a maximum strain rate of 12 inches. Furthermore, when this unreacted superconducting wire with an insulating coating was subjected to compound formation heat treatment at 650° C. for 100 hours, the coating did not come off.

(実施例2) 第1図(2L)に示すようにNb、Snの超電導線多数
本を有する表面が銅の外径07碩の未反応超電導線(1
)をアルカリ溶液中で黒色酸化させた後Zr0t60重
量%を含む水溶液を通して表面に約20μm厚さの被膜
を形成した。次いで100℃炉中を通過させて乾燥した
。これを5i(OCHs)+  1 %、HtOおよび
CH,OHを主成分とする溶液中を通過させ次いで70
〜180℃の乾燥炉中を通過させて乾燥して絶縁被膜(
5)とした得られた未反応超電導線の線径は0.75m
+nである。この未反応超電導線をX線で分析したとこ
ろZr0t(6)および−3i(OH)li基(5)が
主成分であり、5insは検出されなかった。すなわち
5i(OCHI)1、H鵞0. CH,OHが加水分解
を起こし、一部縮重合していることが判った。
(Example 2) As shown in Fig. 1 (2L), an unreacted superconducting wire (1
) was oxidized black in an alkaline solution, and then passed through an aqueous solution containing 60% by weight of ZrOt to form a film with a thickness of about 20 μm on the surface. Then, it was dried by passing it through a 100°C oven. This was passed through a solution containing 5i(OCHs) + 1%, HtO and CH,OH as main components, and then 70
The insulating coating (
The wire diameter of the unreacted superconducting wire obtained in 5) was 0.75 m.
+n. When this unreacted superconducting wire was analyzed by X-rays, Zr0t (6) and -3i(OH)li groups (5) were the main components, and 5ins was not detected. That is, 5i (OCHI) 1, H 0. It was found that CH and OH were hydrolyzed and partially condensed.

得られた未反応超電導線をマンドレルに巻付けて歪率を
測定した結果、最大歪率は1.47%まで被膜の剥離は
観察されなかった。
As a result of winding the obtained unreacted superconducting wire around a mandrel and measuring the strain rate, no peeling of the coating was observed until the maximum strain rate was 1.47%.

さらにこの絶縁被膜付未反応超電導線を700℃で72
時間化合物生成熱処理を施した結果被膜の脱落はみられ
なかった。
Furthermore, this unreacted superconducting wire with an insulating coating was heated at 700℃ for 72 hours.
As a result of the heat treatment for time compound generation, no peeling of the film was observed.

上記実施例中シラノール基−3l (CI() tの代
りにチタネート系イソプロピルトリイソステアロイルチ
タネート、アルミネート系のアセトアルコキシアルミニ
ウムジイソプロピレートを用いたところ同様な結果が得
られた。
Similar results were obtained when titanate-based isopropyl triisostearoyl titanate and aluminate-based acetalkoxyaluminum diisopropylate were used in place of the silanol group -3l (CI() t) in the above examples.

なお比較のため従来例として第5図(2L)に示すよう
にNb、Snの超電導線を多数本有する表面が銅の外径
0.7tmの未反応超電導線(1)に銅の酸化物(2)
を1μmの厚さに設けたものを実施例1と同様700縁
されていなかった。
As a conventional example for comparison, as shown in Fig. 5 (2L), a copper oxide ( 2)
As in Example 1, there was no edge of 700 mm.

(効 果) 本発明によれば、10〜100μmの範囲で被膜厚さが
容易に制御でき、室温で最大曲げ歪率0.5係の可撓性
を有し、かつ化合物生成熱処理の500〜800℃に加
熱しても被膜の脱落などがなく特性が劣化しない未反応
超電導線が得られるものである。
(Effects) According to the present invention, the coating thickness can be easily controlled in the range of 10 to 100 μm, has flexibility with a maximum bending strain factor of 0.5 at room temperature, and has It is possible to obtain an unreacted superconducting wire in which the coating does not fall off and the characteristics do not deteriorate even when heated to 800°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す未反応超電導線の横断
面図。 第2図(、)は本発明の他の実施例を示す未反応超電導
線の縦断面図、(b)は本発明絶縁被膜の模式図である
。 1・・・・・・未反応超電導線、2・・・・・・酸化銅
、う・・・・・・ガラス編組、ヰ・・・・・・酸化物粉
、5・・・・・・シラノール、6・・・・・・酸化物 ニー−・、 出願人 古河電気工業株式会社  :tテ、戸゛−゛−
ノ′ 第1図 0−M+−0 (a)(b) 第2図 (a)       (b)       (c)第3
図 手  続  補  正  書(方式)    &昭和6
1年8 月21日 特、杵庁長官 殿 L $沖つ表示  特願昭61−1104014号2 
発明の名称  未反応超電導線 電話03(−286) 5545 4 補正指令の日付  昭和61手7月29日補正の内
容 明MB書9頁7行以下に 「蛋5図(a)、(b)、(c)は従来の未反応超電導
線の横断面図である。」全挿入する。
FIG. 1 is a cross-sectional view of an unreacted superconducting wire showing an embodiment of the present invention. FIG. 2(,) is a vertical cross-sectional view of an unreacted superconducting wire showing another embodiment of the present invention, and FIG. 2(b) is a schematic diagram of the insulating coating of the present invention. 1... Unreacted superconducting wire, 2... Copper oxide, U... Glass braid, E... Oxide powder, 5... Silanol, 6... Oxide, Applicant: Furukawa Electric Co., Ltd.
ノ' Figure 1 0-M+-0 (a) (b) Figure 2 (a) (b) (c) 3rd
Illustration procedure amendment (method) & Showa 6
August 21, 1999 Special, Mr. L, Director General of the Pestle Agency, $Okitsu Display, Patent Application No. 1104014, No. 1988, No. 2
Title of the invention: Unreacted superconducting wire telephone 03 (-286) 5545 4 Date of amendment order: July 29, 1985 Contents of amendment: page 9, line 7 of the MB book, “Figure 5 (a), (b), (c) is a cross-sectional view of a conventional unreacted superconducting wire.'' Full insert.

Claims (4)

【特許請求の範囲】[Claims] (1)未反応超電導線の金属表面が加水分解基(OH)
を有するゲル状シラノール、チタネート、アルミネート
の何れか1種または2種以上により覆われていることを
特徴とする未反応超電導線。
(1) The metal surface of the unreacted superconducting wire has hydrolyzable groups (OH)
An unreacted superconducting wire characterized in that it is covered with one or more of gel-like silanol, titanate, and aluminate.
(2)ゲル状シラノール、チタネート、アルミネートの
中にZrO_2、Al_2O_3、TiO_2などの金
属酸化物が含まれていることを特徴とする特許請求の範
囲第1項記載の未反応超電導線。
(2) The unreacted superconducting wire according to claim 1, characterized in that a metal oxide such as ZrO_2, Al_2O_3, TiO_2 is contained in gel-like silanol, titanate, or aluminate.
(3)ゲル状シラノール、チタネート、アルミネートの
中にSi_3N_4、BN、、SiCなどの窒化物、ホ
ウ化物、炭化物が含まれていることを特徴とする特許請
求の範囲第1項記載の未反応超電導線。
(3) The unreacted product according to claim 1, characterized in that nitrides, borides, and carbides such as Si_3N_4, BN, and SiC are contained in the gel-like silanol, titanate, and aluminate. superconducting wire.
(4)未反応超電導線の金属表面が予め薄い金属酸化物
層で覆われていることを特徴とする特許請求の範囲第1
項記載の未反応超電導線。
(4) Claim 1, characterized in that the metal surface of the unreacted superconducting wire is covered in advance with a thin metal oxide layer.
Unreacted superconducting wire as described in section.
JP61110404A 1986-05-14 1986-05-14 Unreacted superconducting wire Expired - Lifetime JPH0789454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61110404A JPH0789454B2 (en) 1986-05-14 1986-05-14 Unreacted superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61110404A JPH0789454B2 (en) 1986-05-14 1986-05-14 Unreacted superconducting wire

Publications (2)

Publication Number Publication Date
JPS62268009A true JPS62268009A (en) 1987-11-20
JPH0789454B2 JPH0789454B2 (en) 1995-09-27

Family

ID=14534934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61110404A Expired - Lifetime JPH0789454B2 (en) 1986-05-14 1986-05-14 Unreacted superconducting wire

Country Status (1)

Country Link
JP (1) JPH0789454B2 (en)

Also Published As

Publication number Publication date
JPH0789454B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
EP0423354B2 (en) Oxide superconductor wire, method of producing the same and article produced therefrom
US4921833A (en) Superconducting member
JP3474602B2 (en) Superconducting conductor
US4330347A (en) Resistive coating for current conductors in cryogenic applications
JP3309390B2 (en) High-temperature superconducting conductor winding
JPS62268009A (en) Reaction-free superconductor
JPH0656722B2 (en) High frequency wire
JP2582067B2 (en) Wire for audio and visual equipment
JP2565892B2 (en) Electrical wire
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JPS63241826A (en) Manufacture of superconducting wire
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP3032771B2 (en) Superconducting coil manufacturing method
JPH0410507A (en) Oxide superconducting coil
JPH0524806A (en) Oxide superconductor
JPS58189909A (en) Method of producing nb3sn superconductor
JPH0125167B2 (en)
JPS5844608A (en) Inorganic insulating superconductive wire
JPH0733306Y2 (en) Super heat resistant wire
JPS62106607A (en) Compound superconductive coil
JPH0374012A (en) Handling method for oxide superconducting wire and product using it
JP2734596B2 (en) Oxide superconducting wire
JPH0756765B2 (en) Insulation coating method for superconducting conductor
JPH02270222A (en) Ceramic superconducting wire and manufacture thereof
JPH01144526A (en) Manufacture of ceramic-based superconductive wire