JPS62266477A - Inspection of semiconductor integrated circuit device - Google Patents

Inspection of semiconductor integrated circuit device

Info

Publication number
JPS62266477A
JPS62266477A JP61111006A JP11100686A JPS62266477A JP S62266477 A JPS62266477 A JP S62266477A JP 61111006 A JP61111006 A JP 61111006A JP 11100686 A JP11100686 A JP 11100686A JP S62266477 A JPS62266477 A JP S62266477A
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit device
transistors
vif
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61111006A
Other languages
Japanese (ja)
Inventor
Hiroto Yoshida
吉田 啓人
Isamu Shichiro
七呂 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61111006A priority Critical patent/JPS62266477A/en
Publication of JPS62266477A publication Critical patent/JPS62266477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To reduce the generation of a VCO frequency AGC drift characteristic deficiency, by determining a differential voltage correlative with a forward current of a gain control diode of a video intermediate frequency (VIF) amplifier using a DC characteristic measuring method. CONSTITUTION:A PLL synchronous detection type semiconductor integrated circuit device 11 for VIF which contains a VIF amplifier built by connecting differential amplification steps 12, 13 and 14 respectively with gain control diodes D11 and D12, D21 and D22, and D31 and D32 is to be inspected. First and second DC voltages different in the level are applied to external terminals 15 and 16 for VIF input and each pair of transistors Q11 and Q12, Q21 and Q22, and Q31 and Q32 at the differential amplification steps 12-14 is turned ON at one end is turned OFF at the other end. With such an arrangement, first and second output voltages corresponding to the DC voltages are measured at external terminals 17 and 18 connected to collector terminals of the transistors Q31 and Q32 at the final differential amplification step 14 to obtain a differential voltage thereof. The VCO frequency drift characteristic of the device 11 is inspected from the correlationship between the VCO frequency drift characteristic thereof 11 and the differential voltage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフェーズ・ロック・ループ(PLL)同期検波
方式の映像中間周波(VIP)用半導体集積回路装置の
検査方法に関し、特に上記集積回路装置のvC○周波数
AGCドリフト特性をプローブ検査でチェック可能な検
査方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for testing a video intermediate frequency (VIP) semiconductor integrated circuit device using a phase-locked loop (PLL) synchronous detection method, and in particular to a method for testing a video intermediate frequency (VIP) semiconductor integrated circuit device using a phase-locked loop (PLL) synchronous detection method. This relates to an inspection method that allows frequency AGC drift characteristics to be checked by probe inspection.

従来の技術 近年、家庭用テレビジョン受像機のVIP信号検波器と
してPLL同期検波方式を採用した半導体集積回路装置
が用いられ始めている。このPLL同期検波方式は、内
蔵のVCOにより同期搬送波を再生するものである。以
下、第3図を参照しながらPLL同期検波方式について
説明する。
2. Description of the Related Art In recent years, semiconductor integrated circuit devices employing a PLL synchronous detection method have begun to be used as VIP signal detectors for home television receivers. This PLL synchronous detection method reproduces a synchronous carrier wave using a built-in VCO. The PLL synchronous detection method will be explained below with reference to FIG.

第3図において、アンテナ1で受信されたテレビジョン
信号は、チューナー2で所望チャンネルの信号が選択さ
れると共に、VIPに周波数変換された後、VIP信号
検波用半導体集積回路装置3に伝送される。上記集積回
路装置3のVIF入力用外部端子4から入力されたVI
P信号は、VIP増幅器5で増幅された後、VIF信号
の検波器(掛算器)6および位相比較器(掛算器)7へ
それぞれ送られる。位相比較器7では、VCO9の出力
信号である同期搬送波を移相器10で90”移相した信
号と位相比較され、位相がずれていればそのずれの大き
さに応じた誤差電圧が位相比較器7から発生され、低域
フィルター8へ人力される。そして、低域フィルター8
よりその位相ずれを低減するようにVCO9を制御する
信号が出力され、VCO9の全搬周波数をコントロール
する。このようにして、入力VIF信号と同一周波数で
かつ一定の位相関係にある同期搬送波を、入力VIP信
号のレベルに影響されず一定の安定したレベルで再生す
ることができるので、弱電界時または過変調時等でも高
品質な検波信号を得ることが可能である。
In FIG. 3, a television signal received by an antenna 1 is selected by a tuner 2, frequency-converted to VIP, and then transmitted to a semiconductor integrated circuit device 3 for VIP signal detection. . VI input from the VIF input external terminal 4 of the integrated circuit device 3
After the P signal is amplified by the VIP amplifier 5, it is sent to a VIF signal detector (multiplier) 6 and a phase comparator (multiplier) 7, respectively. In the phase comparator 7, the phase of the synchronous carrier wave, which is the output signal of the VCO 9, is compared with the signal whose phase is shifted by 90" by the phase shifter 10. If the phase is shifted, an error voltage corresponding to the magnitude of the shift is phase-compared. is generated from the filter 7 and inputted to the low-pass filter 8.Then, the low-pass filter 8
A signal for controlling the VCO 9 is outputted to further reduce the phase shift, thereby controlling the total carrier frequency of the VCO 9. In this way, the synchronous carrier wave, which has the same frequency and a constant phase relationship as the input VIF signal, can be reproduced at a constant and stable level without being affected by the level of the input VIP signal. It is possible to obtain a high quality detection signal even during modulation.

このようなPLL同期検波方法のVIF信号検波器はV
IPAGC電圧や温度の変化に対してVCOの自走発掘
周波数が変動する。以下それについて説明する。
The VIF signal detector of this PLL synchronous detection method has V
The free-running excavation frequency of the VCO fluctuates in response to changes in IPAGC voltage and temperature. This will be explained below.

VCOの出力信号はVIPという高周波であるため、そ
の出力信号の一部は、輻射や上記集積回路装置各部の寄
生静電容量等により、上記集積回路装置3のVIF入力
用外部端子4へ伝搬し、そこからVIF信号と共に入力
されている。つまり、上記集積回路装置3内へ戻ってい
る。このvCO出力信号の帰還成分は極めて微少なので
通常は問題とならないが、アンテナ1からの入力テレビ
信号が微弱となり、上記vCO出力信号の帰還成分のレ
ベルの方が相対的に大きくなってくると、PLL回路が
VIF信号ではなく、上記VCO出力信号の帰還成分に
対して動作するようになる。その結果、上記集積回路袋
ra3は検波器として正常な動作がなされな(なる。こ
のとき、入力テレビ信号が微弱なのでAGC電圧はVI
F増幅器の利得が最大となるように変化しており、また
、VCO9の自走発掘周波数はVIP入力入力数波数異
なる周波数へ変化(ドリフト)している。そして、その
700周波数の変化量が上記異常動作の起こりやすさと
対応している。
Since the output signal of the VCO is a high frequency called VIP, a part of the output signal propagates to the VIF input external terminal 4 of the integrated circuit device 3 due to radiation, parasitic capacitance of various parts of the integrated circuit device, etc. , and is input together with the VIF signal from there. In other words, it has returned to the integrated circuit device 3. This feedback component of the vCO output signal is extremely small and usually does not pose a problem, but when the input TV signal from antenna 1 becomes weak and the level of the feedback component of the vCO output signal becomes relatively large, The PLL circuit operates not on the VIF signal but on the feedback component of the VCO output signal. As a result, the integrated circuit bag RA3 does not operate normally as a detector. At this time, since the input TV signal is weak, the AGC voltage is VI
The gain of the F amplifier is changed to be maximum, and the free-running excavation frequency of the VCO 9 is changed (drifted) to a frequency that differs from the number of input waves of the VIP input. The amount of change in the 700 frequency corresponds to the likelihood of the above-mentioned abnormal operation occurring.

上記異常動作は、上記集積回路装置3が内蔵されている
テレビジョン受像機の品質保証の面で問題であるので、
上記異常動作が起り得る可能性のある上記集積回路装置
3は製品として出荷されないように最終検査工程で不良
として除去する必要がある。そのために、最終検査工程
で上記集積回路装置3のVCo周波数AGCドリフト特
性のチェックを行なっている。
Since the abnormal operation described above is a problem in terms of quality assurance of the television receiver in which the integrated circuit device 3 is built-in,
The integrated circuit device 3 in which the abnormal operation may occur needs to be removed as defective in the final inspection process so that it is not shipped as a product. To this end, the VCo frequency AGC drift characteristics of the integrated circuit device 3 are checked in the final inspection process.

発明が解決しようとする問題点 しかしながら、上記のように最終検査工程で半導体集積
回路装置3のvCO周波数AGCドリフト特性をチェッ
クすると、最終検査工程では、被測定集積回路装置の組
立くベラケージング〉が完了しているので、製造コスト
が組立前のウェハー状態でのコストに比べて約3倍に高
くなっている。このため、発生した不良品を廃棄するこ
とによって生じる金額的損失が、ウェハー状態でのそれ
に比べて太き(なる。
Problems to be Solved by the Invention However, when the vCO frequency AGC drift characteristic of the semiconductor integrated circuit device 3 is checked in the final inspection process as described above, the assembly of the integrated circuit device under test is not performed in the final inspection process. Since the process is completed, the manufacturing cost is approximately three times higher than the cost in the wafer state before assembly. For this reason, the monetary loss caused by discarding defective products is greater than that in the wafer state.

本発明は、VCO周波数AGCドリフト特性不良の発生
による金額的損失の低減を目的とする半導体集積回路装
置の検査方法を提供するものである。
The present invention provides a method for testing a semiconductor integrated circuit device with the purpose of reducing monetary losses due to the occurrence of defective VCO frequency AGC drift characteristics.

問題点を解決するための手段 本発明は上記問題点を解決するため、ゲインコントロー
ルダイオードを備えた差動増幅段を複数個縦続接続する
ことにより構成されたVIP増幅器を内蔵するPLL同
期検波方式のVIF用半導体集積回路装置を被検査素子
とし、上記集積回路装置に電源を印加した状態で、上記
集積回路装置のVIF入力用外部端子に互いに異なるレ
ベルの第1及び第2のDC電圧を印加して、上記複数の
差動増幅段を構成する対になったトランジスタの一方を
オン他方をオフし、最終段の差動増幅段のトランジスタ
のコレクタ端子が接続されている上記集積回路装置の外
部端子において、上記第1及び第2のDC電圧に対応す
る第1及び第2の出力電圧を測定してその差電圧を得、
予め得られている上記集積回路装置の700周波数ドリ
フト特性と上記差電圧の間の相関関係により、上記vC
O周波数AGCドリフト特性を検査するようにしたもの
である。
Means for Solving the Problems In order to solve the above problems, the present invention provides a PLL synchronous detection method incorporating a VIP amplifier configured by cascading a plurality of differential amplification stages each equipped with a gain control diode. A semiconductor integrated circuit device for VIF is used as an element to be tested, and with power applied to the integrated circuit device, first and second DC voltages of different levels are applied to the VIF input external terminal of the integrated circuit device. Then, one of the paired transistors constituting the plurality of differential amplification stages is turned on and the other is turned off, and the external terminal of the integrated circuit device to which the collector terminal of the transistor of the final differential amplification stage is connected is turned on. , measuring first and second output voltages corresponding to the first and second DC voltages to obtain a difference voltage;
Based on the correlation between the 700 frequency drift characteristic of the integrated circuit device and the differential voltage obtained in advance, the
This test is designed to test O frequency AGC drift characteristics.

作用 このようにすれば、DC特性(静特性)測定法によって
、VIP増幅器の利得を決定しているゲインコントロー
ルダイオードの順方向電流と相関のある差電圧が得られ
、これにより、AC特性(動特性)である■Co周波数
AGCドリフト特性をプローブ検査で、チェック可能に
なる。
In this way, the DC characteristics (static characteristics) measurement method provides a differential voltage that is correlated with the forward current of the gain control diode that determines the gain of the VIP amplifier, and this allows the AC characteristics (dynamic characteristics) to be measured. ■Co frequency AGC drift characteristics, which are characteristics), can be checked by probe inspection.

実施例 第1図は、本発明の半導体集積回路装置の検査方法の一
実施例を示す回路図である。
Embodiment FIG. 1 is a circuit diagram showing an embodiment of the method for testing a semiconductor integrated circuit device of the present invention.

第1図において、11はPLL同期検波方式のVIF用
半導体集積回路装置であって、上記集積回路装置11内
に図示された回路は三段の差動増幅段12,13.14
をもったVIF増幅器の部分である。VIF増幅器は、
縦続接続された複数の差動増幅段12,13.14で構
成されている。そして初段の差動増幅対12は、差動増
幅器を構成するトランジスタQll、 Q10と、それ
らのエミッタ間に接続されたゲインコントロールダイオ
ードDI1.DI2と、コレクタ負荷抵抗R11,R+
2と、エミッタ抵抗RI3.RI4と、差動増幅段の入
力インピーダンスを大きくし、かつトランジスタQ11
. Q12のバイアス回路を構成するためのトランジス
タQ +3 、 Q 14と、レベルシフトのためのダ
イオードD +3 + D 14と、トランジスタQ1
1. Q10のバイアス回路を構成する抵抗R+s、 
RIG、 R+7とで構成されている。他の差動増幅段
13.14も初段と同様の素子でそれぞれ第1図に示す
ように構成されている。15及び16は上記集積回路装
置11のVIF入力用外部端子、17及び18は上記V
IP増幅器を構成する最終差動増幅段14のコレクタ(
V I F増幅器の出力端)が接続されている外部端子
である。また、19は上記VIP増幅器のバイアス電源
、20は上記ゲインコントロールダイオードを制御する
VIFAGC回路である。
In FIG. 1, reference numeral 11 denotes a PLL synchronous detection type VIF semiconductor integrated circuit device, and the circuit shown in the integrated circuit device 11 includes three differential amplification stages 12, 13, and 14.
This is the part of the VIF amplifier with . The VIF amplifier is
It is composed of a plurality of cascade-connected differential amplification stages 12, 13, and 14. The first-stage differential amplifier pair 12 includes transistors Qll, Q10 forming a differential amplifier, and gain control diodes DI1 . DI2 and collector load resistance R11, R+
2, and emitter resistor RI3. RI4, the input impedance of the differential amplifier stage is increased, and the transistor Q11 is
.. Transistors Q +3 and Q14 for forming a bias circuit for Q12, diodes D +3 + D14 for level shifting, and transistor Q1
1. Resistor R+s forming the bias circuit of Q10,
It consists of RIG and R+7. The other differential amplification stages 13 and 14 are also configured as shown in FIG. 1 using the same elements as the first stage. 15 and 16 are external terminals for VIF input of the integrated circuit device 11, and 17 and 18 are the VIF input terminals of the integrated circuit device 11.
The collector (
This is the external terminal to which the output terminal of the V IF amplifier is connected. Further, 19 is a bias power supply for the VIP amplifier, and 20 is a VIFAGC circuit that controls the gain control diode.

いま、上記外部端子15へ第1のDC電圧VIN■を印
加して初段の差動増幅段12のトランジスタQ++をオ
ン、トランジスタQI2をオフとなるようにすると、次
の差動増幅段13のトランジスタQ21はオフ、トラン
ジスタQ22はオン、そして最終の差動増幅段14のト
ランジスタQ31はオン、トランジスタQ32はオフと
なり、トランジスタQ32のコレクタ端子が接続されて
いる外部端子18の出力電圧はハイレベルの第1の出力
電圧VOUT■となる。次に、上記外部端子15へ、上
記第1のDC電圧とはレベルの異なる第2のDC電圧V
IN■を印加して初段の差動増幅段のトランジスタQ目
をオフ、トランジスタQ12をオンとなるようにすると
、最終段の差動増幅段のトランジスタQ31はオフ、ト
ランジスタQ32はオンとなり、上記外部端子18の出
力電圧はローベルの第2の出力電圧V OUT■となる
Now, when the first DC voltage VIN■ is applied to the external terminal 15 to turn on the transistor Q++ of the first differential amplifier stage 12 and turn off the transistor QI2, the transistor of the next differential amplifier stage 13 turns on. Q21 is turned off, transistor Q22 is turned on, transistor Q31 of the final differential amplifier stage 14 is turned on, transistor Q32 is turned off, and the output voltage of the external terminal 18 to which the collector terminal of transistor Q32 is connected is at the high level. The output voltage VOUT■ becomes 1. Next, a second DC voltage V having a different level from the first DC voltage is applied to the external terminal 15.
When IN■ is applied to turn off the Qth transistor of the first differential amplifier stage and turn on the transistor Q12, the transistor Q31 of the final differential amplifier stage turns off and the transistor Q32 turns on. The output voltage of the terminal 18 becomes a low level second output voltage V OUT■.

ここで、バイアス電源電圧をVCC、ゲインコントロー
ルダイオードD32の順方向電流をI D32、トラン
ジスタQ32. Q34のベース−エミッタ間電圧及び
ダイオードD34の順方向電圧をVDとし、トランジス
タQ32のベース電流を無視すると、上記第1の出力電
圧VOUT■及び第2の出力電圧VQUT■はそれぞれ VOUT(D=VCCR32XQ@A==vC(−−−
−−−(1)となり、 (1)、(2)式からそれらの
差電圧ΔVOUTを求めると次の(3)式を得る。
Here, the bias power supply voltage is VCC, the forward current of the gain control diode D32 is I D32, the transistor Q32. If the base-emitter voltage of Q34 and the forward voltage of diode D34 are VD, and the base current of transistor Q32 is ignored, the first output voltage VOUT■ and the second output voltage VQUT■ are each expressed as VOUT(D=VCCR32XQ @A==vC(---
---(1), and by calculating the differential voltage ΔVOUT from equations (1) and (2), the following equation (3) is obtained.

ΔV 0IJT :V 0LITΦ−V OUT■(3
)式で、Vcc、 VD、 R32及びR34はほとん
ど一定の値と考えられるので、差電圧ΔV OUTはゲ
インコントロールダイオードD32の順方向電流ID3
2の1次関数であることがわかる。すなわち、差電圧Δ
VOUTとゲインコントロールダイオードD32の順方
向電流1032とは相関関係にある。
ΔV 0IJT :V 0LITΦ-V OUT■(3
), since Vcc, VD, R32 and R34 are considered to be almost constant values, the differential voltage ΔV OUT is the forward current ID3 of the gain control diode D32.
It can be seen that it is a linear function of 2. That is, the differential voltage Δ
There is a correlation between VOUT and the forward current 1032 of the gain control diode D32.

VCO周波数AGCドリフト特性は、VIP増幅器の利
得が最小と最大となるようなAGC電圧の変化に対する
700周波数の変化であるので、VIP増幅器の利得が
最大となるAGC電圧で差電圧ΔVOUTを求め、それ
とvCO周波数AGCドリフト特性の関係を実験により
求めると第2図に示すように良好な相関関係がある。こ
の理由は次のように考えられる。
The VCO frequency AGC drift characteristic is a 700° frequency change in response to a change in AGC voltage where the gain of the VIP amplifier is minimum and maximum, so find the difference voltage ΔVOUT at the AGC voltage where the gain of the VIP amplifier is maximum, and When the relationship between the vCO frequency AGC drift characteristics is experimentally determined, there is a good correlation as shown in FIG. The reason for this is thought to be as follows.

ゲインコントロールダイオードの順方向電流は、各差動
増幅段従ってVIP増幅器全体の利得を決定しているの
であるから、この順方向電流は当然VfF増幅器の利得
と相関をもち、VIP’増幅器の利得が変化すればその
入力信号間の位相差も変化する。VC○周波数AGCド
リフト特性の測定は、VIF人力は号を加えない状態で
行うから、位相比較器の入力信号は共にvCOの出力信
号で、一方は90°の位相器のみを通った後位相比較器
に加えられる信号であり、他方は、VIP入力外部端子
からVIF増幅器を通り戻ってきた後位相比較器に加え
られる信号である。したがってVCO周波数AGCドリ
フト特性の測定時には、この2つの信号の位相差がOと
なるようにPLL回路が機能している。そこでVIP増
幅器の利得が変化し、その結果上記V[F増幅器の入力
信号と出力信号の位相差が変化すれば、位相比較器に加
えられる2つの信号間の位相差をOとするためにはVC
Oの発振周波数が変化する必要があるわけである。
Since the forward current of the gain control diode determines the gain of each differential amplifier stage and therefore of the entire VIP amplifier, this forward current naturally has a correlation with the gain of the VfF amplifier, and the gain of the VIP' amplifier is If it changes, the phase difference between the input signals will also change. The measurement of VC○ frequency AGC drift characteristics is carried out without applying VIF signal, so the input signals of the phase comparator are both output signals of vCO, and one passes through only a 90° phase shifter and then the phase is compared. The other is the signal that is applied to the phase comparator after passing from the VIP input external terminal and returning through the VIF amplifier. Therefore, when measuring the VCO frequency AGC drift characteristic, the PLL circuit functions so that the phase difference between these two signals becomes O. Therefore, if the gain of the VIP amplifier changes, and as a result, the phase difference between the input signal and the output signal of the above V[F amplifier changes, then in order to make the phase difference between the two signals applied to the phase comparator O, VC
This means that the oscillation frequency of O needs to change.

すなわち、差電圧Δvoutはゲインコントロールダイ
オードの順方向電流と相関関係があり、ゲインコントロ
ールダイオードの順方向電流はVIP増幅器の利得を決
定しており、VIF増幅器の利得は、その人・出力量位
相差対利得特性を介してVC○周波数AGCドリフト特
性と関係づけられている。従って差電圧Δvou’rは
VCO周波数AGCドリフト特性と相関関係を有するの
で、プローブ検査(DC特性の検査)においてAC特性
であるVCO周波数AGCドリフト特性がチェック可能
となる。
In other words, the differential voltage Δvout has a correlation with the forward current of the gain control diode, the forward current of the gain control diode determines the gain of the VIP amplifier, and the gain of the VIF amplifier is determined by the phase difference between the person and the output amount. It is related to the VC◯ frequency AGC drift characteristic via the gain versus gain characteristic. Therefore, since the differential voltage Δvou'r has a correlation with the VCO frequency AGC drift characteristic, the VCO frequency AGC drift characteristic, which is an AC characteristic, can be checked in a probe test (inspection of DC characteristics).

発明の効果 以上述べてきたように、本発明によれば、AC特性であ
るVCO周波数AGCドリフト特性をプローブ検査によ
ってチェック可能となるので、最終検査工程における上
記特性の不良発生を低減することができ、従って不良発
生による金額的損失を低減することが可能となり工業的
利用価値が高い。
Effects of the Invention As described above, according to the present invention, it is possible to check the VCO frequency AGC drift characteristic, which is an AC characteristic, by probe inspection, so it is possible to reduce the occurrence of defects in the above characteristics in the final inspection process. Therefore, it is possible to reduce monetary losses due to the occurrence of defects, and the industrial value is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に使用する半導体集積回路装
置の要部の回路図、第2図はvCo周波数AGCドリフ
ト特性と本発明の測定方法により得られるDC特性間の
相関関係を示す図、第3図は一般的なPLL同期検波方
法を説明するためのブロック図である。 11・・・・・・PLL同期検波方法のVIF用半導体
集積回路装置、12,13.14・・・・・・差動増幅
段、15.16・・・・・・VIF入力用外部端子、1
7.18・・−・・・外部端子、19・・・・・・バイ
アス電源、20・・・・・・VIFAGC回路。 代理人の氏名 弁理士 中尾敏男 ほか1名VCO凧ス
1処AGcドリフト
Fig. 1 is a circuit diagram of the main part of a semiconductor integrated circuit device used in an embodiment of the present invention, and Fig. 2 shows the correlation between the vCo frequency AGC drift characteristic and the DC characteristic obtained by the measurement method of the present invention. 3 are block diagrams for explaining a general PLL synchronous detection method. 11... Semiconductor integrated circuit device for VIF using PLL synchronous detection method, 12, 13.14... Differential amplification stage, 15.16... External terminal for VIF input, 1
7.18...External terminal, 19...Bias power supply, 20...VIFAGC circuit. Name of agent: Patent attorney Toshio Nakao and one other person VCO Kite Su 1 AGc Drift

Claims (1)

【特許請求の範囲】[Claims] 差動増幅器を構成するトランジスタ対と、これらのトラ
ンジスタの各コレクタとバイアス電源との間にそれぞれ
接続された負荷抵抗、上記トランジスタの各エミッタと
基準電位の間とにそれぞれ接続されたエミッタ抵抗、上
記トランジスタの各エミッタ間に陽極側を共通として直
列に接続されたダイオード対および上記ダイオード対の
陽極に接続されたAGC回路を備えた差動増幅段を複数
段に有し、各差動増幅段のトランジスタ対のコレクタ出
力端を次段の差動増幅段トランジスタ対のベースへそれ
ぞれ接続することにより構成された映像中間周波増幅器
を内蔵すフェーズ・ロック・ループ同期検波方式の映像
中間周波用半導体集積回路装置を被検査素子とし、上記
集積回路装置に電源を印加した状態で、上記集積回路装
置の映像中間周波入力用外部端子に互いに異なるレベル
の第1及び第2のDC電圧を印加して、上記複数の差動
増幅段を構成するトランジスタ対の一方をオン、他方を
オフし、最終段の差動増幅段のトランジスタ対の各コレ
クタ端子が接続されている上記集積回路装置の外部端子
において上記第1及び第2のDC電圧にそれぞれ対応す
る第1及び第2の出力電圧を測定して、その差電圧を得
る過程をそなえた半導体集積回路装置の検査方法
A pair of transistors constituting a differential amplifier, a load resistor connected between the collector of each of these transistors and a bias power supply, an emitter resistor connected between each emitter of the transistor and a reference potential, and It has a plurality of differential amplification stages each including a pair of diodes connected in series with the anode side common between the emitters of the transistors and an AGC circuit connected to the anode of the pair of diodes. A semiconductor integrated circuit for video intermediate frequency using a phase-locked loop synchronous detection method, which incorporates a video intermediate frequency amplifier configured by connecting the collector output terminals of a pair of transistors to the bases of a pair of transistors in the next differential amplification stage. With an apparatus as an element to be tested, and with power applied to the integrated circuit device, first and second DC voltages of mutually different levels are applied to the external terminal for video intermediate frequency input of the integrated circuit device. One of the transistor pairs constituting the plurality of differential amplification stages is turned on and the other one is turned off, and the above-mentioned A method for testing a semiconductor integrated circuit device, comprising a step of measuring first and second output voltages corresponding to first and second DC voltages, respectively, and obtaining a differential voltage therebetween.
JP61111006A 1986-05-15 1986-05-15 Inspection of semiconductor integrated circuit device Pending JPS62266477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111006A JPS62266477A (en) 1986-05-15 1986-05-15 Inspection of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111006A JPS62266477A (en) 1986-05-15 1986-05-15 Inspection of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS62266477A true JPS62266477A (en) 1987-11-19

Family

ID=14550015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111006A Pending JPS62266477A (en) 1986-05-15 1986-05-15 Inspection of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS62266477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959853B1 (en) 2001-11-23 2010-05-27 톰슨 라이센싱 Appliance for recording or playing back information having means for signal generation from a wobble signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959853B1 (en) 2001-11-23 2010-05-27 톰슨 라이센싱 Appliance for recording or playing back information having means for signal generation from a wobble signal

Similar Documents

Publication Publication Date Title
US7102342B2 (en) Current reference circuit with voltage-to-current converter having auto-tuning function
US8963621B2 (en) Methods and apparatus for tuning a current source and selecting a reference voltage to maintain a transconductance and transition frequencies of transistors of an inverter
US6112125A (en) Self-tuning method and apparatus for continuous-time filters
JPH02262714A (en) Duty control circuit device
US7808326B2 (en) PLL circuit
CN102067448A (en) Apparatus and method for tuning a Gm-C filter
JP2005500783A (en) Differential charge pump
JP2007515120A (en) Apparatus and method for compensating for interference in a voltage controlled frequency generator
US7257505B1 (en) System for calibrating integrated circuit filters
US10901009B2 (en) Power detector for radiofrequency power amplifier circuits
EP0484129B1 (en) Sample-and-hold circuit
US6642780B2 (en) Variable frequency filter circuit
US20070047416A1 (en) Pulse generator, optical disk writer and tuner
JPS62266477A (en) Inspection of semiconductor integrated circuit device
US7382181B2 (en) Method and apparatus for tuning GMC filter
US6300804B1 (en) Differential comparator with dispersion reduction circuitry
US20010006343A1 (en) Integrated circuit and lot selection system therefor
US20040169540A1 (en) Low-jitter delay cell
US20170288615A1 (en) Temperature compensated offset cancellation for high-speed amplifiers
JPS6369314A (en) Variable delay device using cmos circuit
US8653858B2 (en) Signal operating circuit
US6943619B1 (en) Practical active capacitor filter
JP2002027342A (en) Video intermediate frequency processing circuit
KR0138363B1 (en) Voltage controlling oscillator
JP3108297B2 (en) Automatic BPF adjustment method for FM signal detector