JPS62266369A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPS62266369A
JPS62266369A JP61109143A JP10914386A JPS62266369A JP S62266369 A JPS62266369 A JP S62266369A JP 61109143 A JP61109143 A JP 61109143A JP 10914386 A JP10914386 A JP 10914386A JP S62266369 A JPS62266369 A JP S62266369A
Authority
JP
Japan
Prior art keywords
valve
valve member
pressure
expansion valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61109143A
Other languages
Japanese (ja)
Inventor
小川 紳二
吉治 梶川
功 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP61109143A priority Critical patent/JPS62266369A/en
Publication of JPS62266369A publication Critical patent/JPS62266369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Glass Compositions (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高圧の流体を低圧の流体に膨張させる膨張弁に
関し、例えばカーエアコン等の空調装置の冷凍サイクル
内で冷媒の膨張弁として用いることの出来るものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an expansion valve that expands high-pressure fluid to low-pressure fluid, and is used as a refrigerant expansion valve in the refrigeration cycle of an air conditioner such as a car air conditioner. It is something that can be done.

〔従来の技術〕[Conventional technology]

この種の膨張弁は、例えば特公昭53−45539号公
報の第11図及び第12図に示されるように、高圧の流
体を受入れる入口側即ち高圧通路と、この高圧側通路の
下流端に連通して配設されて高圧流体の流れを絞るオリ
フィスと、このオリフィスを通る2tffiを調節する
ようこのオリフィスに対して進退可動に配置された弁部
材と、オリフィスの下流端に連通して配設された出口側
即ち低圧側通路とを備えている。
This type of expansion valve communicates with an inlet side that receives high-pressure fluid, that is, a high-pressure passage, and a downstream end of this high-pressure side passage, as shown in FIGS. 11 and 12 of Japanese Patent Publication No. 53-45539, for example. an orifice arranged to restrict the flow of high-pressure fluid; a valve member arranged to be movable forward and backward with respect to the orifice to adjust 2tffi passing through the orifice; and a valve member arranged in communication with the downstream end of the orifice. and an outlet side, that is, a low pressure side passage.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

膨張弁の下流側の圧力は前記ブ?部祠によりオリフィス
を絞る程度によって設定されるが、その設定圧力が低い
程弁部材とス”リフイス内周面または弁座との間の隙間
が狭くなる。そして、この狭い隙間を高圧流体が1lT
l遇する際その流れに縮流が生じて流速が増加し圧力が
低下することにより、前記流体中に含まれている水分が
弁に氷結して前記隙間を閉塞してしまうという、いわゆ
る「アイシング現象」が生じ易い。この現象が生じると
膨張弁の出口側通路は負圧の状態になってしまい、冷媒
が流れないためコンプレッサ異常過熱及び冷房不良の問
題をひきおこすので、このアイシング現象を防止する必
要がある。
Is the pressure on the downstream side of the expansion valve the same as above? The lower the setting pressure is, the narrower the gap between the valve member and the inner circumferential surface of the valve seat or the valve seat.
When this happens, a contraction occurs in the flow, increasing the flow velocity and decreasing the pressure, causing the water contained in the fluid to freeze on the valve and block the gap, so-called "icing". "phenomenon" is likely to occur. When this phenomenon occurs, the outlet passage of the expansion valve becomes under negative pressure, and the refrigerant does not flow, causing problems such as abnormal overheating of the compressor and poor cooling, so it is necessary to prevent this icing phenomenon.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、流体の流れにより弁部材に回転力を与える@
 t:Nを弁部材自体に形成したものである。
The present invention applies rotational force to the valve member by the flow of fluid.
t:N is formed on the valve member itself.

〔作用〕[Effect]

弁部材か膨張弁内における流体の流れにより回転駆動さ
れるので、弁部材がオリフィスの内周面又は弁座に対し
て回転するから、流体中に含まれている水分の氷結の発
生が防止され、従って、膨張弁の設定圧力が非常に低い
場合でもアイシング現象が発生しない。
Since the valve member is rotationally driven by the flow of fluid within the expansion valve, the valve member rotates relative to the inner circumferential surface of the orifice or the valve seat, which prevents water contained in the fluid from freezing. Therefore, no icing phenomenon occurs even if the set pressure of the expansion valve is very low.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例について説明する。まず
、冷媒用膨張弁が用いられる一般のカーエアコン用冷凍
サイクルについて第2図を参照して節単に説明する。冷
凍サイクルは圧縮機1を有し、圧縮機1に気体として吸
入された冷媒は圧縮機1により圧縮され、管路2を通っ
て凝縮器3に送られ、ここでファン3aから送られる空
気により冷却されて凝縮されて液冷媒となる。この液冷
媒は管路4を通って受液器5に送られ、そこで亮圧の液
体として貯蔵される。高圧冷媒液は、次いで高圧側管路
6を通って膨張弁7に入り、この膨張弁7を通過して膨
張した冷媒は一部気相が混じった液相状態で低圧側管路
3を通って藤発器9に流入し、そこで9aから送られる
空気から熱を奪って蒸発してほぼ完全な気体となり、管
路10を通って圧縮機1にもどり、このようにして冷凍
サイクルが行われる。そして膨張弁7はその下流側圧力
が設定圧に低下すると開弁じ、下流側圧力を設定圧に維
持する作用を行うものである。なお、第2図中11は感
温筒、12は圧縮機11と自動車エンジンとの間の動力
伝達を断続する電磁クラッチである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention shown in the drawings will be described. First, a general car air conditioner refrigeration cycle in which a refrigerant expansion valve is used will be briefly described with reference to FIG. The refrigeration cycle has a compressor 1, and the refrigerant sucked into the compressor 1 as a gas is compressed by the compressor 1, and sent through a pipe 2 to a condenser 3, where it is compressed by air sent from a fan 3a. It is cooled and condensed to become a liquid refrigerant. This liquid refrigerant is sent through line 4 to receiver 5, where it is stored as a liquid at low pressure. The high-pressure refrigerant liquid then passes through the high-pressure side pipe 6 and enters the expansion valve 7, and the refrigerant that has expanded after passing through the expansion valve 7 passes through the low-pressure side pipe 3 in a liquid phase with some gas phase mixed in. The air then flows into the air generator 9, where it absorbs heat from the air sent from air 9a and evaporates into an almost complete gas, returns to the compressor 1 through the pipe 10, and in this way the refrigeration cycle is performed. . The expansion valve 7 opens when the downstream pressure drops to the set pressure, and functions to maintain the downstream pressure at the set pressure. In FIG. 2, reference numeral 11 is a temperature-sensitive tube, and reference numeral 12 is an electromagnetic clutch that connects and disconnects power transmission between the compressor 11 and the automobile engine.

次うこ、本発明の一実施例を実施した膨張弁7の詳細構
造について説明する。第1図において全体を7で示され
ている膨張弁は、銅などの金属製の弁本体13と、この
弁本体13内に備えられた入口側通銘即ち高圧側冷媒通
路14と、この通路14の長手方向軸線に対し概ね直角
の長手方向軸線を有する出口側通路即ち低圧側冷媒通路
15とを有し、高圧側冷媒通路14は大径部16と、こ
の大径部16の下流端に接続された小径部17とを有し
、大径部16が第2図に示す高圧側管路6に接続され、
低圧側冷媒通路15が第2図に示す低2 圧側通路8に
接続されるようになっている。弁本体13内には、更に
、高圧側冷媒通路14の長手方向軸線に対しく既ね直角
な軸線を有するとともに低圧側冷媒通路15に対し同心
的に配置されたオリフィス18が設けられ、このオリフ
ィス18は高圧側冷媒通路14の小径部17に開口する
上流端及び低圧側冷媒通路15に開口する下流端を有し
ていて、それらの両通路14及び15を互いに連通せし
めている。オリフィス18の下流端にはこのオリフィス
18の内周面と連続した弁座19が備えられ、この弁座
19には低圧側冷媒通路15内に配置された球状の弁部
材20が関連せしめられている。弁部材20はステンレ
ス等の金属から成り、この球状の弁部材20の外周面に
は、オリフィス18を通り冷媒の流れのエネルギーによ
り駆動されて弁部材20を回転させる羽根21が設けら
れている。第3図(al、 (b)及び第4図(a)、
 (blは前記球状の弁部材20部の詳細を示す図で、
第3図(alは外観図、第3図(b)は上面図、第4図
(a)。
Next, the detailed structure of the expansion valve 7 according to an embodiment of the present invention will be described. The expansion valve, indicated as a whole by 7 in FIG. 1, includes a valve body 13 made of metal such as copper, an inlet side passage provided in this valve body 13, that is, a high pressure side refrigerant passage 14, and this passage. The high pressure side refrigerant passage 14 has a large diameter section 16 and a downstream end of the large diameter section 16. The large diameter portion 16 is connected to the high pressure side pipe line 6 shown in FIG.
The low pressure side refrigerant passage 15 is connected to the low two pressure side passage 8 shown in FIG. An orifice 18 is further provided in the valve body 13 and has an axis perpendicular to the longitudinal axis of the high-pressure side refrigerant passage 14 and is arranged concentrically with respect to the low-pressure side refrigerant passage 15. 18 has an upstream end that opens to the small diameter portion 17 of the high-pressure side refrigerant passage 14 and a downstream end that opens to the low-pressure side refrigerant passage 15, and allows the passages 14 and 15 to communicate with each other. A valve seat 19 is provided at the downstream end of the orifice 18 and is continuous with the inner peripheral surface of the orifice 18, and a spherical valve member 20 disposed within the low pressure side refrigerant passage 15 is associated with the valve seat 19. There is. The valve member 20 is made of metal such as stainless steel, and the outer peripheral surface of the spherical valve member 20 is provided with vanes 21 that are driven by the energy of the flow of refrigerant through the orifice 18 to rotate the valve member 20. Figure 3 (al, (b) and Figure 4 (a),
(bl is a diagram showing details of the spherical valve member 20,
FIG. 3 (al is an external view, FIG. 3(b) is a top view, and FIG. 4(a) is a top view.

(b)は夫々の断面図で、黄銅等で作られたハネ座22
と支持棒23は一体的に結合されており、支持棒23の
上部は複数個のステンレス製ボール24を保持している
。このボール24は球状の弁部材20の内面に設けられ
た溝25と接触し弁部材20の回転作用を滑らかに行う
とともに弁部材20と支持棒23両者の結合を成すよう
支持棒23の凹部と組合わして構成されている。
(b) is a cross-sectional view of each spring seat 22 made of brass or the like.
and the support rod 23 are integrally connected, and the upper part of the support rod 23 holds a plurality of stainless steel balls 24. This ball 24 contacts a groove 25 provided on the inner surface of the spherical valve member 20 to smoothly rotate the valve member 20, and also connects the valve member 20 and the support rod 23 to the concave portion of the support rod 23. It is composed of a combination of

再び第1図を参照すると、バネ座22、ひいては、弁部
材20は、低圧側冷媒通路15内に螺合せられた銅など
の金属製の環状のナンド部材26との間に介装された圧
縮コイルばね27により弁座19の方向にばね負荷され
ている。ばね27の、弁部材20に対する押圧力は、ナ
ンド部材26の位置を変えることにより調節される。弁
部材20の開弁方向はオリフィス18を通って流れる高
圧の冷媒の流れ方向と同一である。第1図で見て弁本体
13の上面には凹所が形成され、その凹所にはカバ一部
材28が取付けられていて、その凹所とともに空間29
を画定し、この空間29内には金属製のダイヤフラム3
0が備えられてこの空間29を2つの室31及び32に
分割している。一方の室31には、カバ一部材28に取
付けられた第2図に示す導管33を通って感温筒11か
らの圧力信号がm人されるようになっており5.他方の
室32は弁本体13内にtJTtえられた通路34を介
して低圧側冷媒通路15に連通されていて、その低圧側
冷媒通路内の圧力すなわち蒸発圧力が室32に導入され
るようになっている。室32内にダイヤフラム30に当
接している当て部材35が備えられ、その当て部材35
には4本の脚36(第1図にそれらのうちの2本のみが
示されている)が当接している。それらの脚36は弁本
体13内に備えられた孔に摺動可能に嵌合せしめられて
おり、それらの脚36の下端はハネ座22の頂面に当接
せしめられている。感温筒11は圧縮機1の入口側での
冷媒温度に対応した圧力信号を発し、その圧力信号は専
管33を通って一方の室31内に入り、ダイヤフラム3
0の一方の面(上面)に作用する。また、そのダイヤフ
ラム30の他方の面(下面)には通路34を介して低圧
側冷媒通路15内の圧力が作用しており、従ってダイヤ
フラム30はそれの上下両面に作用している圧力差によ
って上下に変位する。このダイヤフラム30の変位は当
て部材35及びそれに当接している脚36を介してハネ
座22に伝えられ、弁座19に対する弁部材20の位置
が調節される。こうして弁座19と弁部材20との間の
間隙が調節され、それによりオリフィス18を通る冷媒
の流量が制御される。
Referring again to FIG. 1, the spring seat 22 and, by extension, the valve member 20 are compressed by a compressor interposed between the annular NAND member 26 made of metal such as copper and screwed into the low pressure side refrigerant passage 15. It is spring-loaded in the direction of the valve seat 19 by a coil spring 27 . The pressing force of the spring 27 against the valve member 20 is adjusted by changing the position of the NAND member 26. The opening direction of the valve member 20 is the same as the flow direction of the high pressure refrigerant flowing through the orifice 18. A recess is formed in the upper surface of the valve body 13 as seen in FIG.
A metal diaphragm 3 is placed within this space 29.
0 is provided to divide this space 29 into two chambers 31 and 32. One chamber 31 receives m pressure signals from the thermosensor tube 11 through a conduit 33 shown in FIG. 2 attached to the cover member 28.5. The other chamber 32 is communicated with the low-pressure refrigerant passage 15 through a passage 34 provided in the valve body 13 so that the pressure in the low-pressure refrigerant passage, that is, the evaporation pressure, is introduced into the chamber 32. It has become. A contact member 35 that is in contact with the diaphragm 30 is provided in the chamber 32, and the contact member 35
bears four legs 36 (only two of which are shown in FIG. 1). The legs 36 are slidably fitted into holes provided in the valve body 13, and the lower ends of the legs 36 are brought into contact with the top surface of the spring seat 22. The temperature sensing cylinder 11 emits a pressure signal corresponding to the refrigerant temperature at the inlet side of the compressor 1, and the pressure signal enters one chamber 31 through a dedicated pipe 33 and is transmitted to the diaphragm 3.
It acts on one surface (top surface) of 0. Moreover, the pressure in the low pressure side refrigerant passage 15 acts on the other surface (lower surface) of the diaphragm 30 via the passage 34, and therefore, the diaphragm 30 is Displaced to. This displacement of the diaphragm 30 is transmitted to the spring seat 22 via the abutment member 35 and the leg 36 in contact with it, and the position of the valve member 20 relative to the valve seat 19 is adjusted. The gap between the valve seat 19 and the valve member 20 is thus adjusted, thereby controlling the flow rate of refrigerant through the orifice 18.

次に、第1図と第2図を参照して上述の実施例の作動を
説明する。感温筒11が、圧縮機1入口側での冷媒温度
の上昇を感知すると、それに対応した圧力信号が導管3
3を介して膨張弁7の室31内に流入してダイヤフラム
30をばね27の力に抗して弁本体13に近付く方向に
変位せしめ、この変位は当て部材359脚36を介して
バネ座22に伝えられ、弁部材20はオリフィス18か
ら遠去かる方向に移動せしめられ、よって弁部材20と
弁座19との間の間隙が増してオリフィス18を通る冷
媒の流量が増す。逆に、感温筒11が、圧+iMat入
口側での冷媒温度の低下を感知すると、それSこ対応し
た圧力信号が室31内に流入してダイヤフラム30を弁
本体13から離れる方向に変位せしめ、これによりバネ
座22はばね27によりオリフィス18に近接する方向
に移動して弁部材20と弁座19との間の間隙を減少せ
しめ、こうしてオリフィス18を通る冷媒の流量を減少
せしめる。冷媒が弁座19と弁部材20との間の狭い間
隙を通過する際にその流速が急激に増大し、これにより
球状の弁部材20の外周に形成された羽根21に回転力
が付加され、弁部材20が回転する。これにより、アイ
シング現象(冷媒中の水分が弁部材に氷結し流路を寒く
現象)が回避できる。
Next, the operation of the above embodiment will be explained with reference to FIGS. 1 and 2. When the temperature sensing cylinder 11 senses an increase in refrigerant temperature on the inlet side of the compressor 1, a corresponding pressure signal is sent to the conduit 3.
3 into the chamber 31 of the expansion valve 7 and displaces the diaphragm 30 in a direction approaching the valve body 13 against the force of the spring 27. , the valve member 20 is moved away from the orifice 18, thereby increasing the gap between the valve member 20 and the valve seat 19 and increasing the flow rate of refrigerant through the orifice 18. Conversely, when the thermosensor cylinder 11 senses the pressure plus a decrease in refrigerant temperature on the iMat inlet side, a corresponding pressure signal flows into the chamber 31 and displaces the diaphragm 30 in the direction away from the valve body 13. , whereby spring seat 22 is moved by spring 27 in a direction closer to orifice 18 to reduce the gap between valve member 20 and valve seat 19, thereby reducing the flow rate of refrigerant through orifice 18. When the refrigerant passes through the narrow gap between the valve seat 19 and the valve member 20, its flow velocity increases rapidly, which applies rotational force to the vanes 21 formed on the outer periphery of the spherical valve member 20. Valve member 20 rotates. Thereby, the icing phenomenon (a phenomenon in which water in the refrigerant freezes on the valve member and cools the flow path) can be avoided.

次に本発明になる膨張弁における弁部材部の変更実施例
について説明する。第5図fal、 fblに示す実施
例においては、弁部材20を円すい形状にしたもので、
その他の構成は前記第3図(al、 Fbl及び第4図
(a)、 (111に示す実施例と同じである。次に第
6図(al、 (blに示す実施例においては、前記実
施例では羽根21を弁部vr20の表面に突出して設け
たのに対し、弁部材自体Gこ削り込んで設けたもので、
作用は同じである。また、第7図に示す実ht例におい
ては、前記第4図(a)、 (b)図示の実施例におけ
るホール24.i’+!i25をバネ座22に組込んで
もので、作用は同じである。
Next, modified embodiments of the valve member portion of the expansion valve according to the present invention will be described. In the embodiment shown in FIGS. 5 fal and 5 fbl, the valve member 20 has a conical shape,
The other configurations are the same as the embodiments shown in FIGS. 3 (al, Fbl) and FIGS. In the example, the blades 21 are provided protruding from the surface of the valve part vr20, whereas the valve member itself is provided by cutting G.
The effect is the same. In the actual example shown in FIG. 7, the hole 24 in the embodiment shown in FIGS. 4(a) and 4(b). i'+! Even if i25 is incorporated into the spring seat 22, the effect is the same.

〔発明の効果〕〔Effect of the invention〕

本発明になる膨張弁においては、流体の流れにより弁部
材に回転力を与える機構(羽根21)を弁部材自体に形
成しであるから、弁部材が弁座に対し回転し、弁部材と
弁座との間において流体中の水分が凍結することを防止
できるという効果がある。また、インペラ等の他の部品
を必要としないという効果もある。
In the expansion valve according to the present invention, the mechanism (vanes 21) that applies rotational force to the valve member by the flow of fluid is formed in the valve member itself, so that the valve member rotates with respect to the valve seat, and the valve member and valve This has the effect of preventing moisture in the fluid from freezing between the seat and the seat. Another advantage is that other parts such as an impeller are not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる膨張弁の一実施例の構成を示す縦
断面図、第2図は第1図図示の膨張弁を用いているカー
エアコン用冷凍サイクルの回路構成を示した図、第3図
fan、 fb)及び第4図(al、 (b)は第1図
図示の本発明膨張弁における弁部材部の詳細を示す図で
、第3図fa)は外観図、第3図(b)は上面図、第4
図(a)、 (b)は夫々の断面図、第5図(a)。 (b)、第6図(al、 (b)及び第7図は第1図図
示の本発明膨張弁における弁部材部の他の実施例の詳細
を示す図である。 1・・・圧縮機、3・・・凝縮器、5・・・受液器、7
・・・膨張弁、9・・・蒸発器、11・・・感温筒、1
2・・・電磁クラッチ、13・・・弁本体、14・・・
入口側(高圧側)冷媒通路、15・・・出口側(低圧側
)冷媒通路、18・・・オリフィス、19・・・弁座、
20・・・弁部材、21・・・羽根、22・・・ハネ座
、23・・・弁支持体、24・・・ボール、25・・・
溝、26・・・す・ノド部材、27・・・ばね、30・
・・ダイヤフラム、34・・・通路、35・・・当て部
材、36・・・脚。
FIG. 1 is a longitudinal sectional view showing the configuration of an embodiment of the expansion valve according to the present invention, FIG. 2 is a diagram showing the circuit configuration of a refrigeration cycle for a car air conditioner using the expansion valve shown in FIG. 1, 3 (fan, fb) and 4 (al, (b)) are views showing details of the valve member portion of the expansion valve of the present invention shown in FIG. 1, and FIG. 3 (fa) is an external view; (b) is a top view, the fourth
Figures (a) and (b) are respective sectional views, and Figure 5 (a). (b), Fig. 6 (al), (b) and Fig. 7 are views showing details of other embodiments of the valve member portion in the expansion valve of the present invention shown in Fig. 1. 1... Compressor , 3... Condenser, 5... Liquid receiver, 7
...expansion valve, 9...evaporator, 11...thermal tube, 1
2... Electromagnetic clutch, 13... Valve body, 14...
Inlet side (high pressure side) refrigerant passage, 15... Outlet side (low pressure side) refrigerant passage, 18... Orifice, 19... Valve seat,
20... Valve member, 21... Vane, 22... Wing seat, 23... Valve support, 24... Ball, 25...
Groove, 26... Throat member, 27... Spring, 30...
...Diaphragm, 34...Passage, 35...Attaching member, 36...Legs.

Claims (1)

【特許請求の範囲】[Claims]  高圧の流体を受け入れる入口側冷媒通路と、この入口
側冷媒通路の下流端に連通して配設されて高圧流体の流
れを絞るオリフィスと、このオリフィスを通り流量を調
節するようこのオリフィスに対して進退可動に配置され
た弁部材と、このオリフィスの下流端に連通して配設さ
れた出口側冷媒通路とを備えた膨張弁において、前記弁
部材を回転可能に支持するとともに流体の流れにより弁
部材に回転力を与える機構を弁部材自体に形成したこと
を特徴とする膨張弁。
an inlet refrigerant passage for receiving high-pressure fluid; an orifice disposed in communication with the downstream end of the inlet refrigerant passage to throttle the flow of the high-pressure fluid; In an expansion valve that includes a valve member that is arranged to move forward and backward, and an outlet side refrigerant passage that is arranged in communication with the downstream end of the orifice, the valve member is rotatably supported and the valve is expanded by the flow of fluid. An expansion valve characterized in that a mechanism for applying rotational force to the member is formed in the valve member itself.
JP61109143A 1986-05-13 1986-05-13 Expansion valve Pending JPS62266369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61109143A JPS62266369A (en) 1986-05-13 1986-05-13 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61109143A JPS62266369A (en) 1986-05-13 1986-05-13 Expansion valve

Publications (1)

Publication Number Publication Date
JPS62266369A true JPS62266369A (en) 1987-11-19

Family

ID=14502692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61109143A Pending JPS62266369A (en) 1986-05-13 1986-05-13 Expansion valve

Country Status (1)

Country Link
JP (1) JPS62266369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226846A (en) * 2004-02-10 2005-08-25 Daikin Ind Ltd Expansion valve and refrigeration unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226846A (en) * 2004-02-10 2005-08-25 Daikin Ind Ltd Expansion valve and refrigeration unit

Similar Documents

Publication Publication Date Title
US20080141691A1 (en) Automotive air conditioner
KR20070092118A (en) Expansion valve
US4263787A (en) Expansion device with adjustable refrigerant throttling
JP4114554B2 (en) Ejector cycle
JPS62266369A (en) Expansion valve
US3808830A (en) Thermally actuated suction throttling valve
US3371501A (en) Refrigerant system expansion means
JP2586426B2 (en) Automatic expansion valve for refrigeration equipment
JP2676887B2 (en) Expansion valve
JPS63302257A (en) Refrigeration cycle
US3732704A (en) Refrigeration system including refrigerant metering means
JP2003090648A (en) Expansion valve
JPH03979A (en) Variable delivery compressor
JP2005037016A (en) Expansion valve, and method for adjusting time constant thereof
JP2000264044A (en) Freezing cycle device for vehicle
JP2005265385A (en) Decompression device
JPH01314857A (en) Refrigerating cycle
JPH0670541B2 (en) Expansion valve for refrigeration cycle
KR800002157Y1 (en) Movable expansion valve of reversible refrigeration system
JP3218734B2 (en) Refrigerant supply device for evaporator
JP2000337735A (en) Pressure reducer for air cooling cycle
JPS62131163A (en) Expansion valve
JPH06241580A (en) Freezing cycle device
JPH09118128A (en) On-vehicle refrigerating device
JP2002318037A (en) Expansion valve unit