JP2676887B2 - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JP2676887B2
JP2676887B2 JP1055611A JP5561189A JP2676887B2 JP 2676887 B2 JP2676887 B2 JP 2676887B2 JP 1055611 A JP1055611 A JP 1055611A JP 5561189 A JP5561189 A JP 5561189A JP 2676887 B2 JP2676887 B2 JP 2676887B2
Authority
JP
Japan
Prior art keywords
valve
pressure
expansion valve
passage
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1055611A
Other languages
Japanese (ja)
Other versions
JPH02238273A (en
Inventor
圭一 北村
伸 本田
健一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP1055611A priority Critical patent/JP2676887B2/en
Publication of JPH02238273A publication Critical patent/JPH02238273A/en
Application granted granted Critical
Publication of JP2676887B2 publication Critical patent/JP2676887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高圧の流体を低圧の流体に膨張させる膨張弁
に関し、例えばカーエアコン等の空調装置の冷凍サイク
ル内で冷媒の膨張弁として用いられるものである。
TECHNICAL FIELD The present invention relates to an expansion valve for expanding a high-pressure fluid into a low-pressure fluid, and is used as a refrigerant expansion valve in a refrigeration cycle of an air conditioner such as a car air conditioner. It is a thing.

〔従来の技術〕[Conventional technology]

この種の膨張弁は、例えば特公昭53−45539号の第11
図及び第12図に示されるように、高圧の流体を受け入れ
る入口側、即ち高圧通路と、この高圧側通路の下流端に
連通して配設されて高圧流体の流量を調節するととも
に、高圧流体を膨張させて霧化状態にする弁機構と、弁
機構の下流端に連通して配設され、膨張した低圧流体を
送出する出口側、即ち低圧側通路を備えてる。なお、一
般的に流体の流れを絞るオリフィスとこのオリフィスを
通る流量を調節するようこのオリフィスに対して進退可
動に配設された弁部材とから構成されている。
This type of expansion valve is disclosed, for example, in No. 11 of Japanese Patent Publication No. 53-45539.
As shown in FIG. 12 and FIG. 12, an inlet side for receiving a high-pressure fluid, that is, a high-pressure passage and a downstream end of the high-pressure passage are provided in communication with each other to adjust the flow rate of the high-pressure fluid and Is provided with an outlet side, that is, a low-pressure side passage, which is arranged in communication with the downstream end of the valve mechanism and which delivers the expanded low-pressure fluid. It should be noted that it is generally composed of an orifice for restricting the flow of fluid and a valve member arranged so as to be capable of advancing and retracting with respect to the orifice so as to adjust the flow rate through the orifice.

次に、膨張弁の機能を簡単に説明する。高温高圧状態
にある流体をオリフィスから噴射させることで流体は急
激に膨張する。その時オリフィスからの粒の噴射量は弁
部材によって調節させる。そして、急激に膨張させた流
体は、低温低圧の霧状の流体となる。
Next, the function of the expansion valve will be briefly described. By injecting the fluid in the high temperature and high pressure state from the orifice, the fluid expands rapidly. At that time, the injection amount of the particles from the orifice is adjusted by the valve member. Then, the rapidly expanded fluid becomes a low-temperature low-pressure mist-like fluid.

なお、膨張弁の下流側の圧力は前記弁部材がオリフィ
スを絞る程度によって設定されるが、その設定圧力が低
い程高圧流体の流れは絞られ、オリフィスを通る流速は
増加し、圧力は低下する。その時、流体中に含まれてい
る水分が氷結し、膨張弁出口側通路を負圧の状態、即ち
冷媒が流れない状態にしてしまうという、いわゆる「ア
イシング現象」が生じやすい。この現象が生じるとコン
プレッサの異常加熱及び冷房不良という問題が起こるこ
とがある。
The pressure on the downstream side of the expansion valve is set by the degree to which the valve member throttles the orifice. The lower the set pressure, the more the flow of high-pressure fluid is throttled, the flow velocity through the orifice increases, and the pressure decreases. . At that time, the so-called “icing phenomenon” is apt to occur, in which the water contained in the fluid freezes, causing the expansion valve outlet side passage to be in a negative pressure state, that is, a state in which the refrigerant does not flow. When this phenomenon occurs, problems such as abnormal heating of the compressor and poor cooling may occur.

従来、特開昭62−131163号、特開昭62−266369号で指
摘されているように、このアイシング現象は弁機構で、
すなわち流体中の水分が弁に氷結することで弁部材とオ
リフィス内周面または弁座との間の隙間を閉塞して発生
すると考えられていた。
Conventionally, as pointed out in JP-A-62-131163 and JP-A-62-266369, this icing phenomenon is caused by the valve mechanism.
That is, it has been considered that the water in the fluid freezes on the valve to close the gap between the valve member and the inner peripheral surface of the orifice or the valve seat.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、発明者らが実際に透明な部材で膨張弁
を製作し、内部のどこでアイシング現象が発生するか実
験によって確認したところ、弁周辺ではなく、出口側通
路壁面に霧状となった流体中の水分が付着して氷結する
ことによって発生することが明らかとなった。
However, when the inventors actually manufactured an expansion valve with a transparent member and confirmed by experiments where in the interior the icing phenomenon occurs, it was confirmed that the fluid inside the atomized fluid was not on the outlet passage wall surface but around the valve. It was clarified that this occurs due to the adhesion of water and freezing.

本発明は、上記事実を鑑みてなされたもので、流体に
水分が混入していてもアイシング現象の発生しない膨張
弁を提供することを目的とする。
The present invention has been made in view of the above facts, and an object of the present invention is to provide an expansion valve in which the icing phenomenon does not occur even when water is mixed in the fluid.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記目的を達成するため、 高圧の流体を受け入れる入口側通路と、この入口側通
路の下流端に連通して配設されて高圧流体の流量を調節
するとともに高圧流体の膨張させて霧化状態にする弁機
構と、弁機構の下流端に連通して配設され、膨張した低
圧流体の送出する出口側通路とを備えた膨張弁におい
て、 前記出口側通路に水ぬれ性の悪い嫌水手段を設けると
いう技術的手段を採用する。
In order to achieve the above object, the present invention is arranged so as to communicate with an inlet-side passage for receiving a high-pressure fluid and a downstream end of the inlet-side passage for adjusting the flow rate of the high-pressure fluid and expanding the high-pressure fluid. An expansion valve provided with an atomizing valve mechanism and an outlet-side passage that communicates with a downstream end of the valve mechanism and delivers the expanded low-pressure fluid, wherein the outlet-side passage has poor water wettability. The technical means of providing a water repellent means will be adopted.

〔作用〕[Action]

嫌水手段により出口側通路は水ぬれ性が悪くなってい
るために、流体中に含まれている水分の氷結の発生が防
止され、従って、膨張弁の設定圧力が非常に低い場合で
もアイシング現象が発生しない。
Due to the water repellency of the outlet side passage due to the water disabling means, the freezing of the water contained in the fluid is prevented, and therefore the icing phenomenon occurs even when the set pressure of the expansion valve is very low. Does not occur.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例について説明する。ま
ず、冷媒用膨張弁が用いられる一般のカーエアコン用冷
凍サイクルについて第2図を参照して簡単に説明する。
冷凍サイクルは圧縮機1を有し、圧縮機1に気体として
吸入された冷媒は圧縮機1により圧縮され、管路2を通
って凝縮器3に送られ、ここでファン3aから送られる空
気により冷却され、凝縮されて液冷媒となる。この液冷
媒は管路4を通って受液器5に送られ、そこで高圧の液
体として貯蔵される。高圧冷媒液は、次いで高圧側管路
6を通って膨張弁7に入り、この膨張弁7を通過して膨
張した冷媒は、一部気相が混じった液相状態で低圧側管
路8を通って蒸発器9に流入し、そこでファン9aから送
られる空気から熱を奪って蒸発してはぼ完全な気体とな
り、管路10を通って圧縮機1に戻り、このようにして冷
凍サイクルが行われる。そして、膨張弁7はその下流側
圧力が該定圧に低下すると開弁し、下流側圧力を設定圧
に維持する作用を行うものである。なお、第2図中11は
感温筒、12は圧縮機11と自動車エンジンとの間の動力伝
達を断続する電磁クラッチである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a general refrigeration cycle for car air conditioners in which a refrigerant expansion valve is used will be briefly described with reference to FIG.
The refrigeration cycle has a compressor 1, and the refrigerant sucked into the compressor 1 as a gas is compressed by the compressor 1 and is sent to a condenser 3 through a pipe 2 where the air sent from a fan 3a is used. It is cooled and condensed to become a liquid refrigerant. This liquid refrigerant is sent to the liquid receiver 5 through the line 4, and is stored therein as a high-pressure liquid. The high-pressure refrigerant liquid then enters the expansion valve 7 through the high-pressure side pipe 6, and the refrigerant that has expanded through the expansion valve 7 flows through the low-pressure side pipe 8 in a liquid phase state in which a partial gas phase is mixed. Through which the heat is taken from the air sent from the fan 9a to evaporate into a substantially complete gas, which then returns to the compressor 1 through the pipe 10, and thus the refrigeration cycle is completed. Done. The expansion valve 7 opens when the pressure on the downstream side decreases to the constant pressure and maintains the downstream pressure at the set pressure. In FIG. 2, reference numeral 11 is a temperature sensitive cylinder, and 12 is an electromagnetic clutch for connecting and disconnecting the power transmission between the compressor 11 and the automobile engine.

次に、第1図を用いて本発明の一実施例を示す膨張弁
7の構造について説明する。第1図において、膨張弁7
は、銅などの金属製の弁本体13と、この弁本体13内に備
えられた入口側通路、即ち高圧側冷媒通路14と、この通
路14の長手方向軸線に対し概ね直角の長手方向軸線を有
する出口側通路、即ち低圧側冷媒通路15とを有し、高圧
側冷媒通路14は第2図に示す高圧側管路6に接続され、
低圧側冷媒通路15が第2図に示す低圧側管路8に接続さ
れるようになっている。弁本体13内には、更に、高圧側
冷媒通路14の長手方向軸線に対し、同心的に配置された
オリフィス17が設けられ、このオリフィス17は高圧側冷
媒通路14に開口する上流端及び低圧側冷媒通路15に開口
する下流端を有していて、それらの両通路14及び15を互
いに連通せしめている。オリフィス17の上流端には、こ
のオリフィス17の内周面と連続した弁座18が備えられ、
この弁座18には高圧側冷媒通路14内に配置されたステン
レス通の金属から成る球状の弁部材19が関連せしめられ
ている。そして、低圧側冷媒通路15の内壁面には水ぬれ
性の悪いフッ素樹脂のコーティング16が施される。
Next, the structure of the expansion valve 7 showing an embodiment of the present invention will be described with reference to FIG. In FIG. 1, the expansion valve 7
Is a valve main body 13 made of metal such as copper, an inlet side passage provided in the valve main body 13, that is, a high pressure side refrigerant passage 14, and a longitudinal axis line substantially perpendicular to the longitudinal axis line of the passage 14. The outlet side passage, that is, the low pressure side refrigerant passage 15 is provided, and the high pressure side refrigerant passage 14 is connected to the high pressure side pipeline 6 shown in FIG.
The low pressure side refrigerant passage 15 is connected to the low pressure side pipe line 8 shown in FIG. Further, in the valve body 13, an orifice 17 arranged concentrically with respect to the longitudinal axis of the high pressure side refrigerant passage 14 is provided, and the orifice 17 has an upstream end opening to the high pressure side refrigerant passage 14 and a low pressure side. It has a downstream end opening to the refrigerant passage 15, and makes both passages 14 and 15 communicate with each other. At the upstream end of the orifice 17, a valve seat 18 continuous with the inner peripheral surface of the orifice 17 is provided,
A spherical valve member 19 made of stainless steel is disposed in the high pressure side refrigerant passage 14 and associated with the valve seat 18. Then, the inner wall surface of the low-pressure side refrigerant passage 15 is coated with a fluororesin coating 16 having poor water wettability.

さらに、弁受20、ひいては弁部材19は、高圧側冷媒通
路14内に螺合せられた銅などの金属製の環状のばね受21
との間に介装された圧縮コイルばね22により弁座18の方
向にばね負荷されている、ばね22の弁部材19に対する押
圧力は、ばね受21の位置を変えることにより調節され
る。弁部材19の開弁方向はオリフィス17を通って流れる
高圧の冷媒の流れ方向とは逆である。第1図で見て弁本
体13の上面には凹所が形成され、その凹所にはカバー部
材23が取付けられていて、その凹所とともに空間24を画
定し、この空間24内には金属製のダイヤフラム25が備え
られて、この空間24の2つの室26及び27に分割してい
る。一方の室26には、カバー部材23に取付けられた第2
図に示す導管28を通って感温筒11からの圧力信号が導入
されるようになっており、他方の室27は弁本体13内に備
えられた通路29を介して低圧側冷媒通路15に連通されて
いて、その低圧側冷媒通路内の圧力、即ち蒸発圧力が室
27に導入されるようになっている。室27内にダイヤフラ
ム25に当接している当て部材30が備えられ、その当て部
材30には弁棒31が当接している。弁棒31は弁本体13内に
備えられた孔に摺動可能に嵌合せしめられており、弁棒
31の下端は弁部材19の頂面に当接せしめられている。感
温筒11は圧縮機1の入口側での冷媒温度に対した圧力新
極を発し、その圧力信号は導管28を通って一方の室26内
に入り、ダイヤフラム25の一方の面(上面)に作用す
る。また、そのダイヤフラム25の他方の面(下面)には
通路29を介して低圧側冷媒通路15内の圧力が作用してお
り、従ってダイヤフラム25はそれの上下両面に作用して
いる圧力差によって上下に変位する。このダイヤフラム
25の変位は当て部材30、及びそれに当接している弁棒31
を介して弁部材19に伝えられ、弁座18に対する弁部材19
の位置が調節される。こうして弁座18と弁部材19との間
の隙間が調節され、それによりオリフィス17を通る冷媒
の流量が制御される。
Further, the valve receiving member 20, and thus the valve member 19, has an annular spring receiving member 21 made of metal such as copper screwed into the high pressure side refrigerant passage 14.
The pressing force of the spring 22 against the valve member 19, which is spring-loaded in the direction of the valve seat 18 by the compression coil spring 22 interposed between and, is adjusted by changing the position of the spring receiver 21. The valve opening direction of the valve member 19 is opposite to the flow direction of the high-pressure refrigerant flowing through the orifice 17. As shown in FIG. 1, a recess is formed in the upper surface of the valve body 13, and a cover member 23 is attached to the recess to define a space 24 together with the recess, and a metal is provided in the space 24. A diaphragm 25 made of metal is provided and divides this space 24 into two chambers 26 and 27. One of the chambers 26 has a second member attached to the cover member 23.
A pressure signal from the temperature sensitive tube 11 is introduced through a conduit 28 shown in the figure, and the other chamber 27 is connected to the low pressure side refrigerant passage 15 through a passage 29 provided in the valve body 13. The pressure in the low-pressure side refrigerant passage, that is, the evaporation pressure, is in communication with the chamber.
It will be introduced in 27. A pad member 30 which is in contact with the diaphragm 25 is provided in the chamber 27, and a valve rod 31 is in contact with the pad member 30. The valve rod 31 is slidably fitted in a hole provided in the valve body 13 and
The lower end of 31 is brought into contact with the top surface of the valve member 19. The temperature sensitive tube 11 emits a pressure new pole corresponding to the refrigerant temperature at the inlet side of the compressor 1, and the pressure signal thereof enters the one chamber 26 through the conduit 28 and one side (upper surface) of the diaphragm 25. Act on. Further, the pressure in the low-pressure side refrigerant passage 15 acts on the other surface (lower surface) of the diaphragm 25 via the passage 29. Therefore, the diaphragm 25 moves up and down due to the pressure difference acting on both the upper and lower surfaces thereof. Is displaced to. This diaphragm
The displacement of 25 is due to the contact member 30 and the valve rod 31 that is in contact with it.
Is transmitted to the valve member 19 via the valve member 19 with respect to the valve seat 18.
The position of is adjusted. Thus, the clearance between the valve seat 18 and the valve member 19 is adjusted, thereby controlling the flow rate of the refrigerant through the orifice 17.

次に、第1図と第2図を参照して上述の実施例の作動
を説明する。感温筒11が、圧縮機1入口側での冷媒温度
の上昇を感知すると、それに対応した圧力信号が導管28
を介して膨張弁7の室26内に流入してダイヤフラム25を
ばね22の力に抗して弁本体13に近づく方向に変位せし
め、この変位は当て部材30、弁棒31を介して弁部材19に
伝えられ、弁部材19はオリフィス17から遠ざかる方向に
移動せしめられ、よって、弁部材19と弁座18との間の隙
間が増してオリフィス17を通る冷媒の流量が増す。逆
に、感温筒11が、圧縮機1入口側での冷媒温度の低下を
感知すると、それに対応した圧力信号が室26内に混入し
てダイヤフラム25を弁本体13から離れる方向へ変位せし
め、これにより弁部材19はばね22によりオリフィス17に
近接する方向に移動して弁部材19と弁座18との間の隙間
を減少せしめ、オリフィス17を通る冷媒の流量を減少さ
せる。冷媒がオリフィス17から低圧側冷媒通路15内に噴
出され、急激に膨張して霧状となる。その時、冷媒中に
含まれている水分が低圧側冷媒通路15内壁面へ接触する
が、その内壁面には水ぬれ性の悪いフッ素樹脂のコーテ
ィング16が施されているため、付着することはない。こ
れにより水分が氷結し、流路面積を小さくさせる現象が
回避できる。
Next, the operation of the above-described embodiment will be described with reference to FIGS. When the temperature-sensing cylinder 11 senses a rise in the refrigerant temperature on the inlet side of the compressor 1, a pressure signal corresponding to that is detected by the conduit 28.
Flow into the chamber 26 of the expansion valve 7 to displace the diaphragm 25 in the direction of approaching the valve body 13 against the force of the spring 22, and this displacement is caused by the contact member 30 and the valve rod 31. The valve member 19 is moved to the direction away from the orifice 17 by being transmitted to the valve member 19, so that the clearance between the valve member 19 and the valve seat 18 is increased and the flow rate of the refrigerant through the orifice 17 is increased. On the contrary, when the temperature sensitive tube 11 senses the decrease of the refrigerant temperature on the inlet side of the compressor 1, a pressure signal corresponding thereto is mixed into the chamber 26 to displace the diaphragm 25 in the direction away from the valve body 13, As a result, the valve member 19 is moved in the direction closer to the orifice 17 by the spring 22 to reduce the gap between the valve member 19 and the valve seat 18, thereby reducing the flow rate of the refrigerant passing through the orifice 17. The refrigerant is ejected from the orifice 17 into the low-pressure side refrigerant passage 15 and is rapidly expanded into a mist. At that time, the water contained in the refrigerant comes into contact with the inner wall surface of the low-pressure side refrigerant passage 15, but since the inner wall surface is coated with a fluororesin coating 16 having poor water wettability, it does not adhere. . As a result, it is possible to avoid the phenomenon that the water freezes and the flow passage area is reduced.

なお、上記実施例では、低圧側冷媒通路15内壁面をフ
ッ素樹脂でコーティング16しているが、フッ素樹脂材料
のパイプを挿入したものでもよい。なお、このパイプ
は、低圧側冷媒通路内の圧力をダイヤフラムの下面に伝
える通路に対して孔があいている。
Although the inner wall surface of the low pressure side refrigerant passage 15 is coated with fluororesin 16 in the above embodiment, a pipe of fluororesin material may be inserted. The pipe has a hole for a passage for transmitting the pressure in the low pressure side refrigerant passage to the lower surface of the diaphragm.

また、上記実施例においては、弁機構がオリフィスの
上流側、即ち高圧側に配設されたものであったが、第3
図に示すように、弁機構がオリフィスの下流側、即ち低
圧側に配設されたものに本発明を適用するようにしても
よい。第3図において、32は弁支持体、33は脚であり、
他の符号は第1図に示したものと同じである。なお、弁
部材19の開弁方向はオリフィス17を通って流れる高圧の
冷媒の流れ方向と同一である。この場合においては、低
圧側冷媒通路15内壁面を上記実施例に示したようにフッ
素樹脂等の水ぬれ性の悪い材質によって処理すると共
に、低圧側冷媒通路15内に位置する構成部品(第3図に
おいて、20,21,22,32)を全てフッ素樹脂等の水ぬれ性
の悪い材質によって処理している。
Further, in the above embodiment, the valve mechanism is arranged on the upstream side of the orifice, that is, on the high pressure side.
As shown in the figure, the present invention may be applied to the valve mechanism arranged downstream of the orifice, that is, on the low pressure side. In FIG. 3, 32 is a valve support, 33 is a leg,
Other reference numerals are the same as those shown in FIG. The valve opening direction of the valve member 19 is the same as the flow direction of the high-pressure refrigerant flowing through the orifice 17. In this case, the inner wall surface of the low pressure side refrigerant passage 15 is treated with a material having poor water wettability such as fluororesin as shown in the above-mentioned embodiment, and the component parts (third part) located in the low pressure side refrigerant passage 15 are treated. In the figure, 20, 21, 22, 32) are all treated with a material having poor wettability such as a fluororesin.

〔発明の効果〕〔The invention's effect〕

本発明になる膨張弁においては、流体中に含まれる水
分が付着する出口側冷媒通路内壁を嫌水手段によって水
ぬれ性を悪くしているから、水分が付着することなく、
よって、水分の氷結による流動負荷の増大を防止するこ
とができるという優れた効果がある。
In the expansion valve according to the present invention, since the wettability of the inner wall of the outlet side refrigerant passage to which the water contained in the fluid adheres is deteriorated by the anaerobic means, the water does not adhere,
Therefore, there is an excellent effect that it is possible to prevent an increase in flow load due to freezing of water.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明になる膨張弁の一実施例の構成を示す縦
断面図、第2図は第1図図示の膨張弁を用いているカー
エアコン用冷凍サイクルの回路構成を示した図、第3図
は構造の異なる膨張弁に本発明を用いたものの縦断面図
である。 7……膨張弁,9……蒸発器,13……弁本体,14……高圧
(入口)側冷媒通路,15……低圧(出口)側冷媒通路,16
……フッ素樹脂コーティング,17……オリフィス,18……
弁座,19……弁部材,20……弁受,21……ばね受,22……ば
ね。
FIG. 1 is a longitudinal sectional view showing the configuration of an embodiment of an expansion valve according to the present invention, and FIG. 2 is a diagram showing a circuit configuration of a refrigeration cycle for a car air conditioner using the expansion valve shown in FIG. 1, FIG. 3 is a vertical cross-sectional view of an expansion valve having a different structure to which the present invention is applied. 7 …… Expansion valve, 9 …… Evaporator, 13 …… Valve body, 14 …… High pressure (inlet) side refrigerant passage, 15 …… Low pressure (outlet) side refrigerant passage, 16
…… Fluororesin coating, 17 …… Orifice, 18 ……
Valve seat, 19 …… Valve member, 20 …… Valve seat, 21 …… Spring seat, 22 …… Spring.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高圧の流体を受け入れる入口側通路と、こ
の入口側通路の下流端に連通して配設されて高圧流体の
流量を調節するとともに高圧流体を膨張させて霧化状態
にする弁機構と、弁機構の下流端に連通して配設され、
膨張した低圧流体を送出する出口側通路とを備えた膨張
弁において、 前記出口側通路に水ぬれ性の悪い嫌水手段を設けること
を特徴とする膨張弁。
1. A valve, which is provided in communication with an inlet-side passage for receiving a high-pressure fluid and a downstream end of the inlet-side passage, adjusts a flow rate of the high-pressure fluid, and expands the high-pressure fluid into an atomized state. The mechanism and the downstream end of the valve mechanism are communicated with each other,
An expansion valve provided with an outlet-side passage for delivering expanded low-pressure fluid, characterized in that the outlet-side passage is provided with anaerobic means having poor water wettability.
【請求項2】前記嫌水手段は前記出口側通路の内壁面に
フッ素樹脂をコーティングしたことを特徴とする請求項
1記載の膨張弁。
2. The expansion valve according to claim 1, wherein the anaerobic means coats an inner wall surface of the outlet side passageway with a fluororesin.
【請求項3】前記嫌水手段はフッ素樹脂のパイプを前記
出口側通路内にその内壁面と隙間なく挿入したことを特
徴とする請求項1記載の膨張弁。
3. The expansion valve according to claim 1, wherein the anaerobic means inserts a fluororesin pipe into the outlet side passage without leaving a gap with an inner wall surface thereof.
JP1055611A 1989-03-08 1989-03-08 Expansion valve Expired - Fee Related JP2676887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055611A JP2676887B2 (en) 1989-03-08 1989-03-08 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055611A JP2676887B2 (en) 1989-03-08 1989-03-08 Expansion valve

Publications (2)

Publication Number Publication Date
JPH02238273A JPH02238273A (en) 1990-09-20
JP2676887B2 true JP2676887B2 (en) 1997-11-17

Family

ID=13003560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055611A Expired - Fee Related JP2676887B2 (en) 1989-03-08 1989-03-08 Expansion valve

Country Status (1)

Country Link
JP (1) JP2676887B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2589041Y2 (en) * 1993-02-18 1999-01-20 日野自動車工業株式会社 Air valves used in pneumatic circuits of automobiles
US20070044493A1 (en) * 2005-08-23 2007-03-01 International Business Machines Corporation Systems and methods for cooling electronics components employing vapor compression refrigeration with selected portions of expansion structures coated with polytetrafluorethylene

Also Published As

Publication number Publication date
JPH02238273A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
US5005370A (en) Thermal expansion valve
US7302811B2 (en) Fluid expansion-distribution assembly
US4341090A (en) Variable orifice metering
US4500035A (en) Expansion valve
US6328061B1 (en) Variable flow area refrigerant expansion device
US6612503B2 (en) Expansion valve
US6712281B2 (en) Expansion valve
JP2676887B2 (en) Expansion valve
CA2640635A1 (en) Refrigerant fluid flow control device and method
US20040007015A1 (en) Expansion valve
US6305414B1 (en) Variable flow area refrigerant expansion device
JP2004218918A (en) Differential pressure expansion valve
JPH11173705A (en) Expansion valve with bypass pipeline for refrigeration cycle
JPS6039880B2 (en) oil return device
JP2586426B2 (en) Automatic expansion valve for refrigeration equipment
US5026022A (en) Thermostatic expansion valve for low refrigerant flow rates
JPH05196324A (en) Expansion valve for refrigerating cycle
JP3942848B2 (en) Expansion valve unit
JP3442949B2 (en) Refrigeration cycle using variable capacity compressor
JP4043195B2 (en) Expansion valve
JP2773373B2 (en) Expansion valve for refrigeration cycle
JP2003307372A (en) Expansion valve
JP2005265385A (en) Decompression device
JPH06281296A (en) Expansion valve
JPS62266369A (en) Expansion valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees