JP3218734B2 - Refrigerant supply device for evaporator - Google Patents

Refrigerant supply device for evaporator

Info

Publication number
JP3218734B2
JP3218734B2 JP29340392A JP29340392A JP3218734B2 JP 3218734 B2 JP3218734 B2 JP 3218734B2 JP 29340392 A JP29340392 A JP 29340392A JP 29340392 A JP29340392 A JP 29340392A JP 3218734 B2 JP3218734 B2 JP 3218734B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
liquid
gas
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29340392A
Other languages
Japanese (ja)
Other versions
JPH06147697A (en
Inventor
敏一 末藤
稔 吉田
昌尚 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP29340392A priority Critical patent/JP3218734B2/en
Publication of JPH06147697A publication Critical patent/JPH06147697A/en
Application granted granted Critical
Publication of JP3218734B2 publication Critical patent/JP3218734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、気液混相の冷媒が流れ
る複数の冷媒流路と冷却用の流体が流れる複数の冷却流
体用流路とが設けられ、前記冷媒及び冷却用流体間の熱
交換を行う蒸発器に、前記冷媒を供給する蒸発器用冷媒
供給装置に関する。前記蒸発器用冷媒供給装置及び蒸発
器は、航空機、車両、船舶等の乗り物に搭載される冷却
の必要な部材(電子機器等)を冷却するための冷却装置
で使用される。前記蒸発器で冷媒により冷却される冷却
用流体としては、気体又は液体が使用される。前記蒸発
器で冷媒により冷却された冷却用流体は、冷却の必要な
部材(電子機器等)の配置場所に移送され、それらの部
材を冷却する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a plurality of refrigerant flow paths through which a gas-liquid mixed-phase refrigerant flows and a plurality of cooling fluid flow paths through which a cooling fluid flows. The present invention relates to a refrigerant supply device for an evaporator that supplies the refrigerant to an evaporator that performs heat exchange. The evaporator refrigerant supply device and the evaporator are used in a cooling device for cooling members (electronic devices and the like) that need to be mounted and mounted on vehicles such as aircraft, vehicles, and ships. A gas or a liquid is used as the cooling fluid cooled by the refrigerant in the evaporator. The cooling fluid cooled by the refrigerant in the evaporator is transferred to a place where members (such as electronic devices) requiring cooling are arranged, and cools those members.

【0002】[0002]

【従来の技術】前記種類の冷却装置は、前記冷却液、冷
却用空気等の冷却用流体と、フロン等の冷媒(すなわ
ち、気体状態から凝縮されて液化するとともに、冷却対
象物の熱を奪って液体状態から気化することを繰り返す
冷媒)とを熱伝導可能に接触させて熱交換を行わせるこ
とにより、冷却用流体を冷却している。このような冷却
装置では、普通、蒸発器において前記冷却用流体との熱
交換により気化した冷媒をコンプレッサで圧縮し、冷却
装置用凝縮器で凝縮して液化する。
2. Description of the Related Art A cooling device of the type described above is provided with a cooling fluid such as the cooling liquid and cooling air and a refrigerant such as chlorofluorocarbon (that is, condensed and liquefied from a gaseous state, and deprives the object to be cooled of heat. (A refrigerant that repeatedly vaporizes from a liquid state) so as to conduct heat exchange by heat conduction, thereby cooling the cooling fluid. In such a cooling device, usually, a refrigerant vaporized by heat exchange with the cooling fluid in the evaporator is compressed by a compressor, and is condensed and liquefied by a condenser for the cooling device.

【0003】前記冷却装置用凝縮器で液化した冷媒は下
流側の冷却装置用レシーバに移送される。前記冷却装置
用レシーバは、冷媒を気液混相状態で一時的に貯溜し、
下流側には液体状冷媒のみを移送する機能を有してい
る。前記冷却装置用レシーバから排出される液体状冷媒
は膨張弁に移送される。前記膨張弁は適当に開度を調節
されて冷媒の気相、液相の割合を調節する。この調節さ
れた気液混相冷媒は、蒸発器に移送され、蒸発器におい
て、冷却用流体との間で前記熱交換が行われる。この熱
交換により気液混相冷媒は、液体の比率が低下してい
く。図12,13は、この種の蒸発器の説明図で、図1
2は蒸発器の複数の冷媒流路に気液混相冷媒が均等に分
配されている状態を示し、図13は偏って分配されてい
る状態を示す図である。図12において、蒸発器01
は、複数の冷媒流路02及び複数の冷却流体用流路03
が設けられている。前記冷媒流路02は気液混相のフロ
ン等の冷媒が流れ、冷却流体用流路03には水又は空気
等の冷却用流体が流れる。この蒸発器で冷却された水、
空気等の冷却用流体は、電子機器等の要冷却部材を冷却
するのに使用される。
[0003] The refrigerant liquefied in the cooling device condenser is transferred to a cooling device receiver on the downstream side. The cooling device receiver temporarily stores the refrigerant in a gas-liquid mixed phase state,
The downstream side has a function of transferring only the liquid refrigerant. The liquid refrigerant discharged from the cooling device receiver is transferred to an expansion valve. The opening of the expansion valve is appropriately adjusted to adjust the ratio of the gas phase and the liquid phase of the refrigerant. The adjusted gas-liquid mixed-phase refrigerant is transferred to the evaporator, where the heat exchange is performed with the cooling fluid. Due to this heat exchange, the ratio of the liquid in the gas-liquid mixed-phase refrigerant decreases. 12 and 13 are explanatory views of this type of evaporator.
2 shows a state in which the gas-liquid mixed-phase refrigerant is evenly distributed to the plurality of refrigerant flow paths of the evaporator, and FIG. 13 shows a state in which the refrigerant is unevenly distributed. In FIG. 12, the evaporator 01
Are a plurality of refrigerant channels 02 and a plurality of cooling fluid channels 03
Is provided. A refrigerant such as a mixed gas and liquid phase refrigerant flows through the refrigerant flow path 02, and a cooling fluid such as water or air flows through the cooling fluid flow path 03. Water cooled in this evaporator,
A cooling fluid such as air is used to cool a member requiring cooling such as an electronic device.

【0004】[0004]

【発明が解決しようとする課題】ところで、例えば乗り
物が航空機の場合には、機体の姿勢の変化や旋回等によ
り、機体に急激な加速度又は減速度等が発生する。航空
機に限らず、乗り物に急激な加速度又は減速度が発生す
ると、前記蒸発器01内の液体状冷媒には慣性力が作用
する。この慣性力によって蒸発器内の液体状冷媒が蒸発
器内で偏ると、図13に示すように、冷媒流路02によ
っては冷媒が流れなくなることが生じる。この場合、熱
交換面積が減少して、蒸発器01の性能が低下する。
When the vehicle is an aircraft, for example, a sudden acceleration or deceleration occurs in the aircraft due to a change in the attitude of the aircraft or a turn. When rapid acceleration or deceleration occurs not only in an aircraft but also in a vehicle, an inertial force acts on the liquid refrigerant in the evaporator 01. When the liquid refrigerant in the evaporator is biased in the evaporator due to the inertial force, the refrigerant may not flow through the refrigerant flow path 02 as shown in FIG. In this case, the heat exchange area decreases, and the performance of the evaporator 01 decreases.

【0005】前述の不都合は、加速度、姿勢変化の大き
な高機動航空機においては特に頻繁に発生するようにな
る。本発明は前述の事情に鑑み、下記(O01)の記載内
容を課題とする。(O01) 乗り物に加速度又は減速度
が生じた場合でも、蒸発器の冷媒流路に均一に冷媒が流
れるようにすること。
[0005] The above-mentioned inconvenience frequently occurs particularly on a high-mobility aircraft having large changes in acceleration and attitude. The present invention has been made in view of the above circumstances, and has an object of the following content (O01). (O01) Even when acceleration or deceleration occurs in the vehicle, the refrigerant must flow uniformly in the refrigerant flow path of the evaporator.

【0006】[0006]

【課題を解決するための手段】次に、前記課題を解決す
るために案出した本発明の構成を説明するが、本発明の
構成要素には、後述の実施例の構成要素との対応を容易
にするため、実施例の構成要素の符号をカッコで囲んだ
ものを付記する。なお、本発明を後述の実施例の符号と
対応させて説明する理由は、本発明の理解を容易にする
ためであり、本発明の範囲を実施例に限定するためでは
ない。
Next, the configuration of the present invention devised to solve the above-mentioned problem will be described. The components of the present invention correspond to the components of the embodiments described later. For the sake of simplicity, the reference numerals of the components of the embodiment are enclosed in parentheses. The reason why the present invention is described in correspondence with the reference numerals of the embodiments described below is to facilitate understanding of the present invention, and not to limit the scope of the present invention to the embodiments.

【0007】前記課題を解決するために、本出願の第1
発明の蒸発器用冷媒供給装置(12)は、気液混相の冷
媒が流れる複数の冷媒流路(14a)と冷却用の流体が
流れる複数の冷却流体用流路(14b)とが設けられ、
前記冷媒及び冷却用流体間の熱交換を行う蒸発器(1
4)に、前記冷媒を供給する蒸発器用冷媒供給装置(1
2)において、下記の構成要件(A01)〜(A05)を備
えたことを特徴とする、(A01) 円筒状の小径内壁
(21a)及び大径内壁(22a)により形成される環状
の冷媒分配室(23)、(A02) 前記小径内壁(21
a)の円周方向に沿って設けられ、前記環状の冷媒分配
室(23)内に気液混相の冷媒を旋回させるように流入
させる複数の冷媒流入口(21b)、(A03) 前記大
径内壁(22a)の円周方向に沿って設けられ、前記環
状の冷媒分配室(23)内の冷媒を流出させる複数の冷
媒流出口(22b)、(A04) 前記複数の冷媒流入口
(21b)に気液混相の冷媒を供給する装置、(A05)
前記複数の冷媒流出口(22b)を前記蒸発器(14)
の所定の冷媒流路(14a)にそれぞれ接続する複数の
冷媒接続路(13)。
[0007] In order to solve the above problems, the first of the present application
The refrigerant supply device for an evaporator (12) of the invention is provided with a plurality of refrigerant flow paths (14a) through which a gas-liquid mixed-phase refrigerant flows and a plurality of cooling fluid flow paths (14b) through which a cooling fluid flows.
An evaporator (1) for exchanging heat between the refrigerant and the cooling fluid.
4), an evaporator refrigerant supply device (1) for supplying the refrigerant.
(A01) An annular refrigerant distribution formed by a cylindrical small-diameter inner wall (21a) and a large-diameter inner wall (22a), which is characterized by having the following components (A01) to (A05). Room (23), (A02) The small-diameter inner wall (21)
a) a plurality of refrigerant inlets (21b) which are provided along the circumferential direction of a) and allow the gas-liquid mixed-phase refrigerant to flow into the annular refrigerant distribution chamber (23) in a swirling manner; A plurality of refrigerant outlets (22b) provided along the circumferential direction of the inner wall (22a) to allow the refrigerant in the annular refrigerant distribution chamber (23) to flow out, (A04) the plurality of refrigerant inlets (21b) For supplying a gas-liquid mixed-phase refrigerant to the tank (A05)
The plurality of refrigerant outlets (22b) are connected to the evaporator (14).
A plurality of refrigerant connection paths (13) respectively connected to the predetermined refrigerant flow path (14a).

【0008】また、本出願の第2発明の蒸発器用冷媒供
給装置(32)は、気液混相の冷媒が流れる複数の冷媒
流路(14a)と冷却用の流体が流れる複数の冷却流体
用流路(14b)とが設けられ、前記冷媒及び冷却用流
体間の熱交換を行う蒸発器(14)に、前記冷媒を供給
する蒸発器用冷媒供給装置(32)において、下記の構
成要件(A06)〜(A010)を備えたことを特徴とす
る、(A06) 互いの接触面が面接触した状態で相対的
に回転可能な液体冷媒供給部材(33)及び気液混相冷
媒流出部材(34,36)、(A07) 前記液体冷媒供
給部材(33)の前記接触面に円周に沿って形成された
複数の液体冷媒供給口(33c)、(A08) 前記気液
混相冷媒流出部材(34)の前記接触面に前記複数の液
体冷媒供給口(33c)に対応して形成された複数の冷
媒受入れ口(34b,36a)、(A09) 前記複数の液
体冷媒供給口(33c)に液体状の冷媒を供給する装
置、(A010) 前記複数の冷媒受入れ口(34b,36
a)を前記蒸発器(14)の所定の冷媒流路(14a)に
それぞれ接続する複数の冷媒接続路(13)。
Further, the refrigerant supply device for an evaporator (32) of the second invention of the present application comprises a plurality of refrigerant flow paths (14a) through which a gas-liquid mixed-phase refrigerant flows and a plurality of cooling fluid flows through which a cooling fluid flows. And a refrigerant supply device (32) for supplying the refrigerant to an evaporator (14) which is provided with a passage (14b) and exchanges heat between the refrigerant and the cooling fluid. (A06), characterized in that the liquid refrigerant supply member (33) and the gas-liquid multiphase refrigerant outflow member (34, 36) are relatively rotatable in a state where their contact surfaces are in surface contact with each other. ), (A07) a plurality of liquid refrigerant supply ports (33c) formed along the circumference on the contact surface of the liquid refrigerant supply member (33), (A08) the gas-liquid mixed phase refrigerant outflow member (34). The contact surface corresponds to the plurality of liquid refrigerant supply ports (33c). Made a plurality of refrigerant inlet (34b, 36a), (A09) the plurality of liquid coolant supply port device for supplying a liquid coolant to (33c), (A010) of the plurality of refrigerant inlet (34b, 36
a) a plurality of refrigerant connection paths (13) for respectively connecting the a) to predetermined refrigerant flow paths (14a) of the evaporator (14).

【0009】[0009]

【作用】次に、前述の特徴を備えた本発明の作用を説明
する。前述の特徴を備えた本出願の第1発明の蒸発器用
冷媒供給装置(12)では、円筒状の小径内壁(21
a)及び大径内壁(22a)により形成される環状の冷媒
分配室(23)の、前記小径内壁(21a)の円周方向
に沿って設けられた複数の冷媒流入口(21b)に気液
混相の冷媒が供給される。この気液混相の冷媒は、前記
冷媒流入口(21b)から、前記環状の冷媒分配室(2
3)内に旋回しながら流入する。この旋回する気液混相
の冷媒は、環状の冷媒分配室(23)内で、遠心力によ
り大径内壁(22a)の方に移動する。そして、前記環
状の冷媒分配室(23)内で旋回する気液混相の冷媒
は、前記大径内壁(22a)の円周方向に沿って設けら
れた複数の冷媒流出口(22b)から流出する。前記旋
回する気液混相の冷媒は、旋回しながら遠心力により前
記大径内壁(22a)に向かって移動するので、乗り物
に一定方向の加速度又は減速度が生じても前記複数の冷
媒流出口(22b)から均一に流出する。すなわち、旋
回する冷媒は、前記複数の冷媒流出口(22b)のうち
の特定の領域にある冷媒流出口(22b)から偏って流
出することはない。
Next, the operation of the present invention having the above-mentioned features will be described. In the refrigerant supply device (12) for an evaporator according to the first invention of the present application having the above-described features, the cylindrical small-diameter inner wall (21) is provided.
a) and a plurality of refrigerant inlets (21b) provided along the circumferential direction of the small-diameter inner wall (21a) of the annular refrigerant distribution chamber (23) formed by the large-diameter inner wall (22a). A multi-phase refrigerant is supplied. The gas-liquid mixed-phase refrigerant flows from the refrigerant inlet (21b) to the annular refrigerant distribution chamber (2).
3) Introduce while turning. The swirling gas-liquid mixed phase refrigerant moves toward the large-diameter inner wall (22a) by centrifugal force in the annular refrigerant distribution chamber (23). The gas-liquid mixed-phase refrigerant swirling in the annular refrigerant distribution chamber (23) flows out from a plurality of refrigerant outlets (22b) provided along the circumferential direction of the large-diameter inner wall (22a). . Since the swirling gas-liquid mixed phase refrigerant moves toward the large-diameter inner wall (22a) by centrifugal force while swirling, even if acceleration or deceleration in a certain direction occurs in the vehicle, the plurality of refrigerant outlets ( 22b) flows out uniformly. That is, the swirling refrigerant does not flow out of the refrigerant outlet (22b) in a specific region among the plurality of refrigerant outlets (22b).

【0010】前記複数の冷媒流出口(22b)から均一
に流出した気液混相の冷媒は、それぞれ前記複数の冷媒
接続路(13)により、前記蒸発器(14)の所定の冷
媒流路(14a)に流れていく。したがって、気液混相
の冷媒は、乗り物に加速度が生じても、蒸発器(14)
の複数の冷媒流路(14a)に均一に供給される。前記
蒸発器(14)では、前記複数の冷媒流路(14a)を
均一に流れる気液混相の冷媒と、複数の冷却流体用流路
(14b)を流れると冷却用の流体との間で熱交換が行
われる。前述のように、気液混相の冷媒は、乗り物に加
速度等が生じた場合でも、蒸発器(14)の複数の冷媒
流路(14a)に均一に供給されるので、蒸発器(1
4)の熱交換の効率低下を防ぐことができる。
The gas-liquid mixed-phase refrigerant uniformly flowing out of the plurality of refrigerant outlets (22b) flows through the plurality of refrigerant connection paths (13) to a predetermined refrigerant flow path (14a) of the evaporator (14). ). Therefore, even if acceleration occurs in the vehicle, the refrigerant in the gas-liquid mixed phase causes the evaporator (14).
Are uniformly supplied to the plurality of refrigerant flow paths (14a). In the evaporator (14), heat flows between the gas-liquid mixed-phase refrigerant flowing uniformly through the plurality of refrigerant flow paths (14a) and the cooling fluid when flowing through the plurality of cooling fluid flow paths (14b). An exchange takes place. As described above, the gas-liquid mixed-phase refrigerant is uniformly supplied to the plurality of refrigerant flow paths (14a) of the evaporator (14) even when acceleration or the like occurs in the vehicle.
4) It is possible to prevent a decrease in the efficiency of heat exchange.

【0011】前述の特徴を備えた本出願の第2発明の蒸
発器用冷媒供給装置(32)では、液体冷媒供給部材
(33)の前記気液混相冷媒流出部材(34)との接触
面に円周に沿って形成された複数の液体冷媒供給口(3
3c)に、液体状の冷媒が供給される。前記液体冷媒供
給部材(33)の各液体冷媒供給口(33c)と、それ
らに対応して前記気液混相冷媒流出部材(34)に形成
された複数の冷媒受入れ口(34b,36a)との接続部
分の面積(すなわち、接続面積、又は、連通面積)は、
前記液体冷媒供給部材(33)及び気液混相冷媒流出部
材(34)を、互いの接触面が面接触した状態で相対的
に回転させることにより調節することができる。前記複
数の液体冷媒供給口(33c)から複数の冷媒受入れ口
(34b,36a)に供給された液体状の冷媒はそれぞ
れ、前記複数の冷媒接続路(13)に流入する。その
際、前記液体冷媒供給口(33c)と冷媒受入れ口(3
4b,36a)との前記連通面積(接続面積)を絞ること
によって、前記液体冷媒供給口(33c)に供給された
液体状の冷媒は、前記冷媒受入れ口(34b,36a)を
通って前記冷媒接続路(13)側に入ったときに断熱膨
張して気液混相冷媒となる。
In the refrigerant supply device (32) for an evaporator according to the second invention of the present application having the above-described features, a circle is formed on the contact surface of the liquid refrigerant supply member (33) with the gas-liquid mixed-phase refrigerant outflow member (34). A plurality of liquid coolant supply ports (3) formed along the circumference
In 3c), a liquid refrigerant is supplied. Each of the liquid refrigerant supply ports (33c) of the liquid refrigerant supply member (33) and a plurality of refrigerant receiving ports (34b, 36a) formed in the gas-liquid mixed-phase refrigerant outflow member (34) corresponding thereto. The area of the connection part (that is, the connection area or the communication area) is
The liquid refrigerant supply member (33) and the gas-liquid multi-phase refrigerant outflow member (34) can be adjusted by relatively rotating the members in a state where their contact surfaces are in surface contact. Liquid refrigerant supplied from the plurality of liquid refrigerant supply ports (33c) to the plurality of refrigerant receiving ports (34b, 36a) respectively flows into the plurality of refrigerant connection paths (13). At this time, the liquid refrigerant supply port (33c) and the refrigerant receiving port (3
4b, 36a), the liquid refrigerant supplied to the liquid refrigerant supply port (33c) passes through the refrigerant receiving port (34b, 36a), and the liquid refrigerant is supplied to the liquid refrigerant supply port (33c). When entering the connection path (13) side, it adiabatically expands to become a gas-liquid mixed phase refrigerant.

【0012】冷媒は、前記複数の液体冷媒供給口(33
c)までは気体を含まない液体状態で供給されるので、
複数の液体冷媒供給口(33c)に均一に供給される。
複数の各液体冷媒供給口(33c)からそれらに対応し
た冷媒受入れ口(34b,36a)を通って複数の各冷媒
接続路(13)側に流入した冷媒は、気液混相冷媒とな
るが、各冷媒接続路(13)はそれぞれ、前記蒸発器
(14)の所定の冷媒流路(14a)にそれぞれ接続し
ているので、気液混相の冷媒は、乗り物に加速度が生じ
ても、蒸発器(14)の複数の冷媒流路(14a)に均
一に供給される。前記蒸発器(14)では、前記複数の
冷媒流路(14a)を均一に流れる気液混相の冷媒と、
複数の冷却流体用流路(14b)を流れると冷却用の流
体との間で熱交換が行われる。前述のように、気液混相
の冷媒は、乗り物に加速度等が生じた場合でも、蒸発器
(14)の複数の冷媒流路(14a)に均一に供給され
るので、蒸発器(14)の熱交換の効率低下を防ぐこと
ができる。
The refrigerant is supplied to the plurality of liquid refrigerant supply ports (33).
Since c) is supplied in a liquid state without gas,
The liquid refrigerant is uniformly supplied to the plurality of liquid refrigerant supply ports (33c).
The refrigerant flowing from the plurality of liquid refrigerant supply ports (33c) to the respective refrigerant connection paths (13) through the corresponding refrigerant reception ports (34b, 36a) becomes a gas-liquid mixed phase refrigerant. Since each of the refrigerant connection paths (13) is connected to a predetermined refrigerant flow path (14a) of the evaporator (14), the refrigerant in the gas-liquid mixed phase can maintain the evaporator even if acceleration occurs in the vehicle. (14) The refrigerant is uniformly supplied to the plurality of refrigerant channels (14a). In the evaporator (14), a gas-liquid mixed-phase refrigerant uniformly flowing through the plurality of refrigerant channels (14a);
When flowing through the plurality of cooling fluid channels (14b), heat exchange is performed with the cooling fluid. As described above, the gas-liquid mixed phase refrigerant is uniformly supplied to the plurality of refrigerant flow paths (14a) of the evaporator (14) even when acceleration or the like occurs in the vehicle. A decrease in the efficiency of heat exchange can be prevented.

【0013】[0013]

【実施例】次に図面を参照しながら、本発明の実施例を
説明するが、本発明は以下の実施例に限定されるもので
はない。図1は、本発明の実施例の蒸発器用冷媒供給装
置を有する冷却装置Uの説明図である。この冷却装置U
は、航空機に搭載されている。航空機に搭載された冷却
装置Uは、コントローラC及び電源Bにより駆動される
モータドライバDを有している。モータドライバDによ
り駆動されるモータ1の出力軸にはフロンコンプレッサ
2が接続されている。フロンコンプレッサ2は冷媒であ
るフロンを圧縮して凝縮器3に移送する機能を有してい
る。凝縮器3は前記フロンコンプレッサ2から流入する
フロン(冷媒)と、凝縮用冷却剤供給源4から供給され
る外部空気又は燃料等の凝縮用冷却剤との間で熱交換を
行う熱交換器によって構成されている。
Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. FIG. 1 is an explanatory diagram of a cooling device U having a refrigerant supply device for an evaporator according to an embodiment of the present invention. This cooling device U
Is on board the aircraft. The cooling device U mounted on the aircraft has a controller C and a motor driver D driven by a power supply B. The Freon compressor 2 is connected to the output shaft of the motor 1 driven by the motor driver D. The Freon compressor 2 has a function of compressing Freon, which is a refrigerant, and transferring it to the condenser 3. The condenser 3 is a heat exchanger that exchanges heat between Freon (refrigerant) flowing from the Freon compressor 2 and a condensing coolant such as external air or fuel supplied from a condensing coolant supply source 4. It is configured.

【0014】前記凝縮器3は、前記フロンコンプレッサ
2から供給される気体状冷媒を凝縮して液体に変化させ
る機能を有し、冷媒流路4を有している。また、前記凝
縮器3は、前記冷媒流路4に接して配置された凝縮用冷
却剤流路5を有している。前記凝縮用冷却剤流路5に
は、前記凝縮用冷却剤供給源4(図1参照)から、外部
空気、または燃料等の凝縮用冷却剤が供給され、その凝
縮用冷却剤は、前記冷媒流路4を流れる気体状の冷媒の
熱を奪って、冷媒を液化する。
The condenser 3 has a function of condensing a gaseous refrigerant supplied from the CFC 2 and converting it into a liquid, and has a refrigerant flow path 4. In addition, the condenser 3 has a condensing coolant flow path 5 disposed in contact with the refrigerant flow path 4. The condensing coolant flow path 5 is supplied with a condensing coolant such as external air or fuel from the condensing coolant supply source 4 (see FIG. 1). The refrigerant removes heat from the gaseous refrigerant flowing through the flow path 4 to liquefy the refrigerant.

【0015】前記凝縮器3は、熱交換により液化した冷
媒(すなわち、液体状冷媒)を移送する液体状冷媒移送
管6を介して、冷却装置用レシーバ7に接続されてい
る。冷却装置用レシーバ7は、前記液体状冷媒移送管6
で移送された冷媒を一旦貯溜する機能を有している。ま
た、冷却装置用レシーバ7は、液体状冷媒移送管8によ
って膨張弁9に接続されている。前記液体状冷媒移送管
8に接続された膨張弁9は、前記コントローラCによっ
て開度を制御されるように構成されている。
The condenser 3 is connected to a cooling device receiver 7 via a liquid refrigerant transfer pipe 6 for transferring refrigerant liquefied by heat exchange (ie, liquid refrigerant). The cooling device receiver 7 includes the liquid refrigerant transfer pipe 6.
Has the function of temporarily storing the refrigerant transferred by the above. The cooling device receiver 7 is connected to the expansion valve 9 by a liquid refrigerant transfer pipe 8. The expansion valve 9 connected to the liquid refrigerant transfer pipe 8 is configured so that the opening thereof is controlled by the controller C.

【0016】膨張弁9で膨張され気液混相状態となった
冷媒は気液混相流移送管11によって、蒸発器用冷媒供
給装置12に接続されている。蒸発器用冷媒供給装置1
2は、その詳細を後で説明するが、前記気液混相流移送
管11により供給される気液混相冷媒を複数の冷媒接続
路13に均一に分配する機能を有している。複数の冷媒
接続路13の各々は、蒸発器14の多数の冷媒流路14
aのうちの所定の複数の冷媒流路14aにそれぞれ接続さ
れている。蒸発器14は、前記多数の冷媒流路14aに
接して配置された多数の冷却流体用流路14bを有して
おり、前記冷媒接続路13から流入して冷媒流路14a
を流れる前記冷媒と、冷却流体用流路14bを流れる不
凍性の冷却液との間で熱交換を行う熱交換器によって構
成されている。前記冷却流体用流路14bを流れる不凍
性の冷却液は、蒸発器14で熱を奪われて温度が下が
り、電子機器等の冷却する必要のある部材(要冷却部
材)に移送され、そのとき要冷却部材15を冷却してか
ら再び蒸発器14に戻るようになっている。
The refrigerant that has been expanded by the expansion valve 9 into a gas-liquid mixed phase state is connected to a refrigerant supply device 12 for an evaporator by a gas-liquid mixed phase flow transfer pipe 11. Evaporator refrigerant supply device 1
2 has a function of uniformly distributing the gas-liquid mixed-phase refrigerant supplied by the gas-liquid mixed-phase flow transfer pipe 11 to the plurality of refrigerant connection paths 13 as will be described in detail later. Each of the plurality of refrigerant connection paths 13 is provided with a number of refrigerant flow paths 14 of the evaporator 14.
a of the plurality of refrigerant channels 14a. The evaporator 14 has a large number of cooling fluid passages 14b disposed in contact with the large number of coolant passages 14a, and flows from the coolant connection passage 13 into the coolant passage 14a.
And a heat exchanger for exchanging heat between the refrigerant flowing through the cooling fluid and the antifreeze coolant flowing through the cooling fluid flow path 14b. The antifreezing coolant flowing through the cooling fluid flow path 14b is deprived of heat by the evaporator 14 and its temperature decreases, and is transferred to a member such as an electronic device that needs to be cooled (a member requiring cooling). At this time, the cooling member 15 is cooled and then returns to the evaporator 14 again.

【0017】また、前記蒸発器14において、前記冷媒
は前記不凍性の冷却液から気化熱を奪い、気化する。蒸
発器14を通過した冷媒は、蒸発器14とフロンコンプ
レッサ2とを接続する接続管16を流れて、前記フロン
コンプレッサ2に戻るようになっている。前記接続管1
6には、そこを流れる冷媒の圧力、温度を検出するセン
サ17が設けられている。センサ17の検出信号は前記
コントローラCに入力されている。前記コントローラC
は、前記センサ17の検出信号に基づいて、前記接続管
16を流れる冷媒の圧力、温度を所定値に保持するよう
に、前記膨張弁9の開度を制御する機能を有している。
In the evaporator 14, the refrigerant removes heat of vaporization from the antifreeze coolant and vaporizes. The refrigerant that has passed through the evaporator 14 flows through a connection pipe 16 that connects the evaporator 14 and the CFC 2 and returns to the CFC 2. The connection pipe 1
6 is provided with a sensor 17 for detecting the pressure and temperature of the refrigerant flowing therethrough. The detection signal of the sensor 17 is input to the controller C. The controller C
Has a function of controlling the opening of the expansion valve 9 based on the detection signal of the sensor 17 so that the pressure and temperature of the refrigerant flowing through the connection pipe 16 are maintained at predetermined values.

【0018】次に図2,3により、前記蒸発器用冷媒供
給装置12について詳述する。図2は前記図1に示した
気液混相流移送管11、蒸発器用冷媒供給装置12、冷
媒接続路13、及び蒸発器14の詳細説明図、図3は前
記図2のIII−III線断面図である。図2,3において、
蒸発器用冷媒供給装置12は、小径円筒状部材21及び
有底円筒状部材22を有している。有底円筒状部材22
の内面には環状の凹溝が形成されており、この有底円筒
状部材22の内側に前記小径円筒状部材21が挿入さ
れ、固定されている。前記小径円筒状部材21の外側面
すなわち小径内壁21aと前記有底円筒状部材22の環
状の凹溝の内面すなわち大径内壁22aと、によって環
状の冷媒分配室23が形成されている。前記小径内壁2
1aには円周方向に沿って複数の冷媒流入口21bが形成
されている。前記小径円筒状部材21には、前記気液混
相流移送管11に接続する冷媒流入路21c及びこの冷
媒流入路21cから前記複数の冷媒流入口21bに気液混
相の冷媒を流通させる複数の冷媒連通孔21d(図3参
照)が形成されている。前記冷媒連通孔21d及び冷媒
流入口21bは、前記環状の冷媒分配室23に流入する
気液混相の冷媒が旋回するような方向を向いて形成され
ている。
Next, the evaporator refrigerant supply device 12 will be described in detail with reference to FIGS. 2 is a detailed explanatory view of the gas-liquid multiphase flow transfer pipe 11, the evaporator refrigerant supply device 12, the refrigerant connection path 13, and the evaporator 14 shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line III-III of FIG. FIG. 2 and 3,
The evaporator refrigerant supply device 12 includes a small-diameter cylindrical member 21 and a bottomed cylindrical member 22. Bottomed cylindrical member 22
An annular groove is formed on the inner surface of the small-diameter cylindrical member 22. The small-diameter cylindrical member 21 is inserted and fixed inside the bottomed cylindrical member 22. An annular refrigerant distribution chamber 23 is formed by the outer surface of the small-diameter cylindrical member 21, that is, the small-diameter inner wall 21 a, and the inner surface of the annular concave groove of the bottomed cylindrical member 22, that is, the large-diameter inner wall 22 a. The small diameter inner wall 2
A plurality of refrigerant inlets 21b are formed in 1a along the circumferential direction. The small-diameter cylindrical member 21 includes a refrigerant inflow passage 21c connected to the gas-liquid multiphase flow transfer pipe 11, and a plurality of refrigerants through which the gas-liquid multiphase refrigerant flows from the refrigerant inflow passage 21c to the plurality of refrigerant inflow ports 21b. A communication hole 21d (see FIG. 3) is formed. The refrigerant communication hole 21d and the refrigerant inflow port 21b are formed so as to face in a direction such that the gas-liquid mixed-phase refrigerant flowing into the annular refrigerant distribution chamber 23 swirls.

【0019】前記有底円筒状部材22の大径内壁22a
にはその円周方向に沿って複数の冷媒流出口22bが設
けられている。各冷媒流出口22bは、前記環状の冷媒
分配室23内から気液混相の冷媒を流出させるためのも
のである。各冷媒流出口22bはそれぞれ、冷媒連通孔
22cによって外部の冷媒接続路13と連通している。
蒸発器14の冷媒流入側は、仕切り壁14c(図2参
照)により複数の区画に分離されており、各区画にはそ
れぞれ所定の複数の冷媒流路14aが連通している。そ
して、前記複数の冷媒接続路13は、それぞれ前記仕切
り壁14cにより分離された各区画に連通する所定の複
数の冷媒流路14aに接続している。前記蒸発器14の
冷媒流入側において、仕切り壁14cにより分離されて
いた冷媒流路14aは、蒸発器14の冷媒流出側におい
て、合流し、前記接続管16(図1,2参照)に接続さ
れている。
Large-diameter inner wall 22a of the bottomed cylindrical member 22
Is provided with a plurality of refrigerant outlets 22b along its circumferential direction. Each of the refrigerant outlets 22b is for allowing a gas-liquid mixed-phase refrigerant to flow out of the annular refrigerant distribution chamber 23. Each of the refrigerant outlets 22b communicates with the external refrigerant connection path 13 through a refrigerant communication hole 22c.
The refrigerant inflow side of the evaporator 14 is divided into a plurality of sections by a partition wall 14c (see FIG. 2), and a predetermined plurality of refrigerant flow paths 14a communicate with each section. The plurality of refrigerant connection paths 13 are respectively connected to a plurality of predetermined refrigerant flow paths 14a communicating with each section separated by the partition wall 14c. The refrigerant flow path 14a separated by the partition wall 14c on the refrigerant inflow side of the evaporator 14 merges on the refrigerant outflow side of the evaporator 14 and is connected to the connection pipe 16 (see FIGS. 1 and 2). ing.

【0020】(実施例1の作用)次に、前述の構成を備
えた前記実施例1の作用を説明する。前記蒸発器14で
不凍性の冷却液の熱を奪って気化した冷媒(フロン)
は、前記接続管16を通る。接続管16を通る冷媒の温
度、圧力はコントローラCに入力され、コントローラC
は、前記センサ17の検出信号に基づいて、前記接続管
16を流れる冷媒の圧力、温度を所定値に保持するよう
に、前記膨張弁9の開度を制御する。フロンコンプレッ
サ2で圧縮されて昇温、昇圧した冷媒は凝縮器3に移送
される。凝縮器3において冷媒と凝縮用冷却剤との間で
熱交換が行われ、冷媒は凝縮され液化する。
(Operation of the First Embodiment) Next, the operation of the first embodiment having the above-described configuration will be described. Refrigerant (Freon) vaporized by removing heat of the antifreeze coolant in the evaporator 14
Pass through the connection pipe 16. The temperature and pressure of the refrigerant passing through the connection pipe 16 are input to the controller C,
Controls the opening degree of the expansion valve 9 based on the detection signal of the sensor 17 so that the pressure and temperature of the refrigerant flowing through the connection pipe 16 are maintained at predetermined values. The refrigerant which has been compressed by the Freon compressor 2 and has its temperature raised and its pressure increased is transferred to the condenser 3. Heat exchange is performed between the refrigerant and the condensing coolant in the condenser 3, and the refrigerant is condensed and liquefied.

【0021】前記凝縮器3で液化した冷媒、すなわち液
体状冷媒は、冷媒移送管6により移送され、冷却装置用
レシーバ7に流入する。冷却装置用レシーバ7に一旦貯
溜された液体状冷媒は液体状冷媒移送管8から膨張弁9
に移送される。前記液体状冷媒は前記膨張弁9により断
熱膨張して、冷媒の液相部分と気相部分との割合が所定
の値に制御された状態で、気液混相流移送管11を通っ
て蒸発器用冷媒供給装置12(図1,2参照)に流入す
る。図2,3において、蒸発器用冷媒供給装置12に流
入した気液混相の冷媒は、小径円筒状部材21の冷媒流
入口21bから環状の冷媒分配室23に流入し、旋回す
る。この旋回する気液混相の冷媒は、遠心力で有底円筒
状部材22の大径内壁22aの側に移動する。そして、
大径内壁22aに形成された複数の各冷媒流出口22bに
均一に分配される。仮に、図2で横方向(Y1−Y2方
向)の加速度が生じても、冷媒分配室23内で旋回して
いる気液混相の冷媒は、一方に偏ったりせず、前記複数
の冷媒流出口22bに均一に分配される。
The refrigerant liquefied in the condenser 3, ie, the liquid refrigerant, is transferred by the refrigerant transfer pipe 6 and flows into the cooling device receiver 7. The liquid refrigerant once stored in the cooling device receiver 7 is transferred from the liquid refrigerant transfer pipe 8 to the expansion valve 9.
Is transferred to The liquid refrigerant is adiabatically expanded by the expansion valve 9 and passes through the gas-liquid multiphase flow transfer pipe 11 in a state where the ratio between the liquid phase portion and the gas phase portion of the refrigerant is controlled to a predetermined value. The refrigerant flows into the refrigerant supply device 12 (see FIGS. 1 and 2). 2 and 3, the gas-liquid mixed-phase refrigerant flowing into the evaporator refrigerant supply device 12 flows into the annular refrigerant distribution chamber 23 from the refrigerant inlet 21b of the small-diameter cylindrical member 21 and swirls. The swirling gas-liquid mixed phase refrigerant moves toward the large-diameter inner wall 22a of the bottomed cylindrical member 22 by centrifugal force. And
The refrigerant is uniformly distributed to the plurality of refrigerant outlets 22b formed on the large-diameter inner wall 22a. Even if the acceleration in the horizontal direction (Y1-Y2 direction) occurs in FIG. 2, the refrigerant of the gas-liquid mixed phase swirling in the refrigerant distribution chamber 23 is not biased to one side and the plurality of refrigerant outlets 22b is evenly distributed.

【0022】前記各冷媒流出口22bから流出した気液
混相の冷媒は、冷媒連通孔22c、外部の冷媒接続路1
3を通って蒸発器14に流入する。図2から分かるよう
に、各冷媒接続路13は、仕切り壁14cによって仕切
られた区画に接続されているので、各区画に均一に気液
混相の冷媒が分配される。仮に、図2で横方向(Y1−
Y2方向)の加速度が生じても、前記仕切り壁14cで区
画された各部分に均一に分配された気液混相の冷媒は、
各区画に連通した前記所定の複数の冷媒流路14aを流
れるときに一方に偏っても(図4参照)、蒸発器14内
で全体的に一方に偏る(図13参照)ことはない。した
がって、各区画に連通する所定の複数の冷媒流路14a
毎に均一に気液混相の冷媒を流すことができるので、加
速度による熱交換率の低下を和らげることができる。そ
して蒸発器14において前記不凍性の冷却液との熱交換
により、気化した冷媒(フロン)は、前記接続管16を
通り、再び前記フロンコンプレッサ2に流入する。
The gas-liquid mixed-phase refrigerant flowing out of each of the refrigerant outlets 22b is supplied to the refrigerant communication hole 22c and the external refrigerant connection path 1c.
3 and flows into the evaporator 14. As can be seen from FIG. 2, since each refrigerant connection path 13 is connected to a partition partitioned by the partition wall 14c, the gas-liquid mixed-phase refrigerant is uniformly distributed to each partition. Assuming that the horizontal direction (Y1-
Even if an acceleration in the Y2 direction occurs, the gas-liquid mixed-phase refrigerant uniformly distributed to each section partitioned by the partition wall 14c is:
Even when the refrigerant flows in the predetermined plurality of refrigerant flow paths 14a communicating with the respective sections, the flow is biased to one side (see FIG. 4), but does not entirely bias to one side in the evaporator 14 (see FIG. 13). Therefore, a plurality of predetermined refrigerant flow paths 14a communicating with each section are provided.
Since the gas-liquid mixed phase refrigerant can flow uniformly every time, it is possible to mitigate a decrease in the heat exchange rate due to acceleration. Then, the refrigerant (Freon) vaporized by heat exchange with the antifreeze coolant in the evaporator 14 flows through the connection pipe 16 again into the Freon compressor 2.

【0023】(実施例2)次に、図5により本発明の実
施例2について説明する。図5は前記実施例1の図2に
対応する図である。なお、この実施例2の説明におい
て、前記実施例1の構成要素に対応する構成要素には同
一の符号を付して、その詳細な説明を省略する。この実
施例2は、蒸発器用冷媒供給装置12と蒸発器14とを
接続する冷媒接続路13が接続路形成プレートP内部に
形成された点で前記実施例1と相違している。他の点で
は実施例2は実施例1と同様である。図5において、冷
媒接続路13は、接続路形成プレートPを穿孔して形成
されている。接続路形成プレートPの上面は、蒸発器用
冷媒供給装置12下面と結合され、接続路形成プレート
Pの下面は蒸発器14の上面と結合されている。なお、
それらの結合面にはガスケット(図示せず)が配置され
ている。そして、前記有底円筒状部材22の冷媒連通口
22cと蒸発器14の前記仕切り壁14cで区画された各
部分とは、前記接続路形成プレートPに形成された冷媒
接続路13によって接続されている。前記接続路形成プ
レートPを用いることにより、冷却装置の組み立て作業
が楽になる。この実施例2も、前記実施例1と同様の作
用を奏する。、
(Embodiment 2) Next, Embodiment 2 of the present invention will be described with reference to FIG. FIG. 5 is a view corresponding to FIG. 2 of the first embodiment. In the description of the second embodiment, components corresponding to the components of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The second embodiment differs from the first embodiment in that a refrigerant connection path 13 for connecting the evaporator refrigerant supply device 12 and the evaporator 14 is formed inside the connection path forming plate P. In other respects, the second embodiment is the same as the first embodiment. In FIG. 5, the refrigerant connection path 13 is formed by perforating a connection path forming plate P. The upper surface of the connection path forming plate P is coupled to the lower surface of the evaporator refrigerant supply device 12, and the lower surface of the connection path forming plate P is coupled to the upper surface of the evaporator 14. In addition,
Gaskets (not shown) are arranged on the connection surfaces. The refrigerant communication port 22c of the bottomed cylindrical member 22 and each part of the evaporator 14 partitioned by the partition wall 14c are connected by a refrigerant connection path 13 formed in the connection path forming plate P. I have. By using the connection path forming plate P, the work of assembling the cooling device is facilitated. The second embodiment also has the same operation as the first embodiment. ,

【0024】(実施例3)次に、図6〜8により本発明
の実施例3について説明する。図6は前記実施例1の図
1に対応する図である。なお、この実施例3の説明にお
いて、前記実施例1の構成要素に対応する構成要素には
同一の符号を付して、その詳細な説明を省略する。この
実施例3では、前記実施例1の図1に示す膨張弁9、気
液混相流移送管11、及び蒸発器用冷媒供給装置12の
代わりに、膨張弁の機能を有する蒸発器用冷媒供給装置
32が用いられている点で前記実施例1と相違してい
る。他の点では実施例2は実施例1と同様である。図6
において、液体状冷媒移送管6で移送された冷媒を一旦
貯溜する冷却装置用レシーバ7は、液体状冷媒移送管8
によって蒸発器用冷媒供給装置32に接続されている。
前記液体状冷媒移送管8に接続された蒸発器用冷媒供給
装置32は膨張弁の機能を有しており、コントローラC
によって膨張弁としての開度を制御されるように構成さ
れている。
Third Embodiment Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a view corresponding to FIG. 1 of the first embodiment. In the description of the third embodiment, components corresponding to the components of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. In the third embodiment, instead of the expansion valve 9, the gas-liquid multi-phase flow transfer pipe 11, and the evaporator refrigerant supply device 12 shown in FIG. 1 of the first embodiment, the evaporator refrigerant supply device 32 having the function of an expansion valve is provided. Is different from the first embodiment in that the first embodiment is used. In other respects, the second embodiment is the same as the first embodiment. FIG.
, The cooling device receiver 7 for temporarily storing the refrigerant transferred by the liquid refrigerant transfer pipe 6 is provided with a liquid refrigerant transfer pipe 8.
It is connected to the evaporator refrigerant supply device 32 by the.
The evaporator refrigerant supply device 32 connected to the liquid refrigerant transfer pipe 8 has the function of an expansion valve, and the controller C
The opening degree of the expansion valve is controlled by the control valve.

【0025】膨張弁としての機能を有する蒸発器用冷媒
供給装置32は、液体状冷媒移送管8から移送される液
体状冷媒を膨張させて気液混相状態としてから、その気
液混相冷媒を複数の冷媒接続路13に均一に分配する機
能を有している。そして、複数の冷媒接続路13の各々
は前記実施例1と同様に、蒸発器14の多数の冷媒流路
14aのうちの所定の複数の冷媒流路14aにそれぞれ接
続されている。
The refrigerant supply device 32 for the evaporator, which functions as an expansion valve, expands the liquid refrigerant transferred from the liquid refrigerant transfer pipe 8 into a gas-liquid mixed state, and then converts the gas-liquid mixed phase refrigerant into a plurality of liquid refrigerants. It has a function of uniformly distributing the refrigerant to the refrigerant connection path 13. Each of the plurality of refrigerant connection paths 13 is connected to a predetermined one of the plurality of refrigerant flow paths 14a of the plurality of refrigerant flow paths 14a of the evaporator 14, similarly to the first embodiment.

【0026】次に図7,8により、前記蒸発器用冷媒供
給装置32について詳述する。図7は前記図6に示した
液体状冷媒移送管8、蒸発器用冷媒供給装置32、冷媒
接続路13、及び蒸発器14の詳細説明図、図8は蒸発
器用冷媒供給装置32の詳細説明図で、図8Aは前記図
7のVIIIA−VIIIA線断面図、図8Bは前記図7のVII
IB−VIIIB線断面図、である。図7,8において、蒸発
器用冷媒供給装置32は、小径円柱状部材33及び大径
円筒状部材34を有している。大径円筒状部材34の内
面には前記小径円柱状部材33が挿入されている。前記
小径円柱状部材33は、大径円筒状部材34の上下に固
定された上カバー35及び下カバー36により、大径円
筒状部材34内側に保持されている。また、小径円柱状
部材33は、ベアリング38,39により前記大径円筒
状部材34内側で回転可能であり、さらに、コイル41
により回転位置を制御可能である。この実施例3では前
記小径円柱状部材33が本発明の液体冷媒供給部材とし
ての機能を有しており、大径円筒状部材34が本発明の
気液混相冷媒流出部材としての機能を有している。
Next, the evaporator refrigerant supply device 32 will be described in detail with reference to FIGS. 7 is a detailed explanatory diagram of the liquid refrigerant transfer pipe 8, the evaporator refrigerant supply device 32, the refrigerant connection path 13, and the evaporator 14 shown in FIG. 6, and FIG. 8 is a detailed explanatory diagram of the evaporator refrigerant supply device 32. 8A is a sectional view taken along the line VIIIA-VIIIA of FIG. 7, and FIG. 8B is a sectional view taken along the line VII of FIG.
FIG. 7 is a sectional view taken along line IB-VIIIB. 7 and 8, the evaporator refrigerant supply device 32 has a small-diameter cylindrical member 33 and a large-diameter cylindrical member 34. The small-diameter cylindrical member 33 is inserted into the inner surface of the large-diameter cylindrical member 34. The small-diameter cylindrical member 33 is held inside the large-diameter cylindrical member 34 by an upper cover 35 and a lower cover 36 fixed above and below the large-diameter cylindrical member 34. The small-diameter cylindrical member 33 is rotatable inside the large-diameter cylindrical member 34 by bearings 38 and 39, and a coil 41
Can control the rotational position. In the third embodiment, the small-diameter cylindrical member 33 has a function as a liquid refrigerant supply member of the present invention, and the large-diameter cylindrical member 34 has a function as a gas-liquid mixed-phase refrigerant outflow member of the present invention. ing.

【0027】前記小径円柱状部材33の外側面には、環
状の凹溝が形成されており、その環状の凹溝の内面と大
径円筒状部材34の内面とによって環状の冷媒分配室4
2が形成されている。前記小径円柱状部材33の前記凹
溝底面には円周方向に沿って複数の冷媒流入口33aが
形成されている。前記複数の各冷媒流入口33aにはそ
れぞれ冷媒連通孔33bの一端が接続されており、冷媒
連通孔33bの他端は小径円柱部材33の外側面(すな
わち大径円筒状部材34の内側面との接触面)に円周に
沿って配置された液体冷媒供給口33cに接続されてい
る。
An annular concave groove is formed on the outer surface of the small-diameter cylindrical member 33, and an annular refrigerant distribution chamber 4 is formed by the inner surface of the annular concave groove and the inner surface of the large-diameter cylindrical member 34.
2 are formed. A plurality of refrigerant inlets 33a are formed on the bottom surface of the concave groove of the small-diameter cylindrical member 33 along the circumferential direction. One end of a refrigerant communication hole 33b is connected to each of the plurality of refrigerant inlets 33a, and the other end of the refrigerant communication hole 33b is connected to an outer surface of the small-diameter cylindrical member 33 (that is, an inner surface of the large-diameter cylindrical member 34). (A contact surface) is connected to a liquid refrigerant supply port 33c arranged along the circumference.

【0028】前記大径円筒状部材34の外壁には、外部
の前記液体状冷媒移送管8と、内部の前記環状の冷媒分
配室42とを接続する貫通孔34aが形成されている。
また、前記大径円筒状部材34の外壁内面には、前記複
数の液体冷媒供給口33cに対応して複数の冷媒受入れ
口34bが形成されている。前記各冷媒受入れ口34b
は、それぞれ冷媒連通孔34cによって外部の冷媒接続
路13と連通している。前記液体冷媒供給口33cと冷
媒受入れ口34bとの連通面積は、前記小径円柱状部材
33を回転することによって調整可能である。前記液体
冷媒供給口33c及び冷媒受入れ口34b間の連通面積部
分を絞った状態のときに、その部分を通って前記冷媒連
通孔34cに流入した冷媒は、断熱膨張により気液混相
の冷媒となる。したがって、前記液体冷媒供給口33
c、冷媒受入れ口34b、及び冷媒連通孔34cにより、
膨張弁の機能を実現している。そして膨張弁として機能
する部分の弁の開度は、コントローラCによって作動す
る前記コイル41により小径円柱状部材33回転位置を
調節することにより制御可能である
On the outer wall of the large-diameter cylindrical member 34, there is formed a through hole 34a for connecting the external liquid refrigerant transfer pipe 8 and the internal annular refrigerant distribution chamber 42.
A plurality of refrigerant receiving ports 34b are formed on the inner surface of the outer wall of the large-diameter cylindrical member 34 in correspondence with the plurality of liquid refrigerant supply ports 33c. Each of the refrigerant receiving ports 34b
Are respectively connected to the external refrigerant connection path 13 through the refrigerant communication holes 34c. The communication area between the liquid refrigerant supply port 33c and the refrigerant receiving port 34b can be adjusted by rotating the small-diameter cylindrical member 33. When the communication area between the liquid refrigerant supply port 33c and the refrigerant receiving port 34b is narrowed, the refrigerant flowing into the refrigerant communication hole 34c through the part becomes a gas-liquid mixed phase refrigerant by adiabatic expansion. . Therefore, the liquid refrigerant supply port 33
c, the refrigerant receiving port 34b, and the refrigerant communication hole 34c,
The function of the expansion valve is realized. The degree of opening of the valve that functions as the expansion valve can be controlled by adjusting the rotational position of the small-diameter cylindrical member 33 by the coil 41 operated by the controller C.

【0029】蒸発器14の冷媒流入側は、仕切り壁14
cにより複数の区画に分離されており、各区画にはそれ
ぞれ所定の複数の冷媒流路14aが連通している。そし
て、前記複数の冷媒接続路13は、それぞれ前記仕切り
壁14cにより分離された各区画に連通する所定の複数
の冷媒流路14aに接続している。前記蒸発器14の冷
媒流入側において、仕切り壁14cにより分離されてい
た冷媒流路14aは、蒸発器14の冷媒流出側におい
て、合流し、前記接続管16(図6,7参照)に接続さ
れている。以上説明したこの実施例3の蒸発器用冷媒供
給装置32は、前記実施例1の図1に示す膨張弁9、気
液混相流移送管11、及び蒸発器用冷媒供給装置12の
代わりに使用されており、その他の構成は前記実施例1
と同様である。
The refrigerant inflow side of the evaporator 14 is
The partition is divided into a plurality of sections by c, and a plurality of predetermined refrigerant flow paths 14a communicate with each section. The plurality of refrigerant connection paths 13 are respectively connected to a plurality of predetermined refrigerant flow paths 14a communicating with each section separated by the partition wall 14c. The refrigerant flow path 14a separated by the partition wall 14c on the refrigerant inflow side of the evaporator 14 merges on the refrigerant outflow side of the evaporator 14 and is connected to the connection pipe 16 (see FIGS. 6 and 7). ing. The evaporator refrigerant supply device 32 of the third embodiment described above is used instead of the expansion valve 9, the gas-liquid multi-phase flow transfer pipe 11, and the evaporator refrigerant supply device 12 of the first embodiment shown in FIG. And other configurations are the same as those of the first embodiment.
Is the same as

【0030】(実施例3の作用)次に、前述の構成を備
えた前記実施例3の作用を説明する。前記蒸発器14で
不凍性の冷却液の熱を奪って気化した冷媒(フロン)
は、前記接続管16を通る。接続管16を通る冷媒の温
度、圧力はコントローラCに入力され、コントローラC
は、前記センサ17の検出信号に基づいて、前記接続管
16を流れる冷媒の圧力、温度を所定値に保持するよう
に、前記蒸発器用冷媒供給装置32の小径円柱状部材3
3を回転させて、前記液体冷媒供給口33c及び冷媒受
入れ口34b間の連通面積の大きさを調整する。フロン
コンプレッサ2で圧縮されて昇温、昇圧した冷媒は凝縮
器3に移送される。凝縮器3において冷媒と凝縮用冷却
剤との間で熱交換が行われ、冷媒は凝縮され液化する。
(Operation of Third Embodiment) Next, the operation of the third embodiment having the above-described configuration will be described. Refrigerant (Freon) vaporized by removing heat of the antifreeze coolant in the evaporator 14
Pass through the connection pipe 16. The temperature and pressure of the refrigerant passing through the connection pipe 16 are input to the controller C,
The small-diameter cylindrical member 3 of the evaporator refrigerant supply device 32 is configured to maintain the pressure and temperature of the refrigerant flowing through the connection pipe 16 at predetermined values based on the detection signal of the sensor 17.
3, the size of the communication area between the liquid refrigerant supply port 33c and the refrigerant receiving port 34b is adjusted. The refrigerant which has been compressed by the Freon compressor 2 and has its temperature raised and its pressure increased is transferred to the condenser 3. Heat exchange is performed between the refrigerant and the condensing coolant in the condenser 3, and the refrigerant is condensed and liquefied.

【0031】前記凝縮器3で液化した冷媒、すなわち液
体状冷媒は、冷媒移送管6により移送され、冷却装置用
レシーバ7に流入する。冷却装置用レシーバ7に一旦貯
溜された液体状冷媒は液体状冷媒移送管8から前記蒸発
器用冷媒供給装置32に移送される。前記液体状冷媒は
前記蒸発器用冷媒供給装置32の前記貫通孔34a、冷
媒分配室42、複数の各冷媒流入口33a、冷媒連通孔
33b、を順次通って液体冷媒供給口33cに流れる。こ
の液体状冷媒は、前記液体冷媒供給口33c及び冷媒受
入れ口34b間の絞られた連通面積部分を通って前記冷
媒連通孔34cに流入したとき、すなわち冷媒接続路1
3側に流入したとき、断熱膨張により気液混相の冷媒と
なる。前記液体冷媒供給口33c及び冷媒受入れ口34b
間の連通面積は、前記小径円柱部材33の回転位置によ
り制御されており、その制御により、前記連通面積部分
で断熱膨張した冷媒の液相部分と気相部分との割合が所
定の値に制御される。このようにして状態が制御された
気液混相の冷媒は、前記冷媒連通孔34c、冷媒接続路
13を通って蒸発器14に流入する。
The refrigerant liquefied in the condenser 3, that is, the liquid refrigerant is transferred by the refrigerant transfer pipe 6 and flows into the cooling device receiver 7. The liquid refrigerant once stored in the cooling device receiver 7 is transferred from the liquid refrigerant transfer pipe 8 to the evaporator refrigerant supply device 32. The liquid refrigerant flows to the liquid refrigerant supply port 33c through the through hole 34a, the refrigerant distribution chamber 42, the plurality of refrigerant inlets 33a, and the refrigerant communication holes 33b of the evaporator refrigerant supply device 32 in this order. When the liquid refrigerant flows into the refrigerant communication hole 34c through the narrowed communication area between the liquid refrigerant supply port 33c and the refrigerant receiving port 34b,
When flowing into the third side, the refrigerant becomes a gas-liquid mixed phase refrigerant due to adiabatic expansion. The liquid refrigerant supply port 33c and the refrigerant receiving port 34b
The communication area between them is controlled by the rotational position of the small-diameter cylindrical member 33, whereby the ratio between the liquid phase portion and the gas phase portion of the refrigerant adiabatically expanded in the communication area portion is controlled to a predetermined value. Is done. The gas-liquid mixed-phase refrigerant whose state is controlled in this way flows into the evaporator 14 through the refrigerant communication hole 34c and the refrigerant connection path 13.

【0032】図7から分かるように、各冷媒接続路13
は、仕切り壁14cによって仕切られた区画に接続され
ているので、各区画に均一に気液混相の冷媒が分配され
る。そして蒸発器14において前記不凍性の冷却液との
熱交換により、気化した冷媒(フロン)は、前記接続管
16を通り、再び前記フロンコンプレッサ2に流入す
る。この実施例3も実施例1と同様に、各区画に連通す
る所定の複数の冷媒流路14a毎に均一に気液混相の冷
媒を流すことができるので、加速度による熱交換率の低
下を和らげることができる。
As can be seen from FIG. 7, each refrigerant connection path 13
Is connected to the sections partitioned by the partition wall 14c, so that the gas-liquid mixed-phase refrigerant is uniformly distributed to each section. Then, the refrigerant (Freon) vaporized by heat exchange with the antifreeze coolant in the evaporator 14 flows through the connection pipe 16 again into the Freon compressor 2. In the third embodiment, similarly to the first embodiment, a gas-liquid mixed-phase refrigerant can flow uniformly in each of a plurality of predetermined refrigerant flow paths 14a communicating with each section, so that a decrease in the heat exchange rate due to acceleration is mitigated. be able to.

【0033】(実施例4)次に、図9により本発明の実
施例4について説明する。図9は前記実施例3の図7に
対応する図である。なお、この実施例4の説明におい
て、前記実施例3の構成要素に対応する構成要素には同
一の符号を付して、その詳細な説明を省略する。この実
施例4は、蒸発器用冷媒供給装置32の構造が前記実施
例3と相違しているが、その他の点では前記実施例3と
同様である。なお、この実施例4では小径円柱状部材3
3が本発明の液体冷媒供給部材としての機能を有してお
り、下カバー36が本発明の気液混相冷媒流出部材とし
ての機能を有している。図9において、前記小径円柱状
部材33の外側面には、環状の凹溝が形成されており、
その環状の凹溝の内面と大径円筒状部材34の内面とに
よって環状の冷媒分配室42が形成されている。前記小
径円柱状部材33の前記凹溝底面には円周方向に沿って
複数の冷媒流入口33aが形成されている。前記複数の
各冷媒流入口33aにはそれぞれ冷媒連通孔33bの一端
が接続されており、冷媒連通孔33bの他端は小径円柱
部材33の外側底面(下カバー36内側底面との接触
面)に円周に沿って配置された液体冷媒供給口33cに
接続されている。この実施例4では、前記液体冷媒供給
孔33cは、小径円柱状部材33の底面に形成されてい
る点で、外側周面に形成された前記実施例3と相違して
いる。
Embodiment 4 Next, Embodiment 4 of the present invention will be described with reference to FIG. FIG. 9 is a view corresponding to FIG. 7 of the third embodiment. In the description of the fourth embodiment, the same reference numerals are given to components corresponding to the components of the third embodiment, and a detailed description thereof will be omitted. The fourth embodiment differs from the third embodiment in the structure of the evaporator refrigerant supply device 32, but is otherwise the same as the third embodiment. In the fourth embodiment, the small-diameter cylindrical member 3
3 has a function as a liquid refrigerant supply member of the present invention, and the lower cover 36 has a function as a gas-liquid mixed phase refrigerant outflow member of the present invention. In FIG. 9, an annular concave groove is formed on the outer surface of the small-diameter cylindrical member 33,
An annular refrigerant distribution chamber 42 is formed by the inner surface of the annular groove and the inner surface of the large-diameter cylindrical member 34. A plurality of refrigerant inlets 33a are formed on the bottom surface of the concave groove of the small-diameter cylindrical member 33 along the circumferential direction. One end of a refrigerant communication hole 33b is connected to each of the plurality of refrigerant inlets 33a, and the other end of the refrigerant communication hole 33b is formed on the outer bottom surface of the small-diameter cylindrical member 33 (contact surface with the inner bottom surface of the lower cover 36). It is connected to the liquid refrigerant supply port 33c arranged along the circumference. The fourth embodiment is different from the third embodiment in that the liquid refrigerant supply hole 33c is formed on the bottom surface of the small-diameter cylindrical member 33 on the outer peripheral surface.

【0034】前記下カバー36の内側底面(すなわち前
記小径円柱状部材33の外側底面との接触面)には、前
記複数の液体冷媒供給口33cに対応して複数の冷媒受
入れ口36aが形成されている。前記各冷媒受入れ口3
6aは、それぞれ冷媒連通孔36bによって外部の冷媒接
続路13と連通している。前記液体冷媒供給口33cと
冷媒受入れ口36aとの連通面積は、前記小径円柱状部
材33を回転することによって調整可能である。前記液
体冷媒供給口33c及び冷媒受入れ口36a間の連通面積
部分を絞った状態のときに、その部分を通って前記冷媒
連通孔36bに流入した冷媒は、断熱膨張により気液混
相の冷媒となる。したがって、前記液体冷媒供給口33
c、冷媒受入れ口36a、及び冷媒連通孔36bにより、
膨張弁の機能を実現している。そして膨張弁として機能
する部分の弁の開度は、コントローラCによって作動す
る前記コイル41を用いて小径円柱部材33の回転位置
を調節することにより制御可能であるこの実施例4も、
前記実施例3と同様の作用を奏する。、
On the inner bottom surface of the lower cover 36 (that is, the contact surface with the outer bottom surface of the small-diameter cylindrical member 33), a plurality of refrigerant receiving ports 36a are formed corresponding to the plurality of liquid refrigerant supply ports 33c. ing. Each refrigerant receiving port 3
6a are each connected with the external refrigerant connection path 13 by the refrigerant communication hole 36b. The communication area between the liquid refrigerant supply port 33c and the refrigerant receiving port 36a can be adjusted by rotating the small-diameter cylindrical member 33. When the communication area between the liquid refrigerant supply port 33c and the refrigerant receiving port 36a is narrowed, the refrigerant that has flowed into the refrigerant communication hole 36b through that part becomes a gas-liquid mixed phase refrigerant by adiabatic expansion. . Therefore, the liquid refrigerant supply port 33
c, by the refrigerant receiving port 36a, and the refrigerant communication hole 36b,
The function of the expansion valve is realized. The opening degree of the valve that functions as the expansion valve can be controlled by adjusting the rotational position of the small-diameter cylindrical member 33 using the coil 41 operated by the controller C.
The same operation as in the third embodiment is provided. ,

【0035】(変更例)以上、本発明の実施例を詳述し
たが、本発明は、前記実施例に限定されるものではな
く、特許請求の範囲に記載された本発明の要旨の範囲内
で、種々の小設計変更を行うことが可能である。
(Modifications) Although the embodiments of the present invention have been described in detail, the present invention is not limited to the above-described embodiments, but falls within the scope of the present invention described in the appended claims. Thus, various small design changes can be made.

【0036】例えば、本発明は航空機以外の各種乗り物
用の冷却装置用凝縮器にも適用することができる。ま
た、前記図7に示す実施例3の変更例として、図10に
示す構成とすることが可能である。この図10に示すも
のは、環状の冷媒分配室42が小径円柱状部材33の内
部に形成されている。そして、小径円柱状部材33の外
側面には、その円周面に沿って複数の液体冷媒供給口3
3cが形成されている。この液状冷媒供給口33cは前記
冷媒分配室42に接続されている。また、大径円筒状部
材34の内側面には、前記液体状冷媒供給口33cに対
応して冷媒受入れ口34bが形成されている。この冷媒
受入れ口34bは、それぞれ冷媒連通孔34cによって外
部の冷媒接続路13と連通している。前記図10に示し
た変更例も、前記実施例3と同様の作用を奏する。ま
た、前記図9に示す実施例4の変更例として、図11に
示す構成とすることが可能である。この図11に示すも
のは、環状の冷媒分配室42が、大径円筒状部材34内
部に形成されている点で、前記図9に示す実施例4と相
違している。この図11に示した変更例も、前記図9に
示した実施例4と同様の作用を奏する。さらに、前記実
施例3,4、又は図10、11に示した変更例におい
て、冷媒分配室42を、上下に多段に配置して、各冷媒
分配室42に対して液体状冷媒供給口、及び冷媒受入れ
口を設ける構造とすることも可能である。さらにまた、
前記液体冷媒供給口33c及び冷媒受入れ口34b,36
aの形状はそれぞれ任意の形状を採用することが可能で
あり、例えば円、又は楕円等を採用することが可能であ
る。そしてさらに、前記膨張弁9の開度は、接続管16
に取り付けた感温筒の圧力によりコントローラを介さず
に直接制御することが可能である。
For example, the present invention can be applied to a condenser for a cooling device for various vehicles other than an aircraft. Further, as a modification of the third embodiment shown in FIG. 7, the configuration shown in FIG. 10 can be adopted. In FIG. 10, an annular refrigerant distribution chamber 42 is formed inside a small-diameter cylindrical member 33. The outer surface of the small-diameter cylindrical member 33 has a plurality of liquid coolant supply ports 3 along its circumferential surface.
3c is formed. The liquid refrigerant supply port 33c is connected to the refrigerant distribution chamber 42. Further, a coolant receiving port 34b is formed on the inner surface of the large-diameter cylindrical member 34 so as to correspond to the liquid coolant supply port 33c. Each of the refrigerant receiving ports 34b communicates with the external refrigerant connection path 13 through a refrigerant communication hole 34c. The modification shown in FIG. 10 has the same operation as the third embodiment. Further, as a modification of the fourth embodiment shown in FIG. 9, the configuration shown in FIG. 11 can be adopted. This embodiment shown in FIG. 11 differs from the fourth embodiment shown in FIG. 9 in that an annular refrigerant distribution chamber 42 is formed inside the large-diameter cylindrical member 34. The modification shown in FIG. 11 also has the same operation as that of the fourth embodiment shown in FIG. Further, in the third and fourth embodiments or the modified examples shown in FIGS. 10 and 11, the refrigerant distribution chambers 42 are arranged in multiple stages vertically, and a liquid refrigerant supply port is provided for each refrigerant distribution chamber 42. It is also possible to adopt a structure in which a coolant receiving port is provided. Furthermore,
The liquid refrigerant supply port 33c and the refrigerant receiving ports 34b, 36
Any shape can be adopted as the shape of a, and for example, a circle or an ellipse can be adopted. Further, the opening degree of the expansion valve 9 is determined by the connection pipe 16.
It is possible to directly control by the pressure of the temperature-sensitive cylinder attached to the controller without using a controller.

【0037】[0037]

【発明の効果】前述の構成を備えた本発明の蒸発器用冷
媒供給装置は、次の効果(E01)を奏する。 (E01) 乗り物に加速度又は減速度が生じた場合で
も、蒸発器の冷媒流路に均一に冷媒が流れるようにする
ことができる。
The refrigerant supply device for an evaporator according to the present invention having the above-described structure has the following effect (E01). (E01) Even if acceleration or deceleration occurs in the vehicle, the refrigerant can be made to flow uniformly in the refrigerant flow path of the evaporator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明の実施例1の蒸発器用冷媒供給
装置を有する冷却装置Uの説明図である。
FIG. 1 is an explanatory diagram of a cooling device U having a refrigerant supply device for an evaporator according to a first embodiment of the present invention.

【図2】 図2は前記図1に示した気液混相流移送管1
1、蒸発器用冷媒供給装置12、冷媒接続路13、及び
蒸発器14の詳細説明図である。
FIG. 2 is a gas-liquid multiphase flow transfer pipe 1 shown in FIG.
1 is a detailed explanatory view of a refrigerant supply device 12 for an evaporator, a refrigerant connection path 13, and an evaporator 14.

【図3】 図3は前記図2のIII−III線断面図である。FIG. 3 is a sectional view taken along the line III-III of FIG. 2;

【図4】 図4は本発明の実施例1の作用説明図であ
る。
FIG. 4 is an operation explanatory view of the first embodiment of the present invention.

【図5】 図5は本発明の実施例2の説明図である。FIG. 5 is an explanatory diagram of Embodiment 2 of the present invention.

【図6】 図6は本発明の実施例3の蒸発器用冷媒供給
装置を有する冷却装置Uの説明図である。
FIG. 6 is an explanatory view of a cooling device U having a refrigerant supply device for an evaporator according to a third embodiment of the present invention.

【図7】 図7は前記図6に示した液体状冷媒移送管
8、蒸発器用冷媒供給装置32、冷媒接続路13、及び
蒸発器14の詳細説明図である。
FIG. 7 is a detailed explanatory view of the liquid refrigerant transfer pipe 8, the evaporator refrigerant supply device 32, the refrigerant connection path 13, and the evaporator 14 shown in FIG.

【図8】 図8は蒸発器用冷媒供給装置32の詳細説明
図で、図8Aは前記図7のVIIIA−VIIIA線断面図、図
8Bは前記図7のVIIIB−VIIIB線断面図、である。
8 is a detailed explanatory view of the refrigerant supply device 32 for the evaporator, FIG. 8A is a sectional view taken along the line VIIIA-VIIIA of FIG. 7, and FIG. 8B is a sectional view taken along the line VIIIB-VIIIB of FIG.

【図9】 図9は本発明の実施例4の説明図である。FIG. 9 is an explanatory diagram of Embodiment 4 of the present invention.

【図10】 図10は本発明の実施例3の変更例の説明
図である。
FIG. 10 is an explanatory diagram of a modification of the third embodiment of the present invention.

【図11】 図11は本発明の実施例4の変更例の説明
図である。
FIG. 11 is an explanatory diagram of a modification of the fourth embodiment of the present invention.

【図12】 図12は従来技術の説明図である。FIG. 12 is an explanatory diagram of a conventional technique.

【図13】 図13は従来技術の作用説明図である。FIG. 13 is an operation explanatory view of the conventional technique.

【符号の説明】[Explanation of symbols]

12…蒸発器用冷媒供給装置、13…冷媒接続路、14
…蒸発器、14a…冷媒流路、14b…冷却流体用流路、
21a…小径内壁、21b…冷媒流入口、22a…大径内
壁、22b…冷媒流出口、23…冷媒分配室、32…蒸
発器用冷媒供給装置、33…液体冷媒供給部材(小径円
柱状部材)、33c…液体冷媒供給口、34…気液混相
冷媒流出部材(大径円筒状部材)、34b…冷媒受入れ
口、36…気液混相冷媒流出部材(下カバー)、36a
…冷媒受入れ口、
12: refrigerant supply device for evaporator, 13: refrigerant connection path, 14
... Evaporator, 14a ... Refrigerant flow path, 14b ... Cooling fluid flow path,
21a: small-diameter inner wall, 21b: refrigerant inlet, 22a: large-diameter inner wall, 22b: refrigerant outlet, 23: refrigerant distribution chamber, 32: evaporator refrigerant supply device, 33: liquid refrigerant supply member (small-diameter cylindrical member), 33c: liquid refrigerant supply port, 34: gas-liquid mixed-phase refrigerant outflow member (large-diameter cylindrical member), 34b: refrigerant receiving port, 36 ... gas-liquid mixed-phase refrigerant outflow member (lower cover), 36a
… Refrigerant inlet,

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−147071(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 41/00 F25B 39/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-147071 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 41/00 F25B 39/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気液混相の冷媒が流れる複数の冷媒流路
と冷却用の流体が流れる複数の冷却流体用流路とが設け
られ、前記冷媒及び冷却用流体間の熱交換を行う蒸発器
に、前記冷媒を供給する蒸発器用冷媒供給装置におい
て、下記の構成要件(A01)〜(A05)を備えたことを
特徴とする蒸発器用冷媒供給装置、(A01) 円筒状の
小径内壁及び大径内壁により形成される環状の冷媒分配
室、(A02) 前記小径内壁の円周方向に沿って設けら
れ、前記環状の冷媒分配室内に気液混相の冷媒を旋回さ
せるように流入させる複数の冷媒流入口、(A03) 前
記大径内壁の円周方向に沿って設けられ、前記環状の冷
媒分配室内に冷媒を流出させる複数の冷媒流出口、(A
04) 前記複数の冷媒流入口に気液混相の冷媒を供給す
る装置、(A05) 前記複数の冷媒流出口を前記蒸発器
の所定の冷媒流路にそれぞれ接続する複数の冷媒接続
路。
An evaporator is provided with a plurality of refrigerant flow paths through which a gas-liquid mixed-phase refrigerant flows and a plurality of cooling fluid flow paths through which a cooling fluid flows, and performs heat exchange between the refrigerant and the cooling fluid. A refrigerant supply device for an evaporator for supplying the refrigerant, comprising the following constituent features (A01) to (A05): (A01) a cylindrical small-diameter inner wall and a large diameter An annular refrigerant distribution chamber formed by an inner wall, (A02) a plurality of refrigerant flows provided along a circumferential direction of the small-diameter inner wall and for causing a gas-liquid mixed-phase refrigerant to flow into the annular refrigerant distribution chamber so as to swirl; An inlet, (A03) a plurality of refrigerant outlets that are provided along the circumferential direction of the large-diameter inner wall and allow the refrigerant to flow into the annular refrigerant distribution chamber;
04) A device for supplying a gas-liquid mixed-phase refrigerant to the plurality of refrigerant inflow ports, (A05) a plurality of refrigerant connection paths respectively connecting the plurality of refrigerant outflow ports to predetermined refrigerant flow paths of the evaporator.
【請求項2】 気液混相の冷媒が流れる複数の冷媒流路
と冷却用の流体が流れる複数の冷却流体用流路とが設け
られ、前記冷媒及び冷却用流体間の熱交換を行う蒸発器
に、前記冷媒を供給する蒸発器用冷媒供給装置におい
て、下記の構成要件(A06)〜(A010)を備えたこと
を特徴とする蒸発器用冷媒供給装置、(A06) 互いの
接触面が面接触した状態で相対的に回転可能な液体冷媒
供給部材及び気液混相冷媒流出部材、(A07) 前記液
体冷媒供給部材の前記接触面に円周に沿って形成された
複数の液体冷媒供給口、(A08) 前記気液混相冷媒流
出部材の前記接触面に前記複数の液体冷媒供給口に対応
して形成された複数の冷媒受入れ口、(A09) 前記複
数の冷媒供給口に液体状の冷媒を供給する装置、(A01
0) 前記複数の冷媒受入れ口を前記蒸発器の所定の冷
媒流路にそれぞれ接続する複数の冷媒接続路。
2. An evaporator provided with a plurality of refrigerant flow paths through which a gas-liquid mixed-phase refrigerant flows and a plurality of cooling fluid flow paths through which a cooling fluid flows, and performing heat exchange between the refrigerant and the cooling fluid. Further, in the refrigerant supply device for an evaporator for supplying the refrigerant, the following configuration requirements (A06) to (A010) are provided, and the refrigerant supply device for an evaporator (A06) is in surface contact with each other. A liquid refrigerant supply member and a gas-liquid mixed phase refrigerant outflow member that are relatively rotatable in a state, (A07) a plurality of liquid refrigerant supply ports formed along the circumference on the contact surface of the liquid refrigerant supply member, (A08) A plurality of refrigerant receiving ports formed on the contact surface of the gas-liquid mixed phase refrigerant outflow member so as to correspond to the plurality of liquid refrigerant supply ports; (A09) supplying a liquid refrigerant to the plurality of refrigerant supply ports; Device, (A01
0) A plurality of refrigerant connection paths for connecting the plurality of refrigerant receiving ports to predetermined refrigerant channels of the evaporator, respectively.
JP29340392A 1992-10-30 1992-10-30 Refrigerant supply device for evaporator Expired - Fee Related JP3218734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29340392A JP3218734B2 (en) 1992-10-30 1992-10-30 Refrigerant supply device for evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29340392A JP3218734B2 (en) 1992-10-30 1992-10-30 Refrigerant supply device for evaporator

Publications (2)

Publication Number Publication Date
JPH06147697A JPH06147697A (en) 1994-05-27
JP3218734B2 true JP3218734B2 (en) 2001-10-15

Family

ID=17794320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29340392A Expired - Fee Related JP3218734B2 (en) 1992-10-30 1992-10-30 Refrigerant supply device for evaporator

Country Status (1)

Country Link
JP (1) JP3218734B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448085B2 (en) 2014-12-19 2019-01-09 ケミカルグラウト株式会社 Ground freezing method and ground freezing system
KR102670381B1 (en) * 2023-05-17 2024-05-28 고려대학교 산학협력단 Falling film type evaporator

Also Published As

Publication number Publication date
JPH06147697A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
JP3265649B2 (en) Refrigeration cycle
US7770412B2 (en) Integrated unit for refrigerant cycle device and manufacturing method of the same
US7520142B2 (en) Ejector type refrigerating cycle
JP2002130849A (en) Cooling cycle and its control method
US5065590A (en) Refrigeration system with high speed, high frequency compressor motor
JP3218734B2 (en) Refrigerant supply device for evaporator
JP2004058863A (en) Air conditioner for vehicle
JPH10103812A (en) Evaporator attached with auxiliary heat exchanger and expansion valve
JP2004531682A (en) Manifold for cooling system
KR20040069287A (en) Supercritical refrigerating cycle
JPH01252895A (en) Heat exchanger for refrigerating cycle
JP4265008B2 (en) Aircraft cooling system
JP3223572B2 (en) Cooling system condenser
JPH0650615A (en) Freezing cycle
US20070271943A1 (en) Air-Conditioning System Provided With a Heat Pump
CN113212097A (en) System and method for air conditioning vehicle interior while cooling vehicle battery of electric vehicle
JPH11182948A (en) Air conditioner
JPH11310032A (en) Air conditioner for automobile
JPH05240531A (en) Room cooling/heating hot water supplying apparatus
JP2887976B2 (en) Cooling system
JP2003090648A (en) Expansion valve
JP4023002B2 (en) Aircraft cooling system
JPH03294750A (en) Freezing apparatus
US6363737B1 (en) Heat exchanger and method of use therefor
JP2000337735A (en) Pressure reducer for air cooling cycle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees