JPS62266163A - Monomolecular film - Google Patents

Monomolecular film

Info

Publication number
JPS62266163A
JPS62266163A JP61108841A JP10884186A JPS62266163A JP S62266163 A JPS62266163 A JP S62266163A JP 61108841 A JP61108841 A JP 61108841A JP 10884186 A JP10884186 A JP 10884186A JP S62266163 A JPS62266163 A JP S62266163A
Authority
JP
Japan
Prior art keywords
hydrophilic
group
monomolecular film
compound
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108841A
Other languages
Japanese (ja)
Inventor
Yasushi Saotome
靖 五月女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61108841A priority Critical patent/JPS62266163A/en
Publication of JPS62266163A publication Critical patent/JPS62266163A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38207Contact thermal transfer or sublimation processes characterised by aspects not provided for in groups B41M5/385 - B41M5/395
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Magnetic Record Carriers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To form a monomolecular film having desired hydrophilic groups provided to the surface thereof in desired quantity, by using a mixture of an org. compound having the same hydrophilic groups at both terminals thereof and an org. compound having a hydrophilic group at the single terminal thereof as a raw material. CONSTITUTION:A mixture of an org. compound having the same hydrophilic groups at both terminals thereof and an org. compound having a hydrophilic group at the single terminal thereof is used as a raw material and, by adequately selecting a protective group and the protective or de-protective condition thereof, a monomolecular film having a necessary amount of hydrophilic groups allowed to be present thereon can be formed on a hydrophilic base material by an LB method. In this case, as the org. compound, respectively one or more kinds of org. compounds represented by X-R-X and X'-R' (wherein X and X' are a hydrophilic group and R and R' are 8 or more, desirably, 14 or more hydrocarbon group) are used simultaneously.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は有機単分子膜、特に親水性基材に吸着可能で
あり、かつ吸着接に気体側(基材と反対側)に親水性基
、もしくは反応性親水性基を有することを特徴とする有
機単分子膜に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is an organic monomolecular film, which can be adsorbed to a hydrophilic substrate in particular, and which has a hydrophilic group on the gas side (opposite side to the substrate) during adsorption. Or, it relates to an organic monomolecular film characterized by having a reactive hydrophilic group.

[従来の技術] 有機化合物の単分子膜、累積膜には数多くの用途がある
。エレクトロニクスの分野では、例えば、膜厚を正確に
制御した半導体装置用絶縁膜、磁気ディスク装置等の保
護潤滑膜、光電変換膜、光学的情報記録膜、光学的情報
記憶膜などへの応用が検討されている。これらの目的の
ために、単分子膜、累積膜を作製する方法として、水面
上で両籾媒性物質を高度に分子配向させて単分子層とし
、その単分子層を基材上に写し取る方法、いわゆるラン
グミュア−プロジェット法が多く用いられている。
[Prior Art] Monomolecular films and cumulative films of organic compounds have many uses. In the field of electronics, for example, applications are being considered for insulating films for semiconductor devices with precisely controlled film thickness, protective lubricant films for magnetic disk drives, photoelectric conversion films, optical information recording films, optical information storage films, etc. has been done. For these purposes, a method for producing monomolecular films and cumulative films is to highly orient the molecules of an amphoteric substance on the water surface to form a monomolecular layer, and then transfer that monomolecular layer onto a substrate. , the so-called Langmuir-Prodgett method is often used.

[発明が解決しようとする問題点] しかしながら、この方法で作製される単分子膜、累積膜
を構成する材料分子は、一般に長鎖アルキル基の一方の
末端のみに親水基を有するものである。かかる構成分子
から成る単分子膜、累積膜を作製する場合【J9、熱力
学的な安定・1ノ1の問題から、膜の支台、すなわち阜
祠と逆側である気体側に疎水・目部分を露出させた膜(
V成にしておく必要かある。もし気体側に親水基部分を
露出ざ1↓Cおいて=b、敢置装てあくだ(Jて構成分
子の反転か起こり、表面は疎水性に変4つってしまうこ
とか7.11−られている。
[Problems to be Solved by the Invention] However, the material molecules constituting the monomolecular film and the cumulative film produced by this method generally have a hydrophilic group at only one end of a long chain alkyl group. When producing a monomolecular film or a cumulative film made of such constituent molecules [J9, due to the issue of thermodynamic stability, a hydrophobic film or a film should be placed on the gas side, which is the side opposite to the support of the film, that is, the Membrane with exposed part (
Is it necessary to set it to V configuration? If the hydrophilic group part is exposed on the gas side, 1↓C=b, and the device is carefully set up (J), the constituent molecules will be reversed and the surface will become hydrophobic.7.11- It is being

したがって従来G;j:親水性基を気体側に露出した形
の単分子膜を形成することは非常に困fltであり、従
って単分子膜あるい(よぞの累積膜を作製後にその才に
親水′l]l物質を吸着さt!lこり膜に物質を反I芯
さけて新しい)実部をfat !jするには、この困難
さか大きな問題となっていた。
Therefore, it is extremely difficult to form a monomolecular film in which the hydrophilic groups are exposed to the gas side in the conventional G; Hydrophilic 'l] l Adsorbs the substance t!l Remove the substance from the stiff film and remove the new) real part from fat! This difficulty was a big problem for the students.

しかし、親水性基には一般に反応・iJ1に富むしのが
多く、も()かかる膜か作成C′きれば、中分子膜、あ
るいはイの累積膜の表面に反応′1ノ1を付)できるこ
とにイ【る。親水性基のこのような反応性あるいは親水
性そのものを利用しで、例えば、半導体装置用絶縁層、
磁気f′イスク装置等の保護潤滑層、光電変換機能を持
つ層、光学的情報記録層、光学的情報記憶層などを甲分
子膜十に設(−)ることができるようになるわけで゛あ
る。
However, there are many hydrophilic groups that are generally rich in reactions and iJ1, and if such a film is created, reaction '1-1 is added to the surface of the intermediate molecular film or the cumulative film of A). I'm excited about what I can do. Utilizing the reactivity or hydrophilicity itself of hydrophilic groups, for example, insulating layers for semiconductor devices,
This means that protective lubricating layers for magnetic f' disk devices, layers with photoelectric conversion functions, optical information recording layers, optical information storage layers, etc. can be provided on the upper layer. be.

本発明の目的は以十述ぺた問題点を解決する材料を提供
することにあるが、具体的には、親水1ノ1基材に吸着
可能であり、かつ吸@後に気体側、りへねち基材と反対
側に親水性基を有する有機単分子膜を提供することにあ
る。
The purpose of the present invention is to provide a material that solves the above-mentioned problems. Specifically, it is capable of being adsorbed to a hydrophilic base material, and is capable of being adsorbed onto the gas side after adsorption. The purpose of the present invention is to provide an organic monomolecular film having a hydrophilic group on the side opposite to the base material.

[問題点を解決覆るための手段] 本発明は一般式: X′−R′(1) (式中、X−R(ま炭素原子数かε3以上、望ましくは
14以上の炭化水素基をホす)で示される1種または2
種以I−の有は化合物、および一般式: X′−R′() (式中、X′(よ親、水性阜、R′は炭素1京子数が8
以1、望ましくは14以上の炭化水素基を示−リ)で示
される1種また(、1.2種1ス十の有機化合物を同時
に親水性基板上に配向制御しで吸着させてなるへlこ3
− ことを特徴とする単分子膜である。
[Means for solving and overcoming the problems] The present invention provides a general formula: Type 1 or 2 shown in
The presence of the species I- means a compound, and the general formula:
1, preferably 14 or more hydrocarbon groups) or (1.2) 100 organic compounds are simultaneously adsorbed onto a hydrophilic substrate under orientation control. lko3
− It is a monomolecular film characterized by the following.

本発明の要旨とするところlよ、同一の親水′1)1塁
を両末端にイjする有機化合物および片末端に親水・i
4基を有する41機化合物を原料として、親水性基材1
7に基材側と気体側の両方に親水・1ノ1基を持つとJ
先に、気体側の親水・1ノ1基の吊を必要早だけ存在さ
1!た単分子膜を提供することである。
The gist of the present invention is that the organic compound has the same hydrophilic compound at both ends and the same hydrophilic compound at one end.
Hydrophilic base material 1 using a 41 compound having 4 groups as a raw material
If 7 has hydrophilic/1-1 groups on both the base material side and the gas side, J
First, hang the hydrophilic 1/1 unit on the gas side as quickly as necessary! The purpose of the present invention is to provide a monomolecular film with a high molecular weight.

本発明に、43ける単分子膜の親水性基て゛ある、前記
一般式(T)および(II)のXおよびX′としてはヒ
ト[1キシル基、カルボキシル基、メルカー11〜基、
ヂオカルボキシル基、ジ゛17Iカルボ1シル基、スル
ーノイノ基、スルホ基、カルレバ玉イル基、ヂオカルパ
モイル基、アミノ基、置換アミン基等があげられ、単分
子膜形成物質はこれらの親水↑1基のうらの1種を両末
端に有するh−中止合物およ 。
In the present invention, X and X' in the general formulas (T) and (II), which have hydrophilic groups in the monomolecular film in 43, include human [1 xyl group, carboxyl group, mercar 11- group,
Diocarboxyl group, di-17I carboxyl group, throughnoino group, sulfo group, carlevadyl group, diocarpamoyl group, amino group, substituted amine group, etc., and the monolayer-forming substance is a hydrophilic ↑1 group of these. An h-terminated compound having one of the following types at both ends.

び前記有機化合物の親水・14基と同一また(、1相異
なる親水・1)1−基を片末端に有する有機化合物であ
る。
It is an organic compound having a 1-group at one end, which is the same as the hydrophilic 14 groups of the above-mentioned organic compound, or has a hydrophilic group 1 different from the above.

また曲記一般式<I>および(IT>におけるRおよび
R′としてはそれぞれ二価および一価の鎖式飽和炭化水
素基、鎖式不飽和炭化水素基または−・Aや − これらの炭化水素基の一部に1飼ま/j iJ:2個以
上の)Tニレン基を含む炭化水素基があ[−y゛られる
3゜1−(l+りよびR’i、i同一でも相責なってい
−C(、)よい。
In addition, R and R' in the general formulas <I> and (IT> are divalent and monovalent chain saturated hydrocarbon groups, chain unsaturated hydrocarbon groups, or -.A and - these hydrocarbons, respectively. A part of the group contains a hydrocarbon group containing 1/j iJ: 2 or more) Tei-C(,) Good.

一般式(I)の化合物および−・般式(IT>の化合物
の使用割合は、単分子膜表面に必要と11−る親水性基
の早によって適宜選択覆ることがで゛きるが、通常は一
般式(4)の化合物を3七ル%以十−1好ましくは10
モル%以上存在さく!る、1また、各化合物iにぞれぞ
れ1種のみを用いて−もよいし、もし必要があれば2種
以上を混合して用いてもよい1゜本発明の中分子膜を作
製りるにはたとえば次のようなZノ法C行を【うことか
できる1、一般に、両末端に親水性繕をIリ−る物質を
含む単分子膜の形成は通常のラングミ1ノ′−ブ]−1
ジ丁ツ1へ法によって行4rうことは囲動である。ぞこ
て両末端(こ親水性基を右する化合物について(,1、
水面下て分子か単分子膜として配列りるよう−・方の親
水・1〕1基を疎水・]1保護阜で保護して疎水↑(1
阜に変換する必要がある。そのtこめに用いることので
きる疎水性保護基どしては、1ヘリメチルシリル阜、ジ
メチルイソプロピルシリル基、ジメチルターシャリ−ブ
チルシリル基のようなトリアルキルシリル基、ジヒドロ
ピラニル基等を含むエーテル系保護基、同じくエステル
系保護基、トリフロロ酢酸アミド等のようなアミド系保
護基など一般に有機合成化学の分野で用いられるものの
うち適切なものを使えばよい。
The proportions of the compound of general formula (I) and the compound of general formula (IT>) can be selected as appropriate depending on the number of hydrophilic groups required on the monolayer surface, but usually The compound of general formula (4) is 37% or more, preferably 10-1%.
Presence of more than mol%! 1. In addition, each compound i may be used alone, or if necessary, two or more types may be used in combination. 1. Preparation of the middle molecular film of the present invention For example, the following Z method and C row can be used to form a monomolecular film containing a substance with hydrophilic endpoints at both ends. -B]-1
To go 4r according to the law to 1 is a movement. Both ends (for compounds with hydrophilic groups (,1,
The molecules are arranged as a monomolecular film under the water surface.
It is necessary to convert it to 阜. Hydrophobic protecting groups that can be used for this purpose include ethers containing trialkylsilyl groups, dihydropyranyl groups, etc. Appropriate ones generally used in the field of organic synthetic chemistry may be used, such as ester-based protecting groups, ester-based protecting groups, and amide-based protecting groups such as trifluoroacetic acid amide.

単分子膜の作製にあたっては、両方の親水性基を保護し
ておいて、水面上で片側だけをはすしてもよいし、最初
から片側だけを保護しておいてもよい。両方の親水性基
を保護した場合は、水面上で片側のみがI]f2保護し
てもとの親水性基に戻り水面上で単分子膜として配向す
るように水中の各種イオン濃度、水の温度、水面上での
展開時間などの諸条件を適切に選択する必要がある。同
様に、片側の親水・P1基のみを保護した場合は、水面
上でその保護基かはずれないように、前記諸条件を適切
に選択する必要がある。ざらに、水中には、水面の単分
子膜の塩を生成するような金属イオンが含まれていても
よい。
In preparing a monomolecular film, both hydrophilic groups may be protected and only one side may be peeled off on the water surface, or only one side may be protected from the beginning. When both hydrophilic groups are protected, the concentrations of various ions in the water and the concentration of the water should be adjusted so that only one side is I]f2 protected on the water surface and returns to the original hydrophilic group and is oriented as a monomolecular film on the water surface. It is necessary to appropriately select various conditions such as temperature and development time on the water surface. Similarly, when only the hydrophilic P1 group on one side is protected, it is necessary to appropriately select the above conditions so that the protecting group does not come off on the water surface. In general, the water may contain metal ions that form a monolayer salt on the water surface.

一方、片末端のみに親水性基を有する化合物は、その親
水性基を保護する必要はなく、通常はそのまま用いられ
るが、両末端に親水性基を有する化合物についての適切
な脱保護条件で同時に脱保護されるならば、疎水性保護
基によって保護されていても差し支えない。
On the other hand, compounds with a hydrophilic group at only one end do not need to protect the hydrophilic group and are usually used as is, but compounds with hydrophilic groups at both ends can be deprotected simultaneously under appropriate deprotection conditions. If it is deprotected, it may be protected by a hydrophobic protecting group.

このようにして水面上で片方の親水11基のみが保護さ
れた化合物および片末端に親水性基を有する化合物を同
時にラングミュア−プロジェット法によって親水性1t
、i上に写し取る。得られる単分子膜は表面が疎水性保
ff!で保護されているので適当に調整した試薬溶液の
中に浸すか、適当な試薬蒸気に曝すなどの方法によって
遊離の親水性基とすることができる。
In this way, a compound with only 11 hydrophilic groups protected on one end and a compound having a hydrophilic group at one end were simultaneously processed by the Langmuir-Prodgett method to obtain a hydrophilic 1t
, copy it onto i. The resulting monolayer has a hydrophobic surface! Since it is protected by , it can be made into a free hydrophilic group by immersing it in an appropriately prepared reagent solution or exposing it to an appropriate reagent vapor.

[作 用] 両末端に同一の親水性基を有する有機化合物、および片
末端に親水性基を有する有機化合物の混合物を原料とし
、保護基とその保護条件あるいは脱保護条件を適切に選
択することにより、ラングミュア−プロジェット法によ
って、親水性基材上に、表面に望ましい親水性基を望ま
しい量だけ持たせた単分子膜を作製することができる。
[Operation] Using a mixture of organic compounds having the same hydrophilic group at both ends and an organic compound having a hydrophilic group at one end as raw materials, appropriately selecting the protecting group and its protection or deprotection conditions. Accordingly, a monomolecular film having a desired amount of hydrophilic groups on the surface can be produced on a hydrophilic substrate by the Langmuir-Prodgett method.

本発明の新規な単分子膜を作製するために【jl、両末
端(こ同一の親水性基を有する化合物の両末端あるいは
片末端の親水性基を疎水性保14MにJ:り疎水化して
おく必要があり、また親水性基4・旧こ写し取った後に
脱保護する必要がある。疎水基による保護は、水面上で
単分子膜を配列するためのものであるので、両末端を同
時に保護した場合は、水面上で片側だけを脱保護する必
要がある。親水性基材に写し取った後の脱保護は、表面
に目的通りの親水性基を設けるための手段である。
In order to produce the novel monomolecular film of the present invention, [jl, both ends (this is done by hydrophobicizing the hydrophilic groups at both ends or one end of a compound having the same hydrophilic group to a hydrophobic 14M). Also, it is necessary to deprotect after copying the hydrophilic group 4.Since the protection by hydrophobic groups is for arranging the monolayer on the water surface, both ends must be protected at the same time. In this case, it is necessary to deprotect only one side on the water surface. Deprotection after transfer to a hydrophilic substrate is a means to provide the desired hydrophilic group on the surface.

[実施例] 次に本発明を実施例によって説明する。[Example] Next, the present invention will be explained by examples.

実施例1 1.16−ジカルポキシヘキ4ナデカン(4mmoりの
テトラヒドロフラン(2(7り溶液に2.2倍量のジメ
チルイソプロピルシリルクロリドと2.2倍量のトリエ
チルアミンを加え、30分間50°Cで加熱した。O′
Cに冷却後、ヘキサンを30m1加え、O′Cの水で水
洗(3x30yf>シた。Ia酸マグネシウムで乾燥後
、減圧で溶媒を除去し、1.16−ビス(ジメチールイ
ソプ1」ビルシリロキ、ジカルボニル)ヘキリデ゛カン
を17だ。この物質25μ…0βと、オクタデカン酸2
5μmOj!を10彪のクロロホルムに溶解して、pl
+を4.5に調製した塩酸水溶液上に展開して、表面圧
を25dyn/cm”に保ちつつ、石英基板上に写し取
った。写し取ったままの基板表面の表面エネルギーを液
滴の接触角から計算すると、19elg/cm2であり
、非常に疎水性か大きかった。
Example 1 Add 2.2 times the amount of dimethylisopropylsilyl chloride and 2.2 times the amount of triethylamine to a solution of 1.16-dicarpoxyhexane-4-nadecane (4 mmol) in tetrahydrofuran (2), and heat at 50 °C for 30 minutes. I did.O'
After cooling to 100 ml, add 30 ml of hexane and wash with O'C water (3 x 30 yf). After drying with magnesium Ia acid, remove the solvent under reduced pressure, ) Hekylidecane is 17. This substance is 25μ...0β and octadecanoic acid 2
5μmOj! Dissolve it in 10 Biao of chloroform and make pl
+ was developed on a hydrochloric acid aqueous solution prepared at a concentration of 4.5, and transferred onto a quartz substrate while maintaining the surface pressure at 25 dyn/cm.The surface energy of the substrate surface as transferred was calculated from the contact angle of the droplet. When calculated, it was 19 elg/cm2, indicating that it was very hydrophobic.

続いてこの基板をpH4,0の塩酸水溶液に浸してから
よく水洗することにより基板」−に1,16−ジカルポ
キシヘキザデカンとオクタデカン酸との等早漏合物より
なる単分子膜を得た。基板表面の表面エネルギーは48
el”G/Cm2と大きく、高い親水すノlを示した。
Subsequently, this substrate was immersed in an aqueous solution of hydrochloric acid with a pH of 4.0, and then thoroughly washed with water to obtain a monomolecular film made of an isomerotic mixture of 1,16-dicarpoxyhexadecane and octadecanoic acid on the substrate. . The surface energy of the substrate surface is 48
It had a large hydrophilicity of el''G/Cm2.

この単分子膜の高い親水↑ノ[は、室温で1週間放置し
ておいても全く変化しなかった。
The high hydrophilicity of this monomolecular film did not change at all even after being left at room temperature for one week.

実施例2 1.16−ジヒド[゛11シヘキリデ゛カン(4…mo
b )のテトラヒドロフラン(20m1)溶液に等線の
ジメデルイソプロピルシリルクロリドと等量のトリエチ
ルアミンを加え、30分間50’Cで加熱した。O′C
に冷却後、ヘキサジを30m1加え、O′Cの水で水洗
(3X30mff>シた。硫酸マグネシウムで乾燥後、
減圧で溶媒を除去し、シリカゲルカラムで精製して、1
6−(ジメチルイソプロピルシリロキシキサデカノール
を得た。この物質25ρmoρと、ヘキサデカン125
f1molを10ml!のクロロホルムに溶解して、蒸
留水−にに展開し、表面圧を25dyn/cm2に保ち
つつ、石英基板上に写し取った。写し取ったままの基板
表面の表面エネルキーを液滴の接触角から計算すると、
18erg/cm2であり、非常に疎水・1ノ1が大き
かった。
Example 2 1.16-dihyde [゛11-hexylidecane (4...mo
To a solution of b) in tetrahydrofuran (20 ml) was added isolinear dimedelisopropylsilyl chloride and an equal amount of triethylamine and heated at 50'C for 30 minutes. O'C
After cooling to , add 30 ml of hexadiene and wash with O'C water (3 x 30 mff). After drying with magnesium sulfate,
Remove the solvent under reduced pressure and purify with a silica gel column to obtain 1
6-(dimethylisopropylsilyloxyxadecanol was obtained. 25 pmo p of this material and 125 p of hexadecane
10ml of f1mol! It was dissolved in chloroform, developed in distilled water, and transferred onto a quartz substrate while maintaining the surface pressure at 25 dyn/cm2. Calculating the surface energy of the surface of the substrate as it was copied from the contact angle of the droplet, we get
It was 18erg/cm2, and was extremely hydrophobic.

続いてこの基板を酢酸−水(3 : 1 )溶液に浸し
てからよく水洗することにより基板上に1.16−シヒ
ドロキシヘキ1ナデカンとへキサデンカ酸の等早漏合物
よりなる単分子膜を1qだ。基板表面の表面エネルギー
は/18er(]/Cm2と大きく、高い親水性を示し
た。この単分子膜の高い親水性は、室温で1週間lJ装
置しておいても全く変化しなかった。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to form a monomolecular film made of an isopropylene mixture of 1,16-cyhydroxyhexa-1-nadecane and hexadenkaic acid on the substrate. It's 1q. The surface energy of the substrate surface was as large as /18er(]/Cm2, indicating high hydrophilicity. The high hydrophilicity of this monomolecular film did not change at all even after it was kept in a lJ apparatus at room temperature for one week.

次にこの1,16−シヒドロキシヘキサデ′カンとへキ
サデンカ酸の等早漏合物が単分子膜として配向、吸着し
た石英基板上で、この単分子膜表向の親水・1ノ1基(
ここでは水酸M)の反応性を利用した実験を行なった。
Next, this isomerotic mixture of 1,16-cyhydroxyhexadec'cane and hexadencaic acid was oriented and adsorbed as a monolayer on a quartz substrate, and the hydrophilic 1-1 groups (
Here, an experiment was conducted using the reactivity of hydroxyl acid M).

分子量約3000の重合体 0=C=N−CF2(C2F40)、− (CF20)
q−CF2−N=C=0( p:q=1:1、各構造単
位は不規illである)をフレオンに溶解し、0.08
重量%の溶液を作製した。この溶液を水酸基が表面に設
けられている前記UI英基板上に2500回/分の回転
速度で回転塗布し、i o o ’cで焼成した後、フ
レオンで洗浄した。
Polymer 0=C=N-CF2 (C2F40), - (CF20) with a molecular weight of about 3000
q-CF2-N=C=0 (p:q=1:1, each structural unit is irregular ill) was dissolved in Freon, and 0.08
A wt% solution was prepared. This solution was spin-coated onto the UI substrate having hydroxyl groups on the surface at a rotation speed of 2500 times/min, baked at IoO'C, and then washed with Freon.

得られた基板の表面エネルギーを重合体と接触させる前
と比較したところ、接触前の48から15er(1/C
m2に大幅に減少していることがわかった。
When the surface energy of the obtained substrate was compared with that before contacting with the polymer, it was found that the surface energy of the obtained substrate was 48 to 15er (1/C
It was found that there was a significant decrease in m2.

もし水酸基とイソシアナート基が反応していな(プれば
、フレオンによる洗浄で重合体は単分子膜上からはずれ
てしまうはずでおる。従って本発明の単分子膜上の親水
性基の反応性が有効にいかされ、単分子膜表面の水酸基
は重合体の末端のイソシアナート基と反応していること
がわかる。
If the hydroxyl groups and isocyanate groups have not reacted (if they do, the polymer should be removed from the monomolecular film by washing with Freon. Therefore, the reactivity of the hydrophilic groups on the monomolecular film of the present invention It can be seen that the hydroxyl groups on the surface of the monomolecular film react with the isocyanate groups at the terminals of the polymer.

実施例3 実施例2で調整した16−(ジメチルイソプロピルシリ
ロキシ)ヘキサデカノール20μmO!と、ヘキサデカ
ン130μmoβを10dのクロロホルムに溶解して、
蒸留水上に展開し、表面圧を25dyn/cm2に保ち
つつ、石英基板」−に写し取った。写し取ったままの基
板表面の表面エネルギーを液滴の接触角から計算すると
、18ero/cm2であり、非常に疎水性が大きかっ
た。
Example 3 16-(dimethylisopropylsilyloxy)hexadecanol prepared in Example 2 20 μmO! and 130 μmo β of hexadecane was dissolved in 10 d of chloroform,
It was developed on distilled water and transferred onto a quartz substrate while keeping the surface pressure at 25 dyn/cm2. The surface energy of the surface of the substrate as copied was calculated from the contact angle of the droplet and was found to be 18ero/cm2, indicating extremely high hydrophobicity.

続いてこの基板を酢酸−水(3 : 1 )溶液に浸し
てからよく水洗することにより基板上に1.16−シヒ
ドロキシヘキ4ナデカンとヘキサデカン酸の2:3混合
物よりなる単分子膜を得た。基板表面の表面エネルギー
は48erg/cm2と大きく、高い親水性を示した。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to obtain a monomolecular film made of a 2:3 mixture of 1,16-cyhydroxyhexa-4-nadecane and hexadecanoic acid on the substrate. Ta. The surface energy of the substrate surface was as large as 48 erg/cm2, indicating high hydrophilicity.

この単分子膜の高い親水性は、室温で1週間放置してお
いても全く変化しなかった。
The high hydrophilicity of this monomolecular film did not change at all even after being left at room temperature for one week.

実施例4 実施例2で調整した16−(ジメチルイソプロピルシリ
ロキシ)ベキ4ナデカノール5μmoβと、へ− 12
敗へ キ晋Vデカン酸45/lloj!を10m(!のクロ1
]ボルムに)容解して、蒸留水上に展開し、表面圧を2
5dyn/Cm2に保ちつつ、石英基板上に写し取った
。写し取ったままの基板表面の表面エネルギーを液滴の
接触角から計算すると、208r(1/Cm”であり、
非常に疎水性が大きかった。
Example 4 16-(dimethylisopropylsilyloxy)bek4nadecanol 5μmoβ prepared in Example 2 and 12
Defeat to Shin V Decanoic acid 45/lloj! 10m (! of Kuro 1
] Volum), spread on distilled water, and reduce the surface pressure to 2.
It was copied onto a quartz substrate while maintaining the pressure at 5 dyn/Cm2. Calculating the surface energy of the surface of the substrate as it was copied from the contact angle of the droplet, it is 208r (1/Cm",
It was extremely hydrophobic.

続いてこの基板を酢酸−水(3 : 1 )溶液に浸し
てからよく水洗することにより基板上に1.16−シヒ
ドロキシヘキザデカンとヘキサデカン酸とのに〇混合物
よりなる単分子膜を1qだ。基板表面の表面エネルギー
は49er(1/C…2と大ぎく、高い親水性を示した
。この単分子膜の高い親水性は、室温で1週間放置して
おいても全く変化しなかった。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to form a monomolecular film of 1 q of a mixture of 1,16-cyhydroxyhexadecane and hexadecanoic acid on the substrate. is. The surface energy of the substrate surface was 49er (1/C.

実施例5 実施例2で調整した16−(ジメチルイソプロピルシリ
ロキシ〉ヘキサデカノール45μmoでと、ヘキサデカ
ン酸5μmOβを10dのクロロホルムに溶解して、蒸
留水上に展開し、表面圧を25dyn/Cm2に保ちつ
つ、石英基板上に写し取った。写し取ったままの基板表
面の表面エネルギーを液滴の接触角から計算すると、1
7erg/ε…2であり、非常に疎水性が大きかった。
Example 5 45 μm of 16-(dimethylisopropylsilyloxy)hexadecanol prepared in Example 2 and 5 μm Oβ of hexadecanoic acid were dissolved in 10 d of chloroform and spread on distilled water, keeping the surface pressure at 25 dyn/Cm2. The surface energy of the surface of the substrate as it was transferred is calculated from the contact angle of the droplet to be 1.
7erg/ε...2, indicating extremely high hydrophobicity.

続いてこの基板を酢酸−水(3: 1 )溶液に浸して
からよく水洗することにより基板上に1.16−シヒド
ロキシヘキサデカンとヘキサデカン酸との9:1混合物
よりなる単分子膜を得た。基板表面の表面エネルギーは
49erg/cm2と犬きぐ、高い親水性を示した。こ
の単分子膜の高い親水性は、室温で1週間放置しておい
ても全く変化しなかった。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to obtain a monomolecular film made of a 9:1 mixture of 1,16-hydroxyhexadecane and hexadecanoic acid on the substrate. . The surface energy of the substrate surface was as high as 49 erg/cm2, indicating high hydrophilicity. The high hydrophilicity of this monomolecular film did not change at all even after being left at room temperature for one week.

[発明の効果] 以上説明したように本発明の単分子膜は親水性基をその
表面に有しているので、新水性基の反応性あるいは親水
性そのものを利用して種々の応用が期待される。
[Effects of the Invention] As explained above, since the monomolecular film of the present invention has hydrophilic groups on its surface, various applications are expected by utilizing the reactivity of the new hydrophilic groups or the hydrophilicity itself. Ru.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式: X−R−X (式中、Xは親水性基、Rは炭素原子数が8以上の炭化
水素基を示す) で示される1種または2種以上の有機化合物、および一
般式: X′−R′ (式中、X′は親水性基、R′は炭素原子数が8以上の
炭化水素基を示す) で示される1種または2種以上の有機化合物を同時に親
水性基板上に配向制御して吸着させてなることを特徴と
する単分子膜。
(1) One or more organic compounds represented by the general formula: X-R-X (wherein, X is a hydrophilic group and R is a hydrocarbon group having 8 or more carbon atoms); General formula: X'-R' (wherein, X' is a hydrophilic group and R' is a hydrocarbon group having 8 or more carbon atoms) A monomolecular film characterized by being adsorbed onto a flexible substrate with controlled orientation.
JP61108841A 1986-05-12 1986-05-12 Monomolecular film Pending JPS62266163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108841A JPS62266163A (en) 1986-05-12 1986-05-12 Monomolecular film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108841A JPS62266163A (en) 1986-05-12 1986-05-12 Monomolecular film

Publications (1)

Publication Number Publication Date
JPS62266163A true JPS62266163A (en) 1987-11-18

Family

ID=14494932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108841A Pending JPS62266163A (en) 1986-05-12 1986-05-12 Monomolecular film

Country Status (1)

Country Link
JP (1) JPS62266163A (en)

Similar Documents

Publication Publication Date Title
Lee et al. Protein-resistant coatings for glass and metal oxide surfaces derived from oligo (ethylene glycol)-terminated alkyltrichlorosilanes
EP1328529B1 (en) Well-defined nanosized building blocks for organic/inorganic nanocomposites
US6780492B2 (en) Substrates prepared by chemical amplification of self-assembled monolayers with spatially localized polymer brushes
US6927301B2 (en) Well-defined nanosized building blocks for organic/inorganic nanocomposites
US7582422B2 (en) Modified carbon and germanium surfaces
JP4020247B2 (en) Polymer graft substrate manufacturing method
JP2004508349A5 (en)
JP3302394B2 (en) Method for producing layered clay mineral thin film
JPS62266163A (en) Monomolecular film
Efimenko et al. Formation of self-assembled monolayers of semifluorinated and hydrocarbon chlorosilane precursors on silica surfaces from liquid carbon dioxide
JP5301082B2 (en) Compound, film-forming composition and method for producing laminate
El Zubir et al. Generic methods for micrometer-and nanometer-scale surface derivatization based on photochemical coupling of primary amines to monolayers of aryl azides on gold and aluminum oxide surfaces
Dicke et al. Surface inorganic chemistry: The reaction of hydroxyl-terminated thiols on gold with a zirconium coordination compound
JPS62266164A (en) Monomolecular film
JPS62266162A (en) Monomolecular film
JPS62266167A (en) Preparation of monomolecular film
JPS62266171A (en) Preparation of monomolecular film
JPS62266170A (en) Preparation of monomolecular film
JPS62266165A (en) Preparation of monomolecular film
JPS62266169A (en) Preparation of monomolecular film
JPS62266161A (en) Monomolecular film
JPS62266168A (en) Preparation of monomolecular film
JPS62266166A (en) Preparation of monomolecular film
JP2987428B2 (en) Adsorption of asymmetric disulfide compounds on gold surface
JPS62266172A (en) Preparation of monomolecular film