JPS62266172A - Preparation of monomolecular film - Google Patents

Preparation of monomolecular film

Info

Publication number
JPS62266172A
JPS62266172A JP61108850A JP10885086A JPS62266172A JP S62266172 A JPS62266172 A JP S62266172A JP 61108850 A JP61108850 A JP 61108850A JP 10885086 A JP10885086 A JP 10885086A JP S62266172 A JPS62266172 A JP S62266172A
Authority
JP
Japan
Prior art keywords
group
hydrophilic
hydrophilic groups
monomolecular film
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108850A
Other languages
Japanese (ja)
Inventor
Yasushi Saotome
靖 五月女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61108850A priority Critical patent/JPS62266172A/en
Publication of JPS62266172A publication Critical patent/JPS62266172A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a monomolecular film having a necessary amount of hydrophilic groups present on the atmospheric side thereof, by using a necessary amount of a compound obtained by protecting the hydrophilic groups at both terminals of an org. compound having different hydrophilic groups at both terminals thereof by a hydrophobic protective group as a part of a raw material. CONSTITUTION:A mixture of an org. compound represented by X-R-X' (wherein X and X' are respectively mutually different hydrophilic groups and R is a 8 or more C hydrocarbon group) having different hydrophilic groups at both terminals thereof and an org. compound represented by X''-R' (wherein X'' is a hydrophilic group and R' is 8 or more C hydrocarbon group) having a hydrophilic group at the single terminal thereof is used as a raw material. Both of the hydrophilic groups at both terminals of the compound represented by X-R-X' is protected by a hydrophobic group and this protected compound is used corresponding to the amount of the hydrophilic groups necessary on the surface of a monomolecular film with respect to the compound represented by X''-R' to make it possible to form the monomolecular film having a necessary amount of the hydrophilic groups present on the atmospheric side thereof.

Description

【発明の詳細な説明】 「産業上の利用分野] この発明は有機単分子膜、特に親水性基材に吸着可能で
あり、かつ吸着後に気体側表面(基材と反対側)に親水
性基、もしくは反応性親水性基を有することを特徴とす
る有機単分子膜の製造方法に関するものである。
Detailed Description of the Invention "Industrial Application Field" This invention is an organic monomolecular film, in particular, capable of being adsorbed onto a hydrophilic substrate, and which has a hydrophilic group on the gas side surface (opposite side to the substrate) after adsorption. Alternatively, the present invention relates to a method for producing an organic monomolecular film characterized by having a reactive hydrophilic group.

[従来の技術] 有機化合物の単分子膜、累積膜には数多くの用途がある
。エレクトロニクスの分野では、例えば、膜厚を正確に
制御した半導体装置用絶縁膜、磁気ディスク装置等の保
護潤滑膜、光電変換膜、光学的情報記録膜、光学的情報
記憶膜などへの応用が検討されている。これらの目的の
ために、単分子膜、累積膜を作製する方法として、水面
上で両親媒性物質を高度に分子配向させて単分子層とし
、その単分子層を基材上に写し取る方法、いわゆるラン
グミュア−プロジェット法が多く用いられている。
[Prior Art] Monomolecular films and cumulative films of organic compounds have many uses. In the field of electronics, for example, applications are being considered for insulating films for semiconductor devices with precisely controlled film thickness, protective lubricant films for magnetic disk drives, photoelectric conversion films, optical information recording films, optical information storage films, etc. has been done. For these purposes, methods for producing monomolecular films and cumulative films include a method in which amphiphilic substances are highly oriented on the water surface to form a monomolecular layer, and the monomolecular layer is transferred onto a substrate; The so-called Langmuir-Prodgett method is often used.

[発明が解決しようとする問題点] しかしながら、この方法で作製される単分子膜、累積膜
を構成する(A利分子は、一般に長鎖アルキル阜の一方
の末端のみに親水基を有り−るものである。かかる構成
分子から成る単分子膜、累積膜を作製する場合は、熱力
学的な安定性の問題から、膜の支台、すなわら基材と逆
側である気体側に疎水゛1)1部分を露出さけた膜構成
にしでおく必要がある。もし気体側に親水基部分を露出
させておいて・し、放置してあくだ【Jで構成分子の反
転か起こり、表面は疎水性に変わってしまうことが知ら
れている。
[Problems to be Solved by the Invention] However, the monomolecular film and cumulative film produced by this method are composed of a monomolecular film (A-linked molecules generally have a hydrophilic group only at one end of a long chain alkyl group). When producing a monomolecular film or a cumulative film composed of such constituent molecules, due to thermodynamic stability issues, a hydrophobic layer should be added to the abutment of the film, that is, the gas side opposite to the base material. (1) It is necessary to leave one part of the film structure exposed. If you leave the hydrophilic group exposed on the gas side and leave it for a while, it is known that in J, the constituent molecules will be inverted and the surface will become hydrophobic.

したかつて従来は親水・1ノ1基を気体側に露出した形
の単分子膜を形成することは非常に困難てあり、従って
単分子膜あるい(、j、その累積膜を作製後にモの十に
親水・1)1物冒を吸着さIJたり膜に物質を反応さ■
て新しい機能をイ(1)するには、この困難さが大きな
問題と4賞っていた。
In the past, it was extremely difficult to form a monomolecular film in which the hydrophilic 1-1 group was exposed to the gas side. Hydrophilic 1) 1. Adsorbs a substance or reacts the substance with the membrane ■
This difficulty was cited as a major problem in implementing new features.

しかし、親水゛1ノ1基には一般に反応1ノ1に富むも
のか多く、もしかかる膜か作成できれば、単分子膜、あ
るいはぞの累積膜の表面に反応′[)1をイ」与てきる
ことになる。親水′1ノ1基のこのようイT反応慴ある
いは親水1ノ[そのものを利用して、例えば、半導体装
置用絶縁層、磁気ディスク装置等の保護潤滑層、光電ゆ
換機能を持つ層、光学的情報記録層、光学的情報記憶層
などを単分子膜上に設けることができるようになるわけ
である。
However, hydrophilic 1-1 groups are generally rich in reaction 1-1, and if such a film could be created, it would be possible to impart reaction 1-1 to the surface of a monomolecular film or each cumulative film. That will happen. This type of reaction of hydrophilic '1' or hydrophilic '1' can be used, for example, insulating layers for semiconductor devices, protective lubricating layers for magnetic disk devices, layers with photoelectric transfer function, optical This makes it possible to provide optical information storage layers, optical information storage layers, etc. on a monomolecular film.

本発明の目的は以上)ホべた問題点を解決するために、
新規な単分子膜の製造方法を提供することにあるが、具
体的には、親水性支台に吸着可能であり、かつ吸着後に
気体側、すへねら基材と艮利側に親水性基を有する有機
単分子膜の製造方法を提供することにある。
The purpose of the present invention is to solve the problems mentioned above.
The objective is to provide a novel method for producing a monomolecular film, which can be adsorbed onto a hydrophilic abutment, and after adsorption, hydrophilic groups are added to the gas side, the hemlock base material, and the support side. An object of the present invention is to provide a method for producing an organic monolayer having the following properties.

[問題点を解決するための手段] 本発明は一般式: X−R−X′( (式中、xaづJ、びX′はぞれそ゛れ相巽イ【る親水
性基、RIJ:炭素原子数か8以上、望ましくは1/1
以上の炭化水素基を示す) で示される1種または2種以十の有機化合物の両端の親
水性基を疎水・[11保護基に変換して後、一般二、3
一 式: X−R−X′() (式中、X nは親水性基、R′は炭素原子数か8以上
、望ましくは14以上の炭化水素基を示す)で示される
1種または2種以上の有機化合物とともにラングミュア
ーブロジエツ1〜法を用いて同時に親水性基板上に配向
制御して吸着さける事を特徴とする単分子膜の製造方法
である。
[Means for Solving the Problems] The present invention has the general formula: Number of carbon atoms: 8 or more, preferably 1/1
After converting the hydrophilic groups at both ends of one or more organic compounds represented by the above hydrocarbon groups into hydrophobic/[11 protecting groups, general 2, 3
One or two types represented by the formula: X-R-X'() (wherein, This is a method for producing a monomolecular film, which is characterized in that the organic compound described above is simultaneously adsorbed onto a hydrophilic substrate while controlling its orientation using the Langmuir-Brosietz 1~ method.

本発明の要旨とするところは、責なる親水性基を両末端
に有する有機化合物おにび片末端に親水性基を有する有
機化合物を原料として、ラングミ]−アーブロジ丁ツ1
〜法を用いて親水・1ノ1基材十に基材側と気体側の両
方に親水性基を持つ単分子膜を製造覆−るに際し、原料
物質の一部として、具なる親水性基を両末端に右する有
機化合物の両端の親水・Iノ1基を共に疎水性保護基に
よって保護しておいたものを、表面に必要とされる親水
1ノ1基の量に応じて用いることにより、気体側に親水
性基が必要量だけ存在した単分子膜の製造方法を提供す
ることである。
The gist of the present invention is to use an organic compound having a hydrophilic group at both ends and an organic compound having a hydrophilic group at one end as a raw material.
When manufacturing and coating a monomolecular film having hydrophilic groups on both the base material side and the gas side using a hydrophilic method, the specific hydrophilic groups are used as part of the raw material. The hydrophilic/I-1 groups at both ends of an organic compound are protected with hydrophobic protecting groups, and used depending on the amount of hydrophilic-1/1 groups required on the surface. An object of the present invention is to provide a method for producing a monomolecular film in which a necessary amount of hydrophilic groups are present on the gas side.

前記一般式(I>におけるXおよびX′としてはヒドロ
キシル基、カルボキシル基、メルカプlへ基、ヂオカル
ボキシル基、ジヂオカルボ4−シル基、スルフィノ基、
スルホ基、カルバモイル基、チオカルバモイル基、アミ
ノ基、置換アミノ基等があげられ、これらの親水性基の
うちの2種を両末端に有する化合物である。また同時に
用いる片末端に親水・111基を有する前記一般式(T
l)にお()るX IIとしても前記と同様の基があげ
られる。ここでX IIはXまたはX′と同一でもある
いは異なった基であってもよい。
X and X' in the general formula (I>) include a hydroxyl group, a carboxyl group, a mercapl group, a dicarboxyl group, a didiocarbo-4-syl group, a sulfino group,
Examples include a sulfo group, a carbamoyl group, a thiocarbamoyl group, an amino group, and a substituted amino group, and the compound has two of these hydrophilic groups at both ends. Moreover, the above general formula (T
X II in () in l) may also include the same groups as mentioned above. Here, X II may be the same as or different from X or X'.

また前記一般式(I>および(IT)にお(プるRおよ
びR′としてはそれぞれ二価および一価の鎖式飽和炭化
水素基、鎖式不飽和炭化水素基またはこれらの炭化水素
基の一部に1個または2個以上の)■ニレン基を含む炭
化水素基があげられる。
Furthermore, in the general formulas (I> and (IT), R and R' each represent a divalent and monovalent chain-type saturated hydrocarbon group, a chain-type unsaturated hydrocarbon group, or a chain-type unsaturated hydrocarbon group, respectively. Some examples include hydrocarbon groups containing one or more (2) nylene groups.

RおよびR′は同一でも相異なっていてもよい。R and R' may be the same or different.

一般式(I)の化合物および一般式(II)の化合物の
使用割合は、単分子膜表面に必要とする親水性基の量に
よって適宜選択することができるが、通常は一般式(I
>の化合物を3モル%以上、好ましくは10モル%以上
存在させる。また、各化合物はそれぞれ1種のみを用い
てもよいし、もし必要かあれば2種以上を混合して用い
てもよい。
The ratio of the compound of general formula (I) and the compound of general formula (II) to be used can be appropriately selected depending on the amount of hydrophilic groups required on the monolayer surface, but usually the compound of general formula (I
>3 mol% or more, preferably 10 mol% or more of the compound. Further, each compound may be used alone, or if necessary, two or more types may be used in combination.

本発明の方法によれば、両末端に親水1)1基を有する
化合物についてはその両端の親水性基を疎水゛1ノ1基
で保護しておき水面上で片側のみか脱保護するような条
件を与えることにより、ラングミュアーブロジエツ1〜
法を用いて中分子膜を形成することができる。そのため
に用いることのできる疎水性保護基としては、トリメチ
ルシリル基、ジメヂルイソプロピルシリル基、ジメヂル
ターシャリーブチルシリル基のようなトリアルキルシリ
ル基、ジヒドロピラニル基等を含むエーテル系保護基、
同じくエステル系保護基、トリフロロ酢酸アミF等のよ
うなアミF系保護基なと一般に有機合成化学の分野で用
いられるもののうち適切なものを用いればよい。これら
の疎水性保護基の選択にあたっては、一般式(I>の化
合物の両端の親水性基が共通の保護基導入手段で同時に
保護されるものであることが好ましく、具体的な例とし
ては、ヒドロキシル基とメルカプト基を(Jfせ持つ化
合物に対してはi〜リアルキルシリル(ヂオ)エーテル
型保iJI、ヒドロキシル基とカルボキシル基を併[持
つ化合物に対してはテ1〜ラヒドロビラニルエーテル、
エステル型保護基などが挙げられる。
According to the method of the present invention, for a compound having one hydrophilic group 1) at both ends, the hydrophilic groups at both ends are protected with the hydrophobic group 1), and only one side is deprotected on the water surface. By giving conditions, Langmuir Brodziets 1~
A method can be used to form a medium molecular film. Hydrophobic protecting groups that can be used for this purpose include trialkylsilyl groups such as trimethylsilyl group, dimedyliisopropylsilyl group, and dimedyl tert-butylsilyl group, ether protecting groups including dihydropyranyl group, etc.
Similarly, suitable ones may be used among those generally used in the field of organic synthetic chemistry, such as ester protecting groups and amine F-based protecting groups such as amine F trifluoroacetate. When selecting these hydrophobic protecting groups, it is preferable that the hydrophilic groups at both ends of the compound of general formula (I>) be protected at the same time by a common protecting group introduction means, and specific examples include: For compounds that have both a hydroxyl group and a mercapto group (Jf, i~realkylsilyl(dio)ether type iJI, for compounds that have both a hydroxyl group and a carboxyl group, Te1~rahydrobilanyl) ether,
Examples include ester-type protecting groups.

一方、片末端のみに親水性基を有する化合物は、その親
水性基を保護する必要はなく、通常はそのまま用いられ
るが、両末端に親水性基を有する化合物についての適切
な脱保護条件で同時に脱保護されるならば、疎水性保護
基によって保護されていても差し支えない。
On the other hand, compounds with a hydrophilic group at only one end do not need to protect the hydrophilic group and are usually used as is, but compounds with hydrophilic groups at both ends can be deprotected simultaneously under appropriate deprotection conditions. If it is deprotected, it may be protected by a hydrophobic protecting group.

このようにして一般式(1)の化合物の両端の親水性基
が疎水性保護基で保護された化合物および一般式(IT
)の化合物を用い、水面上で一般式(I>の化合物の保
護基の一方のみをはずし、単分子膜として配向させてラ
ングミュア−プロジェット法によって親水性基材」−に
写し取る。
In this way, a compound in which the hydrophilic groups at both ends of the compound of the general formula (1) are protected with a hydrophobic protecting group and a compound of the general formula (IT
), remove only one of the protecting groups of the compound of general formula (I>) on the water surface, orient it as a monomolecular film, and transfer it onto a hydrophilic substrate by the Langmuir-Prodgett method.

一般に、異なる種類の親水性基を共通の保護基導入手段
で保護した場合、保護された両者の脱保護しやすさはか
なり異なっている。そこで本方法では、ラングミュア−
プロジェット法で用いる水相中の化学種あるいは水その
ものによって疎水性保護基によって保護された両末端の
異なる親水性基のうち片末端の疎水性保護基のみが脱保
護して水面上で単分子膜化するようにしておく。もう一
方の末端の疎水性保護基は、ラングミュアーブロジエツ
1〜法で単分子膜化してしまうまで脱保護してはならな
いので、水面上で展開する際、水中の各種イオン濃度、
水の温度、水面上での展開時間などの諸条件を望ましい
一方のみ脱保護し、もう一方は脱保護が起こらないよう
に適切に選択する必要がある。なお水中には原料物質の
塩をつくるJ:うな金属イオンが添加されていてもよい
Generally, when different types of hydrophilic groups are protected by a common means of introducing a protecting group, the ease of deprotection of the two protected groups differs considerably. Therefore, in this method, Langmuir
Among the different hydrophilic groups at both ends protected by hydrophobic protecting groups by chemical species in the aqueous phase used in the Projet method or water itself, only the hydrophobic protecting group at one end is deprotected and a single molecule is formed on the water surface. Leave it to form a film. The hydrophobic protecting group at the other end must not be deprotected until it forms a monolayer using the Langmuir-Brosietz method.
It is necessary to appropriately select conditions such as water temperature and development time on the water surface so that only one desired deprotection occurs and the other conditions do not occur. Note that metal ions that form salts of raw materials may be added to the water.

本発明の方法では式(I>の化合物の両端の親水性基を
共に疎水化するので、片末端のみを疎水化しておくのに
比べて一般の有機溶剤に溶解しやすいという点で有利で
ある。ラングミュア−プロジェット法では、原料物質を
有機溶剤に溶かしておくことが必要であるから、原料物
質の溶解性は1・・ ず 大きい方が望ましい。また、片側だ(プを選択的に疎水
性保護基によって保護するよりも同時に保護したほうが
容易な場合も数多いと考えられるので本方法の利点は溶
解性のみに有るわ(プでは無い。
In the method of the present invention, both hydrophilic groups at both ends of the compound of formula (I> are made hydrophobic, so it is advantageous in that it is more easily soluble in general organic solvents than when only one end is made hydrophobic. In the Langmuir-Prodgett method, it is necessary to dissolve the raw material in an organic solvent, so it is desirable that the solubility of the raw material be greater than 1. It is thought that there are many cases in which simultaneous protection is easier than protection with a protective group, so the advantage of this method lies only in solubility (and not in protection).

得られる単分子膜は表面が疎水性保護基で保護されてい
るので適当に調製した試薬溶液の中に浸すか、適当な試
薬蒸気に曝すなどの方法によって遊離の親水性基とする
ことができる。
Since the surface of the resulting monomolecular film is protected with a hydrophobic protecting group, it can be made into free hydrophilic groups by immersing it in an appropriately prepared reagent solution or by exposing it to an appropriate reagent vapor. .

[作 用] 両末端に異なる親水性基を有する一般式(I>の化合物
、および片末端に親水性基を有する一般式(II)の化
合物の混合物を原料とし、保護基の種類とラングミュア
−プロジェット法で用いる水相の状態を適切に選択する
ことにより、両端が保護された一般式(I)の化合物の
一方の親水性基のみを水面−にで脱保護した後、親水性
基材上に、表面に望ましい親水性基を望ましい量だけ持
たせた単分子膜を作製することができる。本発明の方法
によると、両末端の疎水性保FJWにより疎水化された
親水性基のうち片側のみが水面上で脱保護するため、一
般式(丁)の化合物は、もう一方の末端のみに疎水制保
護阜を残して水面上で一般式(1冊の化合物とともに単
分子膜として容易に配向するのである。親水性基材に写
し取った後の脱保護は表面に目的通りの親水・141基
を設けるための手段である。
[Effect] A mixture of a compound of general formula (I>) having different hydrophilic groups at both ends and a compound of general formula (II) having a hydrophilic group at one end is used as a raw material, and the type of protecting group and Langmuir By appropriately selecting the state of the aqueous phase used in the Projet method, only one hydrophilic group of the compound of general formula (I) protected at both ends is deprotected at the water surface, and then the hydrophilic substrate is It is possible to produce a monomolecular film having a desired amount of hydrophilic groups on the surface.According to the method of the present invention, among the hydrophilic groups made hydrophobic by the hydrophobic retaining FJW at both ends, Since only one side is deprotected on the water surface, the compound of the general formula (D) can be easily deprotected as a monolayer along with one compound on the water surface, leaving a hydrophobic protective layer only on the other end. Deprotection after transfer to a hydrophilic substrate is a means to provide the desired hydrophilic groups on the surface.

[実施例] 以下に実施例を用いて本発明の詳細な説明する。[Example] The present invention will be described in detail below using Examples.

実施例1 16−ジビド1]キシヘキーリーデ′カン酸(4mmo
fりのテ1〜ラヒド11フラン(2(7)溶液に2.2
倍量のジメチルイソブ[二1ビルシリルクロリドのi〜
リエヂルアミンを加え、30分間50°Cで加熱した。
Example 1 16-Divido1]xyhekylide'canoic acid (4 mmo
1 to 11 furan (2(7) solution to 2.2
Double amount of dimethyl isobu [i ~
Liedylamine was added and heated at 50°C for 30 minutes.

O′Cに冷却後、ヘキサンを30mffJlnえ、0°
Cの水で水洗(3×30mf!〉シた。硫酸マグネシウ
ムで乾燥後、減圧で溶媒を除去し、16−(ジメブルイ
ソプロピルシリ[]キシ)ヘキナデ′カン酸ジメヂルイ
ソブロピルシリルエステル(以下1−I D F Eと
略す)を得た。HDEF  25μmof!とヘキサデ
カン酸 に調製したJn酸水溶液上に展開した。表面圧を25d
yn/Cm2に保ちつつ、石英基板上に写し取っt:。
After cooling to O'C, add 30 mffJln of hexane and heat to 0°.
Washed with water (3 x 30 mf!). After drying over magnesium sulfate, the solvent was removed under reduced pressure to obtain 16-(dimebroisopropylsilyl[]oxy)hequinade'canoic acid dimedylisopropylsilyl ester (hereinafter referred to as 1-IDFE) was obtained.It was developed on a Jn acid aqueous solution prepared with HDEF 25μmof! and hexadecanoic acid.The surface pressure was set to 25d.
Transferred onto a quartz substrate while maintaining yn/Cm2.

写し取ったままの基板表面の表面]ーネルギーを液滴の
接触角から計算すると、18erg/cm”であり、非
常に疎水性か大きかった。
The surface energy of the surface of the substrate as copied was calculated from the contact angle of the droplet and was 18 erg/cm'', indicating that it was very hydrophobic.

続いてこの基板を酢酸−水(3:1)溶液に浸してから
よく水洗することにより基板上に16−じドロキシヘキ
+Jデ′カン酸とヘキサデカン酸の等早漏合物よりなる
単分子膜をjqだ。基板表面の表面Tネ)L4−ハ50
ero/cm” ト人きく、1!’71イ親水・1ノ1
を示した。この単分子膜の高い親水性トよ、室温で1週
間敢首()ておいても全く変化しなかった。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to form a monomolecular film made of an isopropylene mixture of 16-droxyhex+J'decanoic acid and hexadecanoic acid on the substrate. is. Surface of the board surface Tne)L4-Ha50
ero/cm” Tojinkiku, 1!'71 Ishimizu・1no1
showed that. The highly hydrophilic nature of this monomolecular film did not change at all even after it was left at room temperature for one week.

次にこの16ーヒド目キシヘキリ−デ゛カン酸とヘキサ
デカン酸の等早漏合物が単分子膜と1ノで配向、吸着し
た石i英基板上で、この単分子膜表面の親水性基(ここ
では水酸基)の反応・lりを利用した実験を行なった。
Next, on a quartz substrate on which this 16-hydro-oxyhexylidecanoic acid and hexadecanoic acid are oriented and adsorbed at the same time as the monolayer, the hydrophilic groups on the surface of the monolayer (here In this article, we conducted an experiment using the reaction of hydroxyl group.

分子量約3000の重合体 0=C=N−CF2(C2F40)p− (CF20)
q−CF2−N=C=0( p:q=1:1、各構造単
位(ま不規111である)]へ −・・♂11− をフレオンに溶解し、0.08重量%の溶液を作製した
。この溶液を水M基が表面に設【Jられ一Cいる前記石
英基(ル十に2500回/分の回転速度で回転塗イbし
、1 0 0 °Cで焼成した後、フレオンで洗浄した
Polymer 0=C=N-CF2(C2F40)p- (CF20) with a molecular weight of about 3000
q-CF2-N=C=0 (p:q=1:1, each structural unit (informal 111))...♂11- was dissolved in Freon, and a 0.08% by weight solution was obtained. This solution was coated on the quartz base (10) with water groups on the surface at a rotational speed of 2,500 times/min, and then baked at 100 °C. , washed with Freon.

得られた基板の表面エネルギーを重合体と接触さ1!る
前と比較したところ、接触前の50から16erg/c
m2に大幅に減少していることがわかった。
The surface energy of the obtained substrate is brought into contact with the polymer 1! When compared with before contact, it was 50 to 16 erg/c before contact.
It was found that there was a significant decrease in m2.

−すし水酸基とイソシアツー−1〜基が反応していイ^
ければ、フレオンによる洗浄で重合体は単分子膜上から
はずれてしまうはずである。従って本発明の方法で製造
した単分子膜l−の親水性基の反応性が有効にいかされ
、単分子膜表面の水酸基は重合体の末端のイワシアナ−
1−基と反応しでいることがわかる。
-Sushi hydroxyl group and isocyanate-1~ group are reacting.
If so, the polymer should be removed from the monolayer by washing with Freon. Therefore, the reactivity of the hydrophilic groups of the monomolecular film l- produced by the method of the present invention is effectively utilized, and the hydroxyl groups on the surface of the monomolecular film are
It can be seen that it has already reacted with the 1-group.

実施例2 実施例1で合成したl−IDEE  2Of1mofと
ヘキサデカン酸30μmoρをクロ[]ホシルム(1h
+ff)に溶解して、蒸留水]■に展開し、表面圧を2
5hn/cm2に保ちつつ、石英基板上に写し取った。
Example 2 l-IDEE 2Of1mof synthesized in Example 1 and 30μmoρ of hexadecanoic acid were mixed with chlor[]fosilum (1h
+ff), expand in distilled water] and reduce the surface pressure to 2.
It was copied onto a quartz substrate while maintaining the density at 5 hn/cm2.

写し取ったままの基板表面の表面エネルキーを液滴の接
触−  12”’,− 角から計算すると、1 ’r’erg/cm2てあり、
非常に疎水性が大きかった。
The surface energy of the surface of the substrate as copied is calculated from the contact angle of the droplet - 12'', -, and is 1 'r'erg/cm2,
It was extremely hydrophobic.

続いてこの基板を酢酸−水(3:1)溶液に浸してから
よく水洗することにより基板上に16−川でドロキシベ
キ1ナデカン酸とヘキサデカン酸の2:3)捏合物より
なる単分子膜を得た。基板表向の表面エネルギーは49
erO/Cm2と人きく、高い親水性を示した。この単
分子膜の高い親水・l’口は、室温で′1週間敢同じて
おいても全く変化し1.【かった。
Next, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to form a monomolecular film made of a 2:3 mixture of droxybekyl-nadecanoic acid and hexadecanoic acid on the substrate. Obtained. The surface energy on the surface of the substrate is 49
It exhibited high hydrophilicity as compared to erO/Cm2. The high hydrophilic property of this monomolecular film does not change at all even if it is left at room temperature for a week.1. 【won.

実施例3 実施例1で合成したトIDEE  5!1moβとヘキ
サデカン酸45μmoI!をクロロボルム(10d)に
溶解して、蒸留水上に展開し、表面圧を25dyn/c
m2に保ちつつ、石英基板上に写し取った。写し取った
ままの基板表面の表面エネルギーを液滴の接触角からh
l算すると、18erg/cm”であり、非常に疎水性
が大きかった。
Example 3 IDEE 5!1 mo β synthesized in Example 1 and 45 μmol hexadecanoic acid! was dissolved in chloroborum (10d), spread on distilled water, and the surface pressure was adjusted to 25 dyn/c.
It was copied onto a quartz substrate while maintaining the area at m2. The surface energy of the substrate surface as it is copied is calculated from the contact angle of the droplet by h
When calculated, it was 18 erg/cm'', indicating extremely high hydrophobicity.

続いてこの基板を酢酸−水(3 : 1 )溶液に浸し
てからよく水洗することにより16−ヒトロキシヘキ1
ナデカン酸とヘキサデカン酸の1:9)昆合物よりなる
(11分子膜を得た。基板表面の表面エネルギーは48
er(]/Cm2と大きく、高い親水性を示した。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to obtain 16-hydroxyhex1.
An 11-molecule film was obtained consisting of a 1:9 mixture of napecanoic acid and hexadecanoic acid.The surface energy of the substrate surface was 48
er(]/Cm2, indicating high hydrophilicity.

この単分子膜の高い親水性は、室温で1週間放置してお
いても全く変化しなかった。
The high hydrophilicity of this monomolecular film did not change at all even after being left at room temperature for one week.

実施例4 実施例って合成した11DFE  45μmoj!とヘ
キサデカン酸5μmoI!をクロロホルム(10mf2
>に溶解して、蒸留水上に展開し、表面圧を25fjv
n/Cl112に保ちつつ、石英基板上に写し取った。
Example 4 11DFE synthesized in Example 45μmoj! and 5 μmol hexadecanoic acid! in chloroform (10mf2
>, spread on distilled water, and reduce the surface pressure to 25 fjv.
It was transferred onto a quartz substrate while maintaining n/Cl112.

写し取ったままの基板表面の表面エネルギーを液滴の接
触角から計痺すると、18erg/Cm2であり、非常
に疎水性が大きかった。
When the surface energy of the surface of the substrate as copied was calculated from the contact angle of the droplet, it was 18 erg/Cm2, indicating that it was extremely hydrophobic.

続いてこの基板を酢酸−水(3: 1 )溶液に浸して
からc+=<水洗することにより16−ヒトロキシヘキ
サデカン酸とヘキサデカン酸の9:1混合物よりなる単
分子膜を得た。基板表面の表面エネルギーは48era
/cm2と大きく、高い親水性を示した。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and washed with water to obtain a monomolecular film made of a 9:1 mixture of 16-hydroxyhexadecanoic acid and hexadecanoic acid. The surface energy of the substrate surface is 48era
/cm2 and showed high hydrophilicity.

この単分子膜の高い親水性は、室温で1週間放置してお
いても全く変化しなかった。
The high hydrophilicity of this monomolecular film did not change at all even after being left at room temperature for one week.

[発明の効果] Jス上説明したように本発明の方法によって得られる単
分子膜は親水性基をその表面に有しているので、親水性
基の反応性あるいは親水性そのものを利用して種々の応
用が期待される。
[Effect of the invention] As explained above, the monomolecular film obtained by the method of the present invention has hydrophilic groups on its surface, so it can be Various applications are expected.

−15,βレ−-15, β-ray

Claims (1)

【特許請求の範囲】[Claims] (1)一般式: X−R−X′ (式中、XおよびX′はそれぞれ相異なる親水性基、R
は炭素原子数が8以上の炭化水素基を示す) で示される1種または2種以上の有機化合物の両端の親
水性基を疎水性保護基に変換して後、一般式: X″−R′ (式中、X″は親水性基、R′は炭素原子数が8以上の
炭化水素基を示す) で示される1種または2種以上の有機化合物とともにラ
ングミュア−ブロジェット法を用いて同時に親水性基板
上に配向制御して吸着させる事を特徴とする単分子膜の
製造方法。
(1) General formula: X-R-X' (wherein, X and X' are different hydrophilic groups, R
represents a hydrocarbon group having 8 or more carbon atoms) After converting the hydrophilic groups at both ends of one or more organic compounds represented by the formula into hydrophobic protecting groups, the general formula: ' (wherein, X'' is a hydrophilic group, and R' is a hydrocarbon group having 8 or more carbon atoms) at the same time using the Langmuir-Blodgett method with one or more organic compounds represented by A method for producing a monomolecular film characterized by adsorption on a hydrophilic substrate while controlling orientation.
JP61108850A 1986-05-12 1986-05-12 Preparation of monomolecular film Pending JPS62266172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108850A JPS62266172A (en) 1986-05-12 1986-05-12 Preparation of monomolecular film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108850A JPS62266172A (en) 1986-05-12 1986-05-12 Preparation of monomolecular film

Publications (1)

Publication Number Publication Date
JPS62266172A true JPS62266172A (en) 1987-11-18

Family

ID=14495175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108850A Pending JPS62266172A (en) 1986-05-12 1986-05-12 Preparation of monomolecular film

Country Status (1)

Country Link
JP (1) JPS62266172A (en)

Similar Documents

Publication Publication Date Title
EP3078688A1 (en) Block copolymer
US8957243B2 (en) Phosphonium ionic liquids and coatings made therefrom
TWI753112B (en) Block copolymer, and method of producing structure containing phase-separated structure
JPS62266172A (en) Preparation of monomolecular film
JPS62266167A (en) Preparation of monomolecular film
KR890003971B1 (en) Process for the prepararion of silicone-polyimide precursor
JPS62266170A (en) Preparation of monomolecular film
JPS62266171A (en) Preparation of monomolecular film
JPH03160086A (en) Thin polypeptide film
JPS62266168A (en) Preparation of monomolecular film
JP4887486B2 (en) Chalcone analog
JPS62266162A (en) Monomolecular film
JPH02129216A (en) Polyurea and film comprising at least one monomolecular film of polyurea
JP3013934B2 (en) Thin film with low surface activity
JPS62266163A (en) Monomolecular film
JPS62266169A (en) Preparation of monomolecular film
JPS62266166A (en) Preparation of monomolecular film
JPS62266164A (en) Monomolecular film
US5001198A (en) Fluorine-containing polymeric compound and a method for the preparation thereof
JPS62266161A (en) Monomolecular film
JPH03221504A (en) Synthesis of cyclodextrin polymer and production of cyclodextrin film
JP2987428B2 (en) Adsorption of asymmetric disulfide compounds on gold surface
JPS6324554B2 (en)
US5095090A (en) Polypeptide thin film from amphiphilic compounds
JPH0560994B2 (en)