JPS6226471A - High-humidity showcase - Google Patents

High-humidity showcase

Info

Publication number
JPS6226471A
JPS6226471A JP16294085A JP16294085A JPS6226471A JP S6226471 A JPS6226471 A JP S6226471A JP 16294085 A JP16294085 A JP 16294085A JP 16294085 A JP16294085 A JP 16294085A JP S6226471 A JPS6226471 A JP S6226471A
Authority
JP
Japan
Prior art keywords
evaporator
temperature
compressor
frequency
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16294085A
Other languages
Japanese (ja)
Inventor
宏 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16294085A priority Critical patent/JPS6226471A/en
Publication of JPS6226471A publication Critical patent/JPS6226471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Freezers Or Refrigerated Showcases (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は高湿度ショーケースに係り、特に高湿度を得る
ために必要な水分付着とその再蒸発とを効果的に行なう
ために、インバータを導入して圧縮機を能力可変型とし
たものに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a high-humidity showcase, and in particular, an inverter is introduced in order to effectively carry out moisture adhesion and re-evaporation necessary to obtain high humidity. This invention relates to a compressor with variable capacity.

[発明の技術的背景] 一般に、高湿度ショーケースの構造は第10図に示す如
く、機械室には圧縮1111と凝縮器2が設けられ、冷
却室には蒸発器3とファン4が′設けである。冷却中に
は冷気の流れはファン4によって矢印で示すように冷却
室内を循環するようになっているが、停止中にもファン
4は回転を続け、この風により水分の蒸発が促進されて
ショーケース内の高湿度を保つ。即ち、高湿度ショーケ
ースにて高湿度を得るために、冷却中に蒸発器3に付着
した水分を停止中に蒸発させる方式が採られている。
[Technical Background of the Invention] Generally, the structure of a high humidity showcase is as shown in FIG. It is. During cooling, the flow of cold air is circulated within the cooling chamber by the fan 4 as shown by the arrow, but even when the fan 4 is stopped, the fan 4 continues to rotate, and this wind accelerates the evaporation of moisture, resulting in the show. Maintain high humidity inside the case. That is, in order to obtain high humidity in the high humidity showcase, a method is adopted in which moisture adhering to the evaporator 3 during cooling is evaporated while the evaporator 3 is stopped.

この従来方式の冷凍サイクルは第6図に示す如く、圧縮
機1→凝縮器2→キヤピラリチユ一ブ5→蒸発器3→圧
11i!1fi1となっており、外気低温時に湿度を補
うための加湿皿6とヒータ7が冷却室内に設けである。
As shown in FIG. 6, this conventional refrigeration cycle is as follows: compressor 1 → condenser 2 → capillary tube 5 → evaporator 3 → pressure 11i! 1fi1, and a humidifying tray 6 and a heater 7 are provided in the cooling room to supplement humidity when the outside air is low temperature.

圧縮機1は、庫内温度センサ8の情報に基づいて庫内温
度を目標値に保つように、その運転率が制御され、また
、外気温度センサ9の情報に基づいてヒータ7の通電制
御がなされる。
The operating rate of the compressor 1 is controlled based on the information from the internal temperature sensor 8 to maintain the internal temperature at a target value, and the energization of the heater 7 is controlled based on the information from the external temperature sensor 9. It will be done.

ところで、外気温と熱リーク琵との関係は第9図に示す
如く外気温が高いとリーク量が大となる。
By the way, as shown in FIG. 9, the relationship between the outside temperature and the heat leakage rate is such that the higher the outside temperature, the greater the amount of leakage.

このため、外気高温時の運転状況は第7図(a >に示
すようになるに対し、外気が中温になればリーク量が少
なくなるため運転率が低くなり(第7図(b))、さら
に低温になると圧縮機のOFF時間が長くなり、水分付
着時間が短くなるため、湿度を補うべく加湿皿6の水分
をヒータ7で蒸発させることになる(第7図(C))。
For this reason, the operating situation when the outside temperature is high is as shown in Figure 7 (a), but when the outside temperature is medium, the amount of leakage decreases and the operating rate becomes low (Figure 7 (b)). When the temperature further decreases, the OFF time of the compressor becomes longer and the time for moisture adhesion becomes shorter, so the water in the humidifying tray 6 is evaporated by the heater 7 to compensate for the humidity (FIG. 7(C)).

このように従来の方式では外気温の変化により運転率が
大きく変わるようになっていた。
As described above, in the conventional system, the operating rate varied greatly depending on changes in the outside temperature.

[背景技術の問題点1 ゛ ところが、高湿度を1ワるための条件としては第8
図ミ示すように、圧縮機の運転率を45〜55%程度に
する必要があるため、外気温の変化により運転率が変わ
る従来のちのでは、次のような問題点があった。
[Problem with background technology 1 ゛ However, as a condition for exceeding high humidity by 1, the 8th
As shown in the figure, since the operating rate of the compressor needs to be about 45 to 55%, conventional systems in which the operating rate changes depending on changes in outside temperature have had the following problems.

(1)  外気温の変化により運転率が変わるため、庫
内を高湿度に保つことができる使用(外気)温度帯が狭
い。
(1) Since the operating rate changes with changes in outside temperature, the operating (outside air) temperature range that can maintain high humidity inside the refrigerator is narrow.

(2)  外気低温時にONする加湿用ヒータの電力損
失が大きく、電気代が嵩む。
(2) The power loss of the humidifying heater, which is turned on when the outside temperature is low, is large, increasing electricity bills.

(3)  圧縮機の運転率は最大負荷時を基準にして決
められるため、軽負荷時に0N−OFFが頻繁となり、
圧縮機の耐久力に悪影費を及ぼす。
(3) Since the operating rate of the compressor is determined based on the maximum load, 0N-OFF will occur frequently during light loads.
It has a negative impact on the durability of the compressor.

[発明の目的] 本発明の目的は、冷却と加熱の2運転サイクルをインバ
ータで制御することによって、上記問題点を解消して、
外気温にかかわらず安定した高湿度を効率良く得ること
が可能で、しかも耐久性の高い高湿度ショーケースを提
供することである。
[Object of the invention] The object of the present invention is to solve the above problems by controlling two operation cycles of cooling and heating with an inverter.
To provide a highly durable high humidity showcase capable of efficiently obtaining stable high humidity regardless of outside temperature.

[発明の概要] 本発明は冷凍サイクルに、圧縮機の周波数を制御するイ
ンバータと、加熱時に圧縮機からホットガスを蒸発器へ
導く加熱パイプと、冷却時に周波数を下げる一方、加熱
時に周波数を上げる制御信号をインバータに送出する制
御器とを設けたことを特徴とする。
[Summary of the Invention] The present invention provides a refrigeration cycle with an inverter that controls the frequency of the compressor, a heating pipe that guides hot gas from the compressor to the evaporator during heating, and a system that lowers the frequency during cooling and increases the frequency during heating. The present invention is characterized in that it includes a controller that sends a control signal to the inverter.

これにより、圧縮機を0N10FFさせないでその周波
数を変えることにより厚内温度を制御すると共に、外気
温が低い冷却時は周波数を下げて蒸発器に水分が付着す
るための付着時間を充分確保し、同じく外気温が低い加
熱時はホットガスを蒸発器に直接流して蒸発器を加熱す
ると共に、周波数を上げて蒸発器に付着した水分を積極
的に再蒸発させるようにしたものである。
As a result, the internal temperature can be controlled by changing the frequency of the compressor without turning it into 0N10FF, and at the same time, during cooling when the outside temperature is low, the frequency is lowered to ensure sufficient adhesion time for moisture to adhere to the evaporator. Similarly, during heating when the outside temperature is low, hot gas is flowed directly into the evaporator to heat the evaporator, and the frequency is increased to actively re-evaporate moisture adhering to the evaporator.

[発明の実施例] 本発明の実施例を第11図〜第5図に基づいて説明すれ
ば以下の通りである。
[Embodiments of the Invention] Examples of the present invention will be described below based on FIGS. 11 to 5.

第1図は本発明高湿度ショーケースの冷凍サイクル構成
例を示し、図に示す如く圧縮機11の吐出側と蒸発器1
3の入口側との間に加熱パイプ20が接続され、凝縮器
12をバイパスしてホットガスを圧縮機11から直接蓋
R器13へ導くようになっている。加熱パイプ20には
加湿ll1116が密着して設けられ、この加湿皿16
へは外気が低温時のみ水が補給されるようにしてもよく
、その補給は例えば外部から入れる方式でもよい。また
、加熱パイプ20には電磁弁から成る二方弁21が介設
され、この二方弁21は庫内温度センサ18の情報に基
づいて開閉切替がなされる。
FIG. 1 shows an example of the refrigeration cycle configuration of the high humidity showcase of the present invention. As shown in the figure, the discharge side of the compressor 11 and the evaporator 1
A heating pipe 20 is connected between the inlet side of the compressor 11 and the inlet side of the compressor 11, and the hot gas is guided directly from the compressor 11 to the lid R unit 13, bypassing the condenser 12. A humidifier 1116 is provided in close contact with the heating pipe 20, and this humidifier plate 16
Water may be supplied to the tank only when the outside air is low, and the water may be supplied from outside, for example. Further, a two-way valve 21 made of a solenoid valve is interposed in the heating pipe 20, and the two-way valve 21 is switched to open or close based on information from the internal temperature sensor 18.

センサとしては前記の庫内温度センサ18の他に、外気
の温度を検知する外気温度センナ19及び蒸発器13に
取り付けた蒸発器温度センサ22が設けである。
In addition to the internal temperature sensor 18 described above, the sensors include an outside air temperature sensor 19 that detects the temperature of outside air, and an evaporator temperature sensor 22 attached to the evaporator 13.

一方、圧縮機11にはインバータ装置23が設けられ、
このインバータ装置は、制御信号に応じて圧縮機11の
電源周波数を制御するインバータ24と、上記庫内温度
センサ18、外気温度センサ19、蒸発器温度センサ2
2の情報に基づいてインバータ24に制御信号を通出す
る制御器25とからなる。
On the other hand, the compressor 11 is provided with an inverter device 23,
This inverter device includes an inverter 24 that controls the power frequency of the compressor 11 according to a control signal, the chamber temperature sensor 18, the outside air temperature sensor 19, and the evaporator temperature sensor 2.
2, and a controller 25 that sends a control signal to the inverter 24 based on the information of 2.

さて上記構成の作用を第5図のフローチャートに示す制
御器25の諸機能に基づいて説明する。
Now, the operation of the above configuration will be explained based on the functions of the controller 25 shown in the flowchart of FIG.

フローチャートの前段では外気温の変化に対して圧縮環
の回転数をインバータにより変え、後段では庫内温度と
蒸発温度との差に対して回転数を変える能力可変制御を
行なっている。
In the first stage of the flowchart, the rotation speed of the compression ring is changed by an inverter in response to changes in outside temperature, and in the second stage, capacity variable control is performed to change the rotation speed in response to the difference between the internal temperature and the evaporation temperature.

すなわち、フローチャートの前段では、外気温度Rtが
どのくらいの温度であるかを判断し、外気が高温の場合
は冷却時の周波数[を高くし、加熱時の周波数rは低い
か、又は停止として庫内温度を必要以上に上がらないよ
うにする。ここで、冷却時及び加熱時とはフローの中段
で行なわれる2運転サイクルをいう。
That is, in the first stage of the flowchart, it is determined how much the outside air temperature Rt is, and if the outside air is high temperature, the cooling frequency [is increased, and the heating frequency r is low, or the internal temperature is stopped. Avoid raising the temperature more than necessary. Here, the cooling time and heating time refer to two operation cycles performed in the middle stage of the flow.

外気が低温の場合は、逆に冷却時の周波数を下げること
で蒸発器への水分付着時間を充分確保する一方、加熱時
は周波数を高めにして再蒸発効率を上げる。
Conversely, when the outside air is low temperature, the cooling frequency is lowered to ensure sufficient time for moisture to adhere to the evaporator, while the heating frequency is raised to increase re-evaporation efficiency.

このように制御された冷却時の周波数と加熱時の周波数
との外気温に対する変化を第3図に示す。
FIG. 3 shows the changes in the cooling frequency and the heating frequency controlled in this manner with respect to the outside temperature.

フローチャート中段では、2運転サイクルの切替えが行
なわれる。即ち、庫内温度Δ【が目標(直よりも低いか
否かが判断され、目標値よりも低ければ加熱の必要があ
るとして二方弁21を切換え加熱パイプ20を開いてホ
ットガスを蒸発器13□ へ直接流す。この運転サイクルが加熱時であり、これに
より冷却時に蒸発器13に付着した水分の再蒸発化を積
極的に促す一方、加熱パイプ20に密着した加湿皿16
に入れた補湿用の水を、ヒータを用いることなく加熱蒸
発して、外気温の変化にかかわらず庫内を高湿度に保持
する。また、庫内i度へtが目標値よりも高ければ冷却
時運転サイクル、即ちフローチャートの後段へ進む。
In the middle stage of the flowchart, switching between two operation cycles is performed. That is, it is determined whether the internal temperature Δ[ is lower than the target value (or not), and if it is lower than the target value, it is determined that heating is necessary, and the two-way valve 21 is switched, the heating pipe 20 is opened, and the hot gas is transferred to the evaporator. 13□. This operation cycle is the heating time, and while this actively promotes the re-evaporation of the moisture adhering to the evaporator 13 during cooling, the humidifying tray 16 that is in close contact with the heating pipe 20
To maintain high humidity inside a refrigerator by heating and evaporating the humidifying water put in the refrigerator without using a heater. Moreover, if t to i degree inside the refrigerator is higher than the target value, the process proceeds to the cooling operation cycle, that is, to the latter part of the flowchart.

フローチャートの後段では、庫内温度Δ℃と蒸発温度E
tとの差△Tがどのくらいであるかを判断し、庫内温度
A[が蒸発器温度Etに近づくと、即ち差が小さくなる
にしたがい周波数を徐々に減らして水分の付着時間を稼
ぎながら庫内温度を目標値に近づけていく。これを示し
たのが第9図である。
In the latter part of the flowchart, the internal temperature Δ℃ and the evaporation temperature E
The difference △T from t is determined, and when the internal temperature A [ approaches the evaporator temperature Et, that is, as the difference becomes smaller, the frequency is gradually reduced to increase the time for moisture to adhere to the refrigerator. Bring the internal temperature closer to the target value. FIG. 9 shows this.

上述した全フローの結果、外気が高温、中温、低温時の
庫内湿度と庫内温度の様子は第2図の(a )〜(C)
に示すようになり、外気温が変化しても安定した高湿度
が19られ、特に外気低温時であっても、ともすれば低
下しがちな蒸発効率を上げることができる。これは、冷
却サイクルに加熱サイクルを加えると共に、圧縮償をイ
ンバータ制御による能力可変型とし、そのインバータ制
御を庫内、庫外又は蒸発器の温度で制御することによっ
て可能となる。
As a result of all the above-mentioned flows, the humidity and temperature inside the refrigerator when the outside air is high, medium, and low are shown in (a) to (C) in Figure 2.
As shown in Fig. 1, stable high humidity can be maintained even when the outside temperature changes, and the evaporation efficiency, which otherwise tends to decrease, can be increased even when the outside temperature is low. This is made possible by adding a heating cycle to the cooling cycle, making the compression compensation a variable capacity type controlled by an inverter, and controlling the inverter based on the temperature inside the refrigerator, outside the refrigerator, or the evaporator.

[発明の効果] 以上型するに本発明によれば次のような優れた効果を発
揮する。
[Effects of the Invention] To summarize, the present invention exhibits the following excellent effects.

(1)  外気温が低くなるにしたがい、インバータに
よって冷却時は周波数を下げ、冷却停止時は加熱に切り
換えて周波数を上げるように制御したことにより、イン
バータによらない運転率制御を採用している従来のよう
に冷却時蒸発器への水分付着時間が短か過ぎたり、冷却
停止時蒸発器に付着した水分を単にファンによって再蒸
発化したりしていたものと異なり、冷却時水分の付着時
間を充分に確保できると共に、冷riI停止時は蒸発器
の積極的加熱が行なわれ再蒸発効率をアップできるので
、外気温にかかわらず安定した高湿度が得られる。
(1) As the outside temperature decreases, the inverter lowers the frequency when cooling, and when cooling is stopped, switches to heating and increases the frequency, thereby adopting operation rate control that does not rely on an inverter. Unlike conventional methods, where the time for moisture to adhere to the evaporator during cooling is too short, or where the moisture attached to the evaporator when cooling is stopped is simply re-evaporated by a fan, the time for moisture to adhere to the evaporator during cooling is shorter. In addition to ensuring sufficient humidity, the evaporator is actively heated when the cold riI is stopped, increasing the re-evaporation efficiency, so a stable high humidity can be obtained regardless of the outside temperature.

(2)  ホットガスを圧縮機から直接蒸発器へ導く加
熱パイプを設けたことにより、加潟用ヒークを要してい
た従来のものと異なり、通電加熱用電力を不要とするこ
とができるので、省エネルギー化が図れる。
(2) By installing a heating pipe that leads the hot gas directly from the compressor to the evaporator, unlike conventional systems that require heat for heating, electrical power for heating is not required. Energy saving can be achieved.

(3)  インバータを採用したことにより、圧縮機の
頻繁な0N10 F Fを避けることができ、圧縮機の
か命が向上する。
(3) By adopting an inverter, frequent 0N10 FF of the compressor can be avoided, improving the life of the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高湿度ショーケースの実癌例を示す冷
凍サイクル構成図、第2図は第1図の冷凍サイクルに基
づく外気温をパラメータとした庫内湿度、温度特性図、
第3図は同じく外気温に対する周波数特性図、第4図は
同じく庫内温度と蒸発器に度との差に対する周波数特性
図、第5図は同じく制御器の諸機能を説明する70−ヂ
ャート、第6図は従来の高湿度ショーケースの冷凍サイ
クル構成図、第7図は第6図の冷凍サイクルに基づく外
気温をパラメータとした庫内湿度、温度特性図、第8図
は高湿度を確保するための最適運転率を示す特性図、第
9図は外気温に対するリーク量特性図、第10図は本発
明と従来とに共通した高湿度ショーケースの概略断面構
造図である。 図中、11は圧縮機、12は凝縮器、13は蒸発器、1
6は加湿皿、18は庫内温度センサ、19は外気温度セ
ンサ、20は加熱パイプ、22は蒸発器温度センサ、2
4はインバータ、25は制御器である。 特許出願人   株式会社  東  芝代理人弁理士 
 絹  谷  信  雄第5図 第7図
Fig. 1 is a refrigeration cycle configuration diagram showing an actual example of the high humidity showcase of the present invention, Fig. 2 is a diagram of internal humidity and temperature characteristics with outside temperature as a parameter based on the refrigeration cycle of Fig. 1;
FIG. 3 is a frequency characteristic diagram for the outside temperature, FIG. 4 is a frequency characteristic diagram for the difference between the internal temperature and the evaporator temperature, and FIG. 5 is a 70-diagram diagram explaining the various functions of the controller. Figure 6 is a configuration diagram of the refrigeration cycle of a conventional high-humidity showcase. Figure 7 is a diagram of the internal humidity and temperature characteristics based on the refrigeration cycle in Figure 6 using outside temperature as a parameter. Figure 8 is a diagram of ensuring high humidity. FIG. 9 is a characteristic diagram showing the amount of leakage with respect to outside temperature, and FIG. 10 is a schematic cross-sectional structural diagram of a high-humidity showcase common to the present invention and the conventional one. In the figure, 11 is a compressor, 12 is a condenser, 13 is an evaporator, 1
6 is a humidifying dish, 18 is an internal temperature sensor, 19 is an outside temperature sensor, 20 is a heating pipe, 22 is an evaporator temperature sensor, 2
4 is an inverter, and 25 is a controller. Patent applicant Toshiba Corporation Patent attorney
Nobuo Kinutani Figure 5 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)冷却時に蒸発器に付着した水分を冷却停止時に再
蒸発させる冷凍サイクルを備えた高湿度ショーケースに
おいて、前記冷凍サイクルに圧縮機の電源周波数を制御
信号に応じて可変制御するインバータと、庫内温度が目
標値以下の加熱時に凝縮器をバイパスして前記圧縮機か
らホットガスを直接蒸発器へ導きこれを加熱する加熱パ
イプと、外気温が低温になるにしたがって、冷却時は周
波数を下げ、加熱時は逆に周波数を上げる制御信号を前
記インバータに送出する制御器とを設けたことを特徴と
する高湿度ショーケース。
(1) In a high humidity showcase equipped with a refrigeration cycle that re-evaporates moisture adhering to an evaporator during cooling when cooling is stopped, an inverter that variably controls the power frequency of a compressor in the refrigeration cycle according to a control signal; A heating pipe bypasses the condenser and directs the hot gas from the compressor to the evaporator to heat it during heating when the internal temperature is below the target value, and a heating pipe that heats the hot gas from the compressor directly to the evaporator. and a controller that sends a control signal to the inverter that lowers the frequency and conversely increases the frequency during heating.
(2)前記制御器は冷却時に庫内温度と蒸発器温度とを
比較し、その温度差が小さくなるにしたがつて周波数を
下げる制御信号をインバータに送出することを特徴とす
る特許請求の範囲第1項記載の高湿度ショーケース。
(2) The controller compares the internal temperature and the evaporator temperature during cooling, and sends a control signal to the inverter to lower the frequency as the temperature difference becomes smaller. The high humidity showcase described in item 1.
JP16294085A 1985-07-25 1985-07-25 High-humidity showcase Pending JPS6226471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16294085A JPS6226471A (en) 1985-07-25 1985-07-25 High-humidity showcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16294085A JPS6226471A (en) 1985-07-25 1985-07-25 High-humidity showcase

Publications (1)

Publication Number Publication Date
JPS6226471A true JPS6226471A (en) 1987-02-04

Family

ID=15764138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16294085A Pending JPS6226471A (en) 1985-07-25 1985-07-25 High-humidity showcase

Country Status (1)

Country Link
JP (1) JPS6226471A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177769A (en) * 1989-12-06 1991-08-01 Sanden Corp Constant temperature showcase
JP2009014295A (en) * 2007-07-06 2009-01-22 Japan Tobacco Inc Storage device for cigarette
JP2020128847A (en) * 2019-02-08 2020-08-27 ダイキン工業株式会社 Refrigeration device and cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177769A (en) * 1989-12-06 1991-08-01 Sanden Corp Constant temperature showcase
JP2009014295A (en) * 2007-07-06 2009-01-22 Japan Tobacco Inc Storage device for cigarette
JP2020128847A (en) * 2019-02-08 2020-08-27 ダイキン工業株式会社 Refrigeration device and cooling system

Similar Documents

Publication Publication Date Title
US5062276A (en) Humidity control for variable speed air conditioner
US4748822A (en) Speed control of a variable speed air conditioning system
CN1325849C (en) Air conditioner with constant air outlet temperature and control method therefor
JPS59170653A (en) Air conditioner
CN107143967A (en) One drags the control system of many photovoltaic cold storage of ice making air-conditionings
CN103471205B (en) A kind of indoor temperature control method and dual-temperature control valve
JPS6226471A (en) High-humidity showcase
JP4182662B2 (en) Air conditioner
JPS6256427B2 (en)
JPS6129649A (en) Heat-pump hot-water supply device
CN2397412Y (en) Series air-cooled thermoregulation dehumidifier
JPS60114669A (en) Air conditioner
JPS58123046A (en) Heat pump type hot water supplier
CN221306409U (en) Heat pump system of machine room
CN216347143U (en) Machine room air conditioner and control device thereof
JP2000055437A (en) Air conditioner
EP1508752A1 (en) Thermohygrostat-type air conditioner with means for controlling evaporation temperature
JPS6155556A (en) Air conditioner
JPS58148333A (en) Method for defrosting air heat source heat pump
JPH09145175A (en) Air conditioner
JPS61291868A (en) Control system of operation of refrigerator
JPH01314868A (en) Heat pump type heater-cooler
JPS61256162A (en) Air heat-source heat pump device
CN114001473A (en) Machine room air conditioner and control device and method thereof
CN114353377A (en) Throttling device for heat pump water heater and control method thereof