JPS58148333A - Method for defrosting air heat source heat pump - Google Patents

Method for defrosting air heat source heat pump

Info

Publication number
JPS58148333A
JPS58148333A JP57029849A JP2984982A JPS58148333A JP S58148333 A JPS58148333 A JP S58148333A JP 57029849 A JP57029849 A JP 57029849A JP 2984982 A JP2984982 A JP 2984982A JP S58148333 A JPS58148333 A JP S58148333A
Authority
JP
Japan
Prior art keywords
defrosting
time
temperature
evaporator
preset value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57029849A
Other languages
Japanese (ja)
Inventor
Takeshi Imaida
今飯田 毅
Katsumi Oshitani
押谷 克己
Isao Miyazaki
伊佐夫 宮崎
Hisashi Hattori
服部 久司
Hideo Sugano
菅野 英男
Harunobu Mizukami
水上 春信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57029849A priority Critical patent/JPS58148333A/en
Publication of JPS58148333A publication Critical patent/JPS58148333A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To appropriately start a defrosting cycle by starting the defrosting operation by utilizing such a phenomenon that the charge ratio of the temperature of a coolant evaporator to the time increases with the progress of the defrosting and a condition exceeding a certain preset value continues for a specific period of time. CONSTITUTION:The defrosting operation is carried out only when the temperature theta of the coolant evaporator 3 becomes less than a preset value to prevent such an erroneous operation that when no frost exists, a defrosting mode operation is started. Furthermore, the change ratio I of the temperature theta of the coolant evaporator 3 to the time (t) is noticed. The time when the change ratio I of the evaporator temperature theta to the time is negative and is larger than the preset value C1 which is an absolute value of (l) is continued for a predetermined period of time C2, is determined as a time for starting the defrosting, and a signal is emitted from an electronic control part 7. Then, a four-way changeover valve 2 is switched through an electromagnetic contactor 15, and the coolant passage is switched to carry out the defrosting operation. When the temperature theta of the evaporator 3 exceeds the preset value, the defrosting operation is terminated.

Description

【発明の詳細な説明】 本尭明は、空気熱源ヒー)/ングの除霜方法の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a defrosting method for an air heat source heater.

空気熱源ヒー)/y7#の冷媒蒸発器(室外熱交換1り
は、暖房運転が続行されると、外気条件にもよるが、あ
る温度以下になると表Tj7Jに着霜がおこる。霜の蓄
積量がある限度を越えると暖房能力が低下し始め、効率
の良い暖房運転を明害する。この丸め霜の蓄積によって
能力低下がひどくなる前に冷媒流路を切換えて除霜運転
をおこなう必要がある。
Air heat source heat)/y7# refrigerant evaporator (outdoor heat exchange 1) If heating operation continues, frost will form on the table Tj7J when the temperature drops below a certain level, depending on the outside air conditions. Accumulation of frost When the amount exceeds a certain limit, the heating capacity begins to decline, impairing efficient heating operation. It is necessary to switch the refrigerant flow path and perform defrosting operation before the capacity decrease becomes too severe due to the accumulation of this rounded frost. .

従来、除霜運転への切換えは、冷媒蒸発器の温度が設定
温度以下に低下し、かつ前回の除霜後設定時間継続した
ときにおこなうようにしている。−例として設定温度−
3℃、設定時間60分が選定されている。しかし従来の
方法では、冷媒蒸発器に着霜が無い場合でも除霜運転に
切換わることがある。
Conventionally, switching to defrosting operation is performed when the temperature of the refrigerant evaporator falls below a set temperature and continues for a set time after the previous defrosting. −Example: Set temperature−
A temperature of 3°C and a set time of 60 minutes were selected. However, in the conventional method, even when there is no frost on the refrigerant evaporator, the operation may be switched to defrosting operation.

すなわち空気熱源ヒートIンプは、相対fi&が約60
−以下の場合低外気温でも冷媒蒸発器に着霜が生じない
、しかしこの場合従来の方法では、冷媒蒸発器が設定温
度(Nえば一3℃)以下に低下すると、暖房運転を停止
して除霜サイクルに入る。このため暖房運転が停止して
、室温が低下し、室内居住者に不快感を与える。
In other words, the air heat source heat I pump has a relative fi& of approximately 60
- In the following cases, frost does not form on the refrigerant evaporator even at low outside temperatures.However, in this case, in the conventional method, heating operation is stopped when the temperature of the refrigerant evaporator drops below the set temperature (for example, -3℃). Enter defrost cycle. As a result, the heating operation is stopped, the room temperature drops, and the occupants in the room feel uncomfortable.

しかも不必要な除霜運転をおこなうためエネルギを消費
し、効率の悪い運転になっていた。
Moreover, unnecessary defrosting operation consumes energy, resulting in inefficient operation.

ま九従来方法では着霜が急速に進行して冷aS発動の温
度が設定温度以下に低下しても、メイマが設定時間例え
ば前回の除霜以俵60分まで達していないと、除霜サイ
クルを開始しない。
9. With the conventional method, even if frosting progresses rapidly and the temperature at which cold aS is activated falls below the set temperature, if the frost has not reached the set time, for example, 60 minutes since the last defrost, the defrost cycle will start. do not start.

この丸め冷媒蒸発器に着霜した状態で暖房運転する仁と
となシ、暖房能力が低下して効率の悪い運転を続けるこ
とになる。
If a heating operation is performed with the rounded refrigerant evaporator frosted, the heating capacity will decrease and the operation will continue inefficiently.

ま九空気熱源ヒートdyfは、暖房運転から除霜運転及
び除霜運転から暖房運転への切換時に、四方切換弁によ
り冷媒回路の高圧側と低圧側を逆転させる丸め大きな騒
音を発生する。従来方法では、ノイズなどの瞬間的な温
度変動あるいは起動、停止、外乱等による温度変化が生
じると除霜運転と暖房運転との切換えが畝ってなされ、
上述し九騒音が問題となる。
The air heat source heat dyf generates loud noise by reversing the high-pressure side and low-pressure side of the refrigerant circuit using a four-way switching valve when switching from heating operation to defrosting operation and from defrosting operation to heating operation. In the conventional method, when instantaneous temperature fluctuations such as noise or temperature changes due to startup, shutdown, disturbance, etc. occur, switching between defrosting operation and heating operation is performed in a ridged manner.
The above-mentioned noise is a problem.

本発明は、上記事情に鑑みてなされたもので、その目的
とするところは、冷媒蒸発器に着霜し九場合的確に除霜
サイクルを開始し、効率を高めるとともに童内層住者に
不快感を与えず、しかも誤動作の問題もない空気熱源ヒ
ー)/ングの除霜方法を得んとするものである。
The present invention has been made in view of the above circumstances, and its purpose is to accurately start the defrosting cycle in the event of frost formation on the refrigerant evaporator, thereby increasing efficiency and causing discomfort to residents of the nursery class. The purpose of the present invention is to provide a defrosting method using an air heat source that does not cause any damage to the air and also does not cause malfunctions.

すなわち本発明は、暖房運転における冷媒蒸発器に着霜
し良際、これを検知して冷媒流路を切換え除霜運転をお
こなう空気熱源ヒートポングの除霜方法において、冷媒
蒸発器のilI&が所定の設定値よ)低くかつこの温度
の時間に対する1次像分値が負で、その絶対値が所定の
設定値よシ大きい状態が設定時間継続し九ときに除霜運
転をおこなうことを特徴とする空気熱源ヒートメングの
#編方法である。
That is, the present invention provides a defrosting method for an air heat pump in which when the refrigerant evaporator is frosted during heating operation, this is detected and the refrigerant flow path is switched to perform the defrosting operation. The defrosting operation is performed when the temperature continues to be low (as compared to the set value) and the primary image value with respect to time of this temperature is negative, and its absolute value is greater than the predetermined set value for the set time. This is the # knitting method for air heat source heat meng.

以下本発明を図示する実施例を参照して説明する。The present invention will be described below with reference to illustrative embodiments.

111図は空気熱源ヒー)/ングの冷媒系統図、第2図
は同配!1図、第3図は冷媒蒸発器のa度低下の過程の
実験結果を示す図、第4図は除霜制御の70−シート図
である。空気熱源ヒートメン!は、第1図に示すように
圧縮機1、四方切換弁2、暖房時の冷媒蒸発a1である
熱源情熱交換器、絞94及び利用情熱交換aXを冷媒が
流れるようになし、冷媒蒸発器1に、この温度を感知す
る感温素子6を順付け、この#l温素子Cを電子制御部
1に接続している。なお図中l#i室内側送風用電動機
、9は室内側送風機、1Gは室外側送風用電動機を示す
Figure 111 is a refrigerant system diagram for an air heat source (heat source), Figure 2 is the same! 1 and 3 are diagrams showing experimental results of the process of reducing the temperature of the refrigerant evaporator by a degree, and FIG. 4 is a 70-sheet diagram of defrosting control. Air heat source heat men! As shown in FIG. 1, the refrigerant is made to flow through the compressor 1, the four-way switching valve 2, the heat source exchanger which is the refrigerant evaporation a1 during heating, the throttle 94 and the utilization exchanger aX, and the refrigerant evaporator 1 A temperature sensing element 6 for sensing this temperature is arranged in order, and this #l temperature element C is connected to the electronic control section 1. In the figure, l#i indicates the indoor air blower motor, 9 indicates the indoor air blower, and 1G indicates the outdoor air blower motor.

この空気熱源ヒートーングの制御回路は、第2図に示す
ように上記電子制働部rの電源トランス11、電子制御
部1を操作するリモートコントロール用操作s12、電
子制御部IK後接続た電磁接触器13〜15等を備え、
電磁接触器JJ〜1io接点11a〜l1mの開閉によ
)圧縮’a 1 、四方切換弁2、室外側送風用電動機
10を作動するようになっている。
As shown in FIG. 2, the control circuit for this air heat source heat ring includes a power transformer 11 of the electronic brake r, a remote control operation s12 for operating the electronic control unit 1, and an electromagnetic contactor connected after the electronic control unit IK. Equipped with 13 to 15 mag.
By opening and closing the electromagnetic contactors JJ-1io contacts 11a-11m, the compression 'a1), the four-way switching valve 2, and the outdoor air blowing motor 10 are operated.

この空気熱源ヒートメン!は、次のようKして暖房運転
をおこなう。
This air heat source heat men! perform heating operation by pressing K as follows.

暖房運転時にリモートコントロール用操作部11の操作
によ〕、電源トランス11を介して電子制御部1に通電
される。これによp電磁接触器13〜1iが励磁されて
それぞれの接点Ija〜Jimを閉として圧縮機1、四
方切換弁2、室外側送風用電動機10が通電されると共
に、車内側送風用電動機1にも通電される。
During heating operation, power is supplied to the electronic control unit 1 via the power transformer 11 by operating the remote control operation unit 11. As a result, the p electromagnetic contactors 13 to 1i are energized, and the respective contacts Ija to Jim are closed to energize the compressor 1, the four-way switching valve 2, and the outdoor ventilation motor 10, and the vehicle interior ventilation motor 1 is energized. is also energized.

圧縮機1から吐出され九高温高圧の冷媒は、四方切換弁
2を通って利用側熱交換器(凝縮器)5に入り、ここで
凝縮液化する。この時室内情送風機−によって空気が循
環され、利用側熱交換器5で熱交換した温風を吹き出す
、I!!に冷媒は、絞り4で減圧されて冷媒蒸発器(室
外側熱交換器)jK入夛蒸発気化されて、四方弁1を介
して圧縮機1に吸入される。この時冷媒蒸発器3の温f
(1号0)を感温素子6で検知する。
The high-temperature, high-pressure refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 and enters the user-side heat exchanger (condenser) 5, where it is condensed and liquefied. At this time, the air is circulated by the indoor air blower, and hot air that has been heat exchanged by the user-side heat exchanger 5 is blown out. ! The refrigerant is depressurized by the throttle 4, enters the refrigerant evaporator (outdoor heat exchanger), is evaporated, and is sucked into the compressor 1 via the four-way valve 1. At this time, the temperature f of the refrigerant evaporator 3
(1 No. 0) is detected by the temperature sensing element 6.

ここで、室外側に設置された冷媒蒸発器3は、暖房運転
が続行されると、外気条件にもよるが、ある温度以下に
なると表面に着霜がおこる。霜の蓄積量がある限度を越
えると暖房能力が低下し始め、効率の良い暖房運転を阻
害する。そζで霜の蓄積によって能力低下がひどくなる
前に霜をとかす必要がある。この場合の暖房能力の低下
の過程および蒸発器の温度の低下の過程の実験結果を第
1図に示す。
Here, if the heating operation continues, frost will form on the surface of the refrigerant evaporator 3 installed outside the room when the temperature drops below a certain level, depending on the outside air conditions. When the amount of accumulated frost exceeds a certain limit, heating capacity begins to decline, impeding efficient heating operation. Therefore, it is necessary to thaw the frost before the capacity decline becomes severe due to accumulation of frost. FIG. 1 shows the experimental results of the process of decreasing the heating capacity and the process of decreasing the temperature of the evaporator in this case.

本発明では、除霜を第4図の制御フローの如くおこなう
、オず除霜制御は冷媒蒸発器SO温a″(θ)がある設
定値以下(第3図のθ、)になった時だけ作用するよう
にし、無着霜時に除霜に入るようfk@動作を防止して
いる。さらに冷媒S発liJの温IF(#)の時間tに
対する変化率IK注目する。
In the present invention, defrosting is performed as shown in the control flow in Fig. 4.Ozu defrosting control is performed when the refrigerant evaporator SO temperature a'' (θ) becomes below a certain set value (θ in Fig. 3). The fk@ operation is prevented so that defrosting occurs when there is no frost formation.Furthermore, pay attention to the rate of change IK of the temperature IF (#) of the refrigerant S emanating from liJ with respect to time t.

既に存在していても新九に増加しない場合であるので除
霜開始から除く0着霜が進行して暖房能力低下が起る場
合には、第3図からも明らかな如く(運転112時間時
点では明らかに着霜が進行してお夛、蒸発器温度は下シ
続ける)、蒸発6温WL(θ)の時間に対する変化率(
I)がある設定値Ct、を越えた状態がある一定時間C
!継続する。
Even if it already exists, it does not increase to the new level, so if zero frost builds up from the start of defrosting and the heating capacity decreases, as is clear from Figure 3 (as of 112 hours of operation) It is obvious that frost formation has progressed and the evaporator temperature continues to fall), and the rate of change of the evaporation temperature WL (θ) with respect to time (
I) A certain period of time C in which the state exceeds a certain set value Ct.
! continue.

従って蒸発6温[−(θ)の時間に対する変化ある設定
値Ctよシも大きい秋III(この状態が保走れる時間
を第4図にて鴨と表わす)が一定時間CI継続した時を
除lI開始時と定め、電子制御部1から信号を出し電磁
接触器15を介して四方切換弁2を切換え、冷媒流路を
切換えて除霜運転を行う、そして蒸発器301i&(θ
)が設定値以上になったときに除霜運転が終了する。
Therefore, the change in the evaporation temperature [-(θ) with respect to time] is greater than the set value Ct, except when the autumn III (the time during which this state can be maintained is represented by a duck in Figure 4) continues for a certain period of time CI. At the start time, a signal is issued from the electronic control unit 1, the four-way switching valve 2 is switched via the electromagnetic contactor 15, the refrigerant flow path is switched, and defrosting operation is performed.
) exceeds the set value, defrosting operation ends.

なお、この除霜方法において冷媒蒸発器3の設定温f#
、は、例えば−3℃である。また変化率の設定値CIは
、0.1℃/分で急速に着霜することから0.1〜0.
2℃/分が好ましい。−にその継続時間C3は、ノイズ
による温置便動、起動時勢の温度変化を考慮して5分〜
lO分が好ましい。
In addition, in this defrosting method, the set temperature f# of the refrigerant evaporator 3
, is, for example, -3°C. Further, the set value CI of the rate of change is 0.1 to 0.0°C because frost forms rapidly at 0.1°C/min.
2°C/min is preferred. - The duration C3 is 5 minutes to 5 minutes, taking into account warm bowel movements caused by noise and temperature changes during startup.
10 minutes is preferred.

しかしてこの除霜方法によれば冷媒蒸発器Jの温度の時
間に対する変化率が着霜の進行と共に、ある設定値以上
の状態がある時間継続する現象を利用して除霜運転を開
始するようにしたため、無着霜時に除霜に入るような問
題を解消できる。また霜の蓄積が生じた場合は、的確に
除lI′?イクルを開始できる。l!に1個の感温素子
を堆付けるだけでよくコスト、信頼性の上で有利である
。更にま九ある時間、蒸発器の温度変化率(I)が継続
したときに除霜に入るようにしたため、ノイズなどの瞬
間的な温度変動あるいは起動・停止外乱等による温度変
化によって除霜サイクルに入るような誤動作を避けるこ
とができる。
However, according to this defrosting method, the defrosting operation is started by taking advantage of the phenomenon that the rate of change of the temperature of the refrigerant evaporator J with respect to time continues for a certain period of time as frosting progresses. This eliminates the problem of starting defrosting when there is no frost. Also, if frost accumulation occurs, remove lI' accurately? cycle can be started. l! It is advantageous in terms of cost and reliability, since it is only necessary to deposit one temperature-sensitive element on the substrate. Furthermore, since defrosting is started when the evaporator's temperature change rate (I) continues for a certain period of time, instantaneous temperature fluctuations such as noise or temperature changes due to startup/shutdown disturbances will cause the defrosting cycle to be interrupted. You can avoid such malfunctions.

以上ト明し九ように本発明によれば、除霜運転を的確に
おこなうので、暖房運転期間が長くなり、快適性が大き
くがるとともに電力の使用効率が高くなシ、使用コスト
が安くなるなど顕著な効果を奏する。
As described above, according to the present invention, since the defrosting operation is performed accurately, the heating operation period is extended, the comfort is greatly improved, and the efficiency of electric power usage is high, and the usage cost is reduced. It has a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例を示し、第1図
は空気熱源ヒート47!の冷媒系統図、第2図は同配線
図、第3図は冷媒蒸発器の温度低下の過程の実験結果を
示す図、第4図は除霜側(2)の70−シート図である
。 1・・・圧縮機、2・・・四方切換弁、J・・・冷媒蒸
発器(#&源llI熱交換器)、4・・・絞シ、5・・
・利用側熱交!lI器、6・・・感&素子、1・・・電
子制御部、8・・・室内側送風用電動機、p・・・室内
側送風機、10・・・慮外側送風用電動機、11・・・
電源トランス、12・・・リモートコントロール用操作
部、13〜15・・・電磁接触器、13&〜151・・
・接点。 出願人復代理人  弁理士 鈴 江 武 彦第1頁の続
き 0発 明 者 菅野英男 名古屋市中村区岩塚町字高道1 番地三菱重工業株式会社名古屋 研究所内 0発 明 者 水上巻付 研究所内
1 to 4 show an embodiment of the present invention, and FIG. 1 shows an air heat source heat 47! 2 is the same wiring diagram, FIG. 3 is a diagram showing the experimental results of the temperature reduction process of the refrigerant evaporator, and FIG. 4 is a 70-sheet diagram of the defrosting side (2). 1... Compressor, 2... Four-way switching valve, J... Refrigerant evaporator (# & source II heat exchanger), 4... Throttle switch, 5...
・User side heat exchange! lI device, 6... Sensor & element, 1... Electronic control unit, 8... Motor for indoor air blowing, p... Indoor air blower, 10... Electric motor for external air blowing, 11...・
Power transformer, 12...Remote control operation unit, 13-15...Magnetic contactor, 13&~151...
·contact. Applicant Sub-Agent Takehiko Suzue, Patent Attorney Continued from Page 1 0 Author: Hideo Kanno Inside the Mitsubishi Heavy Industries, Ltd. Nagoya Research Center, 1 Takamichi, Iwatsuka-cho, Nakamura-ku, Nagoya 0 Author: Inside the Mizukami Makizuke Research Institute

Claims (1)

【特許請求の範囲】[Claims] 暖房運転における冷媒蒸発器に着霜した際、これを検知
して冷媒流路を切換え除霜運転をおこなう空気熱源ヒー
トーンゾの除霜方法において、冷*、1uisの温度が
所定の設定値よ〕低くかつむの温度の時間に対する1次
黴分値が負で、その絶対値が所定の設定値より大きい状
態が設定時間継続し九ときに除霜運転をおこなうことを
特徴とする空気熱源ヒートポンプの除霜方法。
When frost forms on the refrigerant evaporator during heating operation, this is detected and the refrigerant flow path is switched to perform defrosting operation.In the defrosting method of the air heat source HEATONZO, the temperature of cold *, 1 uis is lower than the predetermined setting value. The defrosting operation of an air heat source heat pump is performed when the primary mold value of the temperature at the bottom is negative and the absolute value thereof is greater than a predetermined set value for a set period of time. Frost method.
JP57029849A 1982-02-26 1982-02-26 Method for defrosting air heat source heat pump Pending JPS58148333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57029849A JPS58148333A (en) 1982-02-26 1982-02-26 Method for defrosting air heat source heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57029849A JPS58148333A (en) 1982-02-26 1982-02-26 Method for defrosting air heat source heat pump

Publications (1)

Publication Number Publication Date
JPS58148333A true JPS58148333A (en) 1983-09-03

Family

ID=12287423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57029849A Pending JPS58148333A (en) 1982-02-26 1982-02-26 Method for defrosting air heat source heat pump

Country Status (1)

Country Link
JP (1) JPS58148333A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462524A2 (en) * 1990-06-18 1991-12-27 Sanyo Electric Co., Ltd Defrost control method for a heat pump
JP2016161256A (en) * 2015-03-04 2016-09-05 株式会社富士通ゼネラル Air conditioner
JP2018013301A (en) * 2016-07-21 2018-01-25 株式会社富士通ゼネラル Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210121U (en) * 1975-07-08 1977-01-24
JPS5618248A (en) * 1979-07-24 1981-02-20 Mitsubishi Electric Corp Defrosting control apparatus of air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210121U (en) * 1975-07-08 1977-01-24
JPS5618248A (en) * 1979-07-24 1981-02-20 Mitsubishi Electric Corp Defrosting control apparatus of air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462524A2 (en) * 1990-06-18 1991-12-27 Sanyo Electric Co., Ltd Defrost control method for a heat pump
JP2016161256A (en) * 2015-03-04 2016-09-05 株式会社富士通ゼネラル Air conditioner
JP2018013301A (en) * 2016-07-21 2018-01-25 株式会社富士通ゼネラル Air conditioner

Similar Documents

Publication Publication Date Title
US4799363A (en) Room air conditioner
JPH0529830B2 (en)
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
JPS58148333A (en) Method for defrosting air heat source heat pump
JPH0452469A (en) Air conditioner
JPS6166037A (en) Defrosting control unit of air conditioner
JPS604058Y2 (en) Defrosting circuit device for refrigeration equipment
JPS595812B2 (en) Refrigeration equipment
JPS6033443A (en) Operation control of air-conditioning machine
JPS61184350A (en) Defrost method for air conditioner
JPH10148428A (en) Heat pump system
JPH0718938Y2 (en) air conditioner
JPH04363536A (en) Operation control method for air-conditioner
JPH01306786A (en) Control of defrosting in heat pump type air-conditioner
JPS6325478Y2 (en)
JPH09152169A (en) Multi-type air conditioner
JPS63176968A (en) Low-temperature protective device for air conditioner
JPH01155154A (en) Air conditioner
JPS60114670A (en) Air conditioner
JPS6029562A (en) Defroster for air conditioner
JPS60144549A (en) Method of controlling defrosting operation of air conditioner
JPH024148A (en) Air-conditioner
JPH037857B2 (en)
JPH02287050A (en) Air conditioner
JPS591965A (en) Method of defrosting air heat-source heat pump type air conditioner