JPS62264627A - Formation of oxide film - Google Patents

Formation of oxide film

Info

Publication number
JPS62264627A
JPS62264627A JP10806586A JP10806586A JPS62264627A JP S62264627 A JPS62264627 A JP S62264627A JP 10806586 A JP10806586 A JP 10806586A JP 10806586 A JP10806586 A JP 10806586A JP S62264627 A JPS62264627 A JP S62264627A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
evaporation source
vapor
ionized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10806586A
Other languages
Japanese (ja)
Inventor
Kazunobu Mameno
和延 豆野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10806586A priority Critical patent/JPS62264627A/en
Publication of JPS62264627A publication Critical patent/JPS62264627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form a favorable surface oxide film without oxidizing the substrate surface by making a metallic oxide of evaporation source evaporate as it is, thereby ionizing a vapor flow through an ionization mechanism and projecting the above ionized vapor flow on a substrate. CONSTITUTION:The surface 2a of a single crystal silicon substrate 2 is installed at holders 3 in a vacuum vessel 1 of a system so that it faces an evaporation source 6 and after making the vacuum vessel 1 vacuous to a given degree, the system permits an ionization mechanism 5 to be operated at a designated condition. Then, the substrate 2 is heated by a heater 4 at the temperature range 850-880 deg.C and is impressed with an accelerating voltage of KV in a negative number. Being used for the evaporation source 6 in such a case, a spinel crystal is heated by an electron gun 7 to be evaporated and before a vapor reaches the substrate 2, a portion of the vapor is ionized by the ionization mechanism 5 and then, the ionized vapor is projected on the substrate 2 that is accelerated by the impressed voltage. As a result, a single crystal oxide film is produced on the substrate 2 at a growth speed of 5-15Angstrom /min. to form a favorable surface oxide film.

Description

【発明の詳細な説明】 イ) 産業上の利用分野 本発明は基板上に単結晶酸化膜を形成する酸化膜形成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION A) Industrial Application Field The present invention relates to an oxide film forming method for forming a single crystal oxide film on a substrate.

(ロー 従来の技術 し 分子線エピタキシーなどを含む真空蒸着法により単結晶
酸化膜を形成する場合、通常酸素雰囲気中で金属を蒸発
させ酸化反応を起こさせている。
(Row) When a single crystal oxide film is formed by a vacuum evaporation method including molecular beam epitaxy using conventional techniques, the metal is usually evaporated in an oxygen atmosphere to cause an oxidation reaction.

しかし、この場合十分に酸化反応を起こすためには酸素
ガス圧を高くしなければならず高い酸素圧による真空槽
内の高温部分(フィラメント、るつぼなど)の酸化が問
題となる。その一つの解決法として分子線エピタキシー
法に8いて酸素供給源として酸素ガスでなくv族酸化物
を用いて酸化膜を形成しようという試みがなされている
( R,A。
However, in this case, the oxygen gas pressure must be increased in order to sufficiently cause the oxidation reaction, and oxidation of high temperature parts (filament, crucible, etc.) in the vacuum chamber due to the high oxygen pressure becomes a problem. As one solution to this problem, an attempt has been made to form an oxide film using a V-group oxide instead of oxygen gas as an oxygen supply source using molecular beam epitaxy (R, A).

Btall J、Vac、8ci、Technol、B
l(21(1981)P135〜P137参照)。また
、この他に、酸化物を蒸発源として用いた酸化膜の形成
方法も試みられているが、この場合においても酸素の脱
離が起るためその補充のために高い龜素圧のもとて蒸着
が行なわれている(M、Morita他J、Appl、
Phys、58(1985)P 2407〜2409)
Btall J, Vac, 8ci, Technol, B
1 (see 21 (1981) P135-P137). In addition, a method of forming an oxide film using an oxide as an evaporation source has also been attempted, but in this case as well, desorption of oxygen occurs, so in order to replenish it, high gas pressure is required. (M. Morita et al. J. Appl.
Phys, 58 (1985) P 2407-2409)
.

(ハ)発明が解決しようとする問題点 従来技術においては蒸発源と酸素を反応させて酸化膜を
形成しようとしているため成長初期段階における酸素の
供給が難しい。特に単結晶酸化膜を得ようとする場合、
成長前の基鈑表面の酸化を防がねばならず酸素の供給方
法にはかなりの注意を要する。
(c) Problems to be Solved by the Invention In the prior art, since an oxide film is formed by reacting an evaporation source with oxygen, it is difficult to supply oxygen at the initial stage of growth. Especially when trying to obtain a single crystal oxide film,
Oxidation of the surface of the substrate before growth must be prevented, and considerable care must be taken in the method of supplying oxygen.

本発明は基板表面の酸化等の悪影響を避けることができ
る酸化膜形成方法を提供しようとするものである。
The present invention aims to provide a method for forming an oxide film that can avoid adverse effects such as oxidation on the surface of a substrate.

回 問題点を解決するための手段 本発明は、基板表面の酸化等の悪影響を避けるために蒸
発源として酸化物を用い酸化物の形のまま蒸発させ、酸
素の脱離を防ぐために蒸発速度をできる限り小さくシ、
さらに蒸気の一部をイオン化して、予熱されかつ電界の
付与された基板に加速、付着させることを特徴とするも
のである。
Means for Solving the Problems The present invention uses an oxide as an evaporation source to avoid adverse effects such as oxidation on the substrate surface, evaporates it in the form of an oxide, and reduces the evaporation rate to prevent oxygen from being desorbed. Make it as small as possible,
Further, a part of the vapor is ionized, accelerated and deposited on a preheated substrate to which an electric field is applied.

(ホ)作 用 本発明は上述のように蒸発源から酸化物の形のまま蒸発
させその一部をイオン化して基板に付着係vを大きくし
て付着させるようにしているので、基板表面を酸化させ
ずに該基板上に酸化膜を形成することがでさる。尚、酸
化膜の成長速度を高くするために蒸発源を加熱しすぎる
と酸素の脱離により酸素の欠乏が生じるので蒸発源の加
熱を適当に設足し、また、酸化膜を単結晶化するために
も基板温度と成長速度及びイオン加速電圧を適当なイ直
に設定制御する必要がある。
(E) Function As described above, the present invention evaporates from the evaporation source in the form of oxide, ionizes a part of it, and attaches it to the substrate by increasing the adhesion coefficient v, so that the surface of the substrate is It is possible to form an oxide film on the substrate without oxidizing it. In addition, if the evaporation source is heated too much to increase the growth rate of the oxide film, oxygen depletion will occur due to oxygen desorption. In addition, it is necessary to directly set and control the substrate temperature, growth rate, and ion acceleration voltage.

Cト1実施例 以下本発明の実施例を図面を参照して説明する。図面は
本発明方法の実施設備の模式的断面図である。(1)は
真空槽であり、その内部には基板(2)を設置するホル
ダー(3)、基板(2)を加熱するヒータ(4)、イオ
ン化機構(5)、及び金属酸化物である蒸発源(6)を
蒸発さぜるための電子銃(71が取り付けら1ている。
C.1 Embodiment Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawing is a schematic cross-sectional view of equipment for implementing the method of the present invention. (1) is a vacuum chamber, inside of which there is a holder (3) for installing the substrate (2), a heater (4) for heating the substrate (2), an ionization mechanism (5), and an evaporator for metal oxides. An electron gun (71) is attached to evaporate the source (6).

基板(2)は単結晶シリコン基板であり、該基板表面の
蒸@!(6)に対向する表面(2a)が(111)面と
なるようにホルダー(3)にセットされている。真空槽
(1)を10−7〜10’ト一ル程度まで排気した後、
イオン化機構(5)を所定の条件(電子加速電圧200
〜250 V−、イオン化1子電流200〜300mA
)で動作させる。基:fEt(2+はヒータ(4)によ
り所定温度(例えば850〜880℃)に加熱し、マイ
ナス数KVの加速電圧を印加する。蒸発源(6)として
MrAe20a等のスピネル結晶を用い電子銃(7)で
加熱し蒸発させる。スピネル蒸気は基板(21に迷する
前にイオン化機構(51で一部イオン化され、基板(2
1に印加された電圧により加速され基板上に射突しスピ
ネル膜を形成する。蒸着中の真空度は10−6〜10’
)−ルである。
The substrate (2) is a single crystal silicon substrate, and the surface of the substrate is vaporized. It is set in the holder (3) so that the surface (2a) facing (6) becomes the (111) plane. After evacuating the vacuum chamber (1) to about 10-7 to 10' torr,
The ionization mechanism (5) was operated under predetermined conditions (electron acceleration voltage 200
~250 V-, ionization single current 200-300 mA
) to make it work. The group: fEt(2+) is heated to a predetermined temperature (for example, 850 to 880°C) by a heater (4), and an accelerating voltage of minus several KV is applied.A spinel crystal such as MrAe20a is used as an evaporation source (6), and an electron gun ( The spinel vapor is heated and evaporated by the ionization mechanism (51) before reaching the substrate (21).
The spinel film is accelerated by the voltage applied to the substrate and impinges on the substrate to form a spinel film. The degree of vacuum during deposition is 10-6 to 10'
)-le.

蒸発源(6)の加熱パワーを変化させて蒸着を行なった
ところ成長速度が15Å/分よりも大きい時は多結晶ス
ピネル膜、15Å/分程度の時は双晶を含む単結晶スピ
ネル族、5〜15Å/分では平担な表面を有する単結晶
スピネル膜がそれぞれ得られた。基板温度が850’C
より低温の場合はすべて多結晶又は非晶質のスピネル膜
が得られ、逆に880℃より高温の場合には表面が荒れ
良好なスピネル膜が得られなかった。
When vapor deposition was performed by varying the heating power of the evaporation source (6), when the growth rate was greater than 15 Å/min, a polycrystalline spinel film was formed, and when the growth rate was about 15 Å/min, a single crystal spinel film containing twins was formed.5 At ~15 Å/min, single crystal spinel films with flat surfaces were obtained, respectively. Substrate temperature is 850'C
At lower temperatures, polycrystalline or amorphous spinel films were obtained in all cases, whereas at temperatures higher than 880° C., the surface was rough and good spinel films could not be obtained.

(ト)発明の効果 本発明方法は蒸発源の金属酸化物をそのままの形で蒸発
させ、蒸発された蒸気流をイオン化機いるので、基板表
面が酸化されずに該基板表面上に酸化膜全形成すること
かでざる。
(g) Effects of the Invention The method of the present invention evaporates the metal oxide of the evaporation source as it is, and the evaporated vapor stream is passed through an ionizer, so that the oxide film is completely covered on the substrate surface without oxidizing the substrate surface. It's all about forming.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法の実施iff備の模式的断面図である
。 (1)・・・真空槽、(2)・・・基板、(3)・・・
ホルダー、(41・・・ヒータ、 F51−・・イオン
化機構、 (6)・・・蒸発源、(71−・・電子銃
The drawing is a schematic cross-sectional view of a device for carrying out the method of the invention. (1)...Vacuum chamber, (2)...Substrate, (3)...
Holder, (41... Heater, F51-... Ionization mechanism, (6)... Evaporation source, (71-... Electron gun

Claims (2)

【特許請求の範囲】[Claims] (1)金属酸化物である蒸発源から該金属酸化物の形の
ままの蒸気流を送出し、送出された蒸気流をイオン化し
、イオン化された蒸気流を、所定温度に保持されかつ前
記イオン化された蒸気流を加速する電界の付与されてい
る基板に供給し、前記基板上に単結晶酸化膜を形成する
酸化膜形成方法。
(1) Sending out a vapor flow in the form of the metal oxide from an evaporation source that is a metal oxide, ionizing the sent vapor flow, and converting the ionized vapor flow into a state where the ionized vapor flow is maintained at a predetermined temperature and ionized. An oxide film forming method in which a single crystal oxide film is formed on the substrate by supplying the vapor flow to a substrate to which an accelerating electric field is applied.
(2)前記蒸発源は電子銃により加熱、蒸発され、前記
基板は850〜880℃に保持され、前記単結晶酸化膜
を5〜15Å/分の成長速度で形成することを特徴とす
る特許請求の範囲第(1)項記載の酸化膜形成方法。
(2) The evaporation source is heated and evaporated by an electron gun, the substrate is maintained at 850 to 880°C, and the single crystal oxide film is formed at a growth rate of 5 to 15 Å/min. The method for forming an oxide film according to scope (1).
JP10806586A 1986-05-12 1986-05-12 Formation of oxide film Pending JPS62264627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10806586A JPS62264627A (en) 1986-05-12 1986-05-12 Formation of oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10806586A JPS62264627A (en) 1986-05-12 1986-05-12 Formation of oxide film

Publications (1)

Publication Number Publication Date
JPS62264627A true JPS62264627A (en) 1987-11-17

Family

ID=14474997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10806586A Pending JPS62264627A (en) 1986-05-12 1986-05-12 Formation of oxide film

Country Status (1)

Country Link
JP (1) JPS62264627A (en)

Similar Documents

Publication Publication Date Title
US4959242A (en) Method for forming a thin film
JPS62264627A (en) Formation of oxide film
JPH06112133A (en) Method of covering upper section of base body with transparent dielectric film
JP2605148B2 (en) Manufacturing method of oxide thin film
JPS628409A (en) Formation of transparent conducting metal oxide film
JPH0214426B2 (en)
JPH01104763A (en) Production of thin metal compound film
JPS6013067B2 (en) Vacuum deposition equipment
JP2687468B2 (en) Thin film forming equipment
JPS584920A (en) Manufacture of semiconductor
JPH051974B2 (en)
JPH0368764A (en) Plasma treating device for forming thin film
JPH01259168A (en) Reactive ion beam sputtering device
JPS61104070A (en) Formation of thin film
JPH022612A (en) Manufacture of polycrystalline silicon
JPS62232180A (en) Superconducting material
JP3169278B2 (en) Thin film forming method and thin film forming apparatus
JPH0542764B2 (en)
JPS6326347A (en) Production of thin metal boride film
JPS63156338A (en) Formation of magnesia spinel film
JPH0562169A (en) Amorphous boron nitride film
JPH01123061A (en) Formation of silicon dioxide thin film
JPS59226176A (en) Ion plating device
JPS5920748B2 (en) Ion beam deposition device
JPS5766623A (en) Manufacture of amorphous semiconductor