JPS62263988A - Electrochemical production of cyclohexanol or its ester - Google Patents

Electrochemical production of cyclohexanol or its ester

Info

Publication number
JPS62263988A
JPS62263988A JP61108186A JP10818686A JPS62263988A JP S62263988 A JPS62263988 A JP S62263988A JP 61108186 A JP61108186 A JP 61108186A JP 10818686 A JP10818686 A JP 10818686A JP S62263988 A JPS62263988 A JP S62263988A
Authority
JP
Japan
Prior art keywords
cyclohexane
cyclohexanol
ester
fatty acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61108186A
Other languages
Japanese (ja)
Other versions
JPS643955B2 (en
Inventor
Akio Watanabe
渡辺 昭雄
Hideo Takahashi
高橋 英郎
Minoru Ueda
稔 植田
Tetsuya Kameyama
亀山 哲也
Kenzo Fukuda
福田 健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61108186A priority Critical patent/JPS62263988A/en
Publication of JPS62263988A publication Critical patent/JPS62263988A/en
Publication of JPS643955B2 publication Critical patent/JPS643955B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To electrochemically produce cyclohexanol or an ester thereof at a high conversion rate by adding a supporting electrolyte to a soln. of cyclohexane in a fatty acid and electrolyzing the resulting electrolytic soln. CONSTITUTION:Cyclohexane is dissolved in a fatty acid such as acetic acid and a supporting electrolyte consisting essentially of sulfuric acid and water is added. The resulting electrolytic soln. is electrolyzed at about 1.5-2.6V anode potential basing on the potential of a satd. calomel electrode. By the electrolysis, the cyclohexane is electrochemically oxidized on the surface of the anode to produce cyclohexanol. This cyclohexanol bonds nonelectrochemically to the fatty acid as a solvent, producing cyclohexyl ester.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はシクロヘキサンの脂肪酸溶液からシクロヘキサ
、ノールまたはそのエステルを高転換率で電気化学的に
製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for electrochemically producing cyclohexane, nor, or its ester from a fatty acid solution of cyclohexane at a high conversion rate.

有機合成用原料のひとつであるシクロヘキサノールを電
気化学・的に製造した例はない。例えば、シクロヘキサ
ンをアセトン/硫酸/水溶液に混合して二酸化鉛陽極酸
化を行なえば、開環反応が起り、アジピン酸、グルタル
酸、コハク酸等の低級脂肪酸と炭酸ガスが得られるのみ
であった。(にYOk07ama 、 Bull、  
chem、  Soc、  Jpn  +8 、71 
(1933))。このことが報告されて以来、シクロヘ
キサンの部分酸化を目的とした電気化学的合成法の研究
は長期にわたって行なわれなかった。ところが近年、シ
クロヘキサンをFe (lrl)含有t −BuOH/
H20/H(4!溶液に混合し、酸素加圧下で電解処理
すると、陰極で生成したOHラジカルと溶存シクロヘキ
サンとの相互作用が初段反応となり、シクロヘキサノン
が高転換率で得られることが報告された( R,Tom
ato and A、 RigO,J、 App、 E
lectrochem、 。
There are no examples of electrochemical production of cyclohexanol, which is one of the raw materials for organic synthesis. For example, when cyclohexane is mixed with an acetone/sulfuric acid/aqueous solution and lead dioxide anodic oxidation is performed, a ring-opening reaction occurs and only lower fatty acids such as adipic acid, glutaric acid, and succinic acid and carbon dioxide gas are obtained. (Yok07ama, Bull,
chem, Soc, Jpn +8, 71
(1933)). Since this was reported, no research on electrochemical synthesis methods for partial oxidation of cyclohexane was conducted for a long time. However, in recent years, cyclohexane has been converted into Fe(lrl)-containing t-BuOH/
It has been reported that when mixed with H20/H (4! solution and electrolytically treated under oxygen pressure), the interaction between OH radicals generated at the cathode and dissolved cyclohexane becomes the first reaction, and cyclohexanone can be obtained at a high conversion rate. (R, Tom
ato and A, RigO, J, App, E
electrochem, .

10.549 (1980))。これは、開環反応を極
度に抑えたシクロヘキサンの電解酸化の珍しい例である
が、この場合でもシクロヘキサノールは痕跡量しか生成
していない。
10.549 (1980)). This is a rare example of electrolytic oxidation of cyclohexane in which the ring-opening reaction is extremely suppressed, but even in this case only trace amounts of cyclohexanol are produced.

〔目的〕〔the purpose〕

本発明者らは、シクロヘキサンからシクロヘキサノール
またはそのエステルを電気化学的に製造する方法を開発
すべく鋭意努力を重ねた結果、シクロヘキサンの脂肪酸
溶液に支持電解質を添加して電解を行なうことにより高
転換率でシクロヘキサノールまたはそのエステルを合成
しうろことを見出し、本発明をなすに到った。
The present inventors have made extensive efforts to develop a method for electrochemically producing cyclohexanol or its ester from cyclohexane. As a result, the inventors have found that a high conversion rate can be obtained by adding a supporting electrolyte to a cyclohexane fatty acid solution and performing electrolysis. We have discovered that it is possible to synthesize cyclohexanol or its ester at a high rate, and have completed the present invention.

〔構成〕〔composition〕

即ち、本発明は、シクロヘキサンの脂肪酸溶液に支持電
解質を添加して電解を行なうことを特徴とするシクロヘ
キサノールまたはそのエステルの製造方法に関するもの
である。
That is, the present invention relates to a method for producing cyclohexanol or its ester, which is characterized by adding a supporting electrolyte to a cyclohexane fatty acid solution and performing electrolysis.

本発明においては、陽極面でシクロヘキサンが電気化学
的に酸化されてシクロヘキサノールになり、次いでこの
シクロヘキサノールが溶媒の脂肪酸と非電気fヒ学的に
結合してエステルを生成する反応、即ち電気化学的反応
と非電気化学的反応からなる二段反応や、陽極面でシク
ロヘキサンと溶媒の脂肪酸とが電気化学的にそれぞれシ
クロヘキシル基およびアシルオキシ基(脂肪酸の酸素と
結合している水素を取り除いた型)になり、同所でこれ
らの基が結合してエステルを生成する、いわゆる電気化
学的置換反応などの過程で、シクロヘキサンと溶媒の脂
肪酸とからシクロヘキサノール誘導体であるシクロヘキ
シルエステルが高転換率で得られる。また必要あれば、
このエステルを常法により加水分解すればシクロヘキサ
ノールが容易に得られる。
In the present invention, cyclohexane is electrochemically oxidized to cyclohexanol on the anode surface, and then this cyclohexanol is non-electrochemically combined with a solvent fatty acid to form an ester. A two-step reaction consisting of an electrochemical reaction and a non-electrochemical reaction, and a cyclohexyl group and an acyloxy group (a type in which the hydrogen bonded to the oxygen of the fatty acid is removed) are generated electrochemically on the anode surface between cyclohexane and the solvent fatty acid. Cyclohexyl ester, which is a cyclohexanol derivative, can be obtained at a high conversion rate from cyclohexane and a solvent fatty acid through a process such as a so-called electrochemical substitution reaction in which these groups combine in the same place to form an ester. . Also, if necessary,
Cyclohexanol can be easily obtained by hydrolyzing this ester using a conventional method.

本発明に用いる溶媒は脂肪酸に支持電解質を添加して調
製するが、その好適割合は支持tS質添加後の溶媒にお
ける陽極−位、シクロヘキサンの溶解度、およびシクロ
ヘキサノールまたはそのエステルへの転換率により定ま
るので、実験により決められるべきものである。なお、
陽極電位の目安は、通常、飽和せ東電極(SCE)に対
して1.5程度のシクロヘキサンを溶解し、この溶液を
上記の陽極電位の下で電解し、高転換率でシクロヘキシ
ルアセテートを得るだめの溶媒組成は実験により、次の
ようであれば良いことが分った。即ち、シクロヘキサン
の溶解度条件のみを満足する溶媒組成を調べると、水/
硫酸モル比は220以下であり、酢酸の割合は、酢酸/
硫酸/水の三成分系におけるモル分率として0.70以
上であればよいことが分った。次に、この組成の溶媒に
シクロヘキサンを前述の割合で溶解し、8’CEに対し
て陽極電位25ボルトで電解を行なって、転換率50%
程度でシクロヘキシルアセテートを得るためには水/硫
酸のモル比は0.25〜1.0であればよいことが分っ
た。
The solvent used in the present invention is prepared by adding a supporting electrolyte to the fatty acid, and the preferred ratio is determined by the anode position in the solvent after the addition of the supporting tS, the solubility of cyclohexane, and the conversion rate to cyclohexanol or its ester. Therefore, it should be determined by experiment. In addition,
The standard for the anode potential is usually to obtain cyclohexyl acetate at a high conversion rate by dissolving about 1.5 cyclohexane to the saturated east electrode (SCE) and electrolyzing this solution under the above anode potential. Through experiments, it was found that the following solvent composition is sufficient. In other words, when examining the solvent composition that satisfies only the solubility conditions for cyclohexane, water/
The molar ratio of sulfuric acid is 220 or less, and the ratio of acetic acid is acetic acid/
It has been found that the molar fraction in the three-component system of sulfuric acid/water should be 0.70 or more. Next, cyclohexane was dissolved in the above-mentioned ratio in a solvent with this composition, and electrolysis was performed at an anodic potential of 25 volts against 8'CE to achieve a conversion rate of 50%.
It has been found that the molar ratio of water/sulfuric acid should be between 0.25 and 1.0 in order to obtain cyclohexyl acetate at a certain level.

溶媒として用いる脂肪酸は常温で液体のモノカルボン酸
であり、その例として、酢酸、プロピオン酸等を挙げる
ことができる。
The fatty acid used as a solvent is a monocarboxylic acid that is liquid at room temperature, and examples thereof include acetic acid and propionic acid.

支持電解質として、脂肪酸のアルカリまたはその他の金
属塩を用いることも可能である。この場合、脂肪酸の遷
移金属塩は支持電解質として働くのみならず、また触媒
として働くことが予期される。この触媒効果は、有機合
成反応で、遷移金属が、無機および有機基の型でしばし
ば触媒として用いられることから予測される。
It is also possible to use alkali or other metal salts of fatty acids as supporting electrolytes. In this case, the transition metal salt of a fatty acid is expected to act not only as a supporting electrolyte but also as a catalyst. This catalytic effect is expected since transition metals, in both inorganic and organic forms, are often used as catalysts in organic synthesis reactions.

本発明において用いる陽極としては、平滑白金電極の使
用が好ましいが、その他、過電圧特性と触媒能の点でこ
の電極と同等のものであれば使用に差支えない。
As the anode used in the present invention, it is preferable to use a smooth platinum electrode, but any other electrode that is equivalent to this electrode in terms of overvoltage characteristics and catalytic ability may be used.

〔実施例〕〔Example〕

次に実施例によって本発明の詳細な説明する。 Next, the present invention will be explained in detail by way of examples.

実施例1〜3では、硫酸および水を支持電解質として添
加した酢酸にシフ・ロヘキサンを混合して試料液を44
6し、白金電極を用いてこの試料液を30℃にて電解し
た。試料液の使用量は支持電解質含有酢酸300 ml
にシクロヘキサン10 rnlを加えた全定量はガスク
ロマトグラフィーによって行なった。
In Examples 1 to 3, the sample solution was prepared by mixing Schif-lohexane with acetic acid to which sulfuric acid and water were added as supporting electrolytes.
6, and this sample solution was electrolyzed at 30°C using a platinum electrode. The amount of sample solution used is 300 ml of acetic acid containing supporting electrolyte.
10 rnl of cyclohexane was added to the solution, and the total quantification was performed by gas chromatography.

実験条件の詳細および実験結果は以下の表の通りである
。木表の溶媒組成欄では、酢酸の割合のみ、酢酸/硫酸
/水の三成分系におけるモル分率で示し、他の二成分の
割合は両者のモル比で示しである。また成分側転換率は
、シクロヘキサンの全量が反応した時の収率に相当する
。表中に示した反応結果から分る如く、40〜50モル
チの高い転換率でシクロヘキサンからシクロヘキシルエ
ステルが得られた。
Details of the experimental conditions and experimental results are shown in the table below. In the solvent composition column on the wood table, only the proportion of acetic acid is shown as the molar fraction in the ternary system of acetic acid/sulfuric acid/water, and the proportions of the other two components are shown as the molar ratio of both. Moreover, the conversion rate on the component side corresponds to the yield when the entire amount of cyclohexane is reacted. As can be seen from the reaction results shown in the table, cyclohexyl ester was obtained from cyclohexane at a high conversion rate of 40 to 50 mol.

表 10.85  0.25     (2,5)    
2.2    1  4920.88  1.0   
  2.55  (4,2)     3  463 
0.73  0.50     (2,4)    1
.3   4 38341括孤内の電位は定電流電解に
おける初期値を示す。
Table 10.85 0.25 (2,5)
2.2 1 4920.88 1.0
2.55 (4,2) 3 463
0.73 0.50 (2,4) 1
.. 3 4 38341 The potential within the brackets indicates the initial value in constant current electrolysis.

×2括孤内の電流密度は定電位電解における初期値を示
す。
The current density in ×2 brackets indicates the initial value in constant potential electrolysis.

〔効果〕〔effect〕

以上説明したように、本発明によればシクロヘキサンか
ら眠気化学的手段により、高転換率でシクロヘキサノー
ルまたはそのエステルが得られることがわかる。
As explained above, according to the present invention, cyclohexanol or its ester can be obtained from cyclohexane by drowsiness chemical means at a high conversion rate.

Claims (1)

【特許請求の範囲】[Claims] (1)シクロヘキサンの脂肪酸溶液に支持電解質を添加
して電解を行なうことを特徴とするシクロヘキサノール
またはそのエステルの製造方法。
(1) A method for producing cyclohexanol or its ester, which comprises adding a supporting electrolyte to a cyclohexane fatty acid solution and performing electrolysis.
JP61108186A 1986-05-12 1986-05-12 Electrochemical production of cyclohexanol or its ester Granted JPS62263988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108186A JPS62263988A (en) 1986-05-12 1986-05-12 Electrochemical production of cyclohexanol or its ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108186A JPS62263988A (en) 1986-05-12 1986-05-12 Electrochemical production of cyclohexanol or its ester

Publications (2)

Publication Number Publication Date
JPS62263988A true JPS62263988A (en) 1987-11-16
JPS643955B2 JPS643955B2 (en) 1989-01-24

Family

ID=14478180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108186A Granted JPS62263988A (en) 1986-05-12 1986-05-12 Electrochemical production of cyclohexanol or its ester

Country Status (1)

Country Link
JP (1) JPS62263988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032327A (en) * 2014-06-26 2014-09-10 天津工业大学 Method for preparing cyclohexanol and cyclohexanone by virtue of electrochemically catalytic oxidation of cyclohexane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032327A (en) * 2014-06-26 2014-09-10 天津工业大学 Method for preparing cyclohexanol and cyclohexanone by virtue of electrochemically catalytic oxidation of cyclohexane
CN104032327B (en) * 2014-06-26 2016-06-15 天津工业大学 A kind of method that electrochemical catalytic oxidation hexamethylene prepares Hexalin and Ketohexamethylene

Also Published As

Publication number Publication date
JPS643955B2 (en) 1989-01-24

Similar Documents

Publication Publication Date Title
JP2618388B2 (en) Oxidation of organic compounds using cerium ions in aqueous methanesulfonic acid
JP2633244B2 (en) Oxidation of organic compounds using cerium methanesulfonate in aqueous organic solutions
JP4755458B2 (en) Method for producing 2-alkyne-1-acetal
JPS62263988A (en) Electrochemical production of cyclohexanol or its ester
JP5826226B2 (en) Hydrogen activated catalyst
JP2000104190A (en) Production of metahydroxybenzaldehyde
JP2604826B2 (en) Highly selective oxidation of primary alcohols to aldehydes
JP3806181B2 (en) Method for producing naphthalene aldehydes
JP3424687B2 (en) Method for producing quaternary ammonium hydroxide aqueous solution
JPS58204187A (en) Manufacture of optically active alcohol
JP2604827B2 (en) Method of oxidizing secondary alcohol to ketone
JPS63307288A (en) Production of carbinol
CN116180109A (en) Method for preparing glycollic acid by electrolyzing oxalic acid
JPS62294191A (en) Production of alkoxy acetate
JPS60230990A (en) Manufacture of 2-methyl-1,4-naphthoquinone
US20230227395A1 (en) Methods for the production of l-threonic acid salts from l-xylonic acid
JPS6039183A (en) Manufacture of terephthalaldehyde
JPS6070193A (en) Production of piperonal
CN114438526A (en) Preparation method of epsilon-caprolactone
US3555084A (en) Oxalic acid manufacture
CN115304471A (en) Preparation method of long carbon chain dicarboxylic acid
JP3277956B2 (en) Method for producing quaternary ammonium hydroxide aqueous solution
CN117051414A (en) Method for electrochemically synthesizing aryl sulfonyl fluoride compound
JPS59166687A (en) Preparation of amide regeneratingly circulatively using higher-valent ruthenium compound
JPS6346153B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term