JPS6226336B2 - - Google Patents

Info

Publication number
JPS6226336B2
JPS6226336B2 JP52077168A JP7716877A JPS6226336B2 JP S6226336 B2 JPS6226336 B2 JP S6226336B2 JP 52077168 A JP52077168 A JP 52077168A JP 7716877 A JP7716877 A JP 7716877A JP S6226336 B2 JPS6226336 B2 JP S6226336B2
Authority
JP
Japan
Prior art keywords
weight
starch
maltose
less
dextrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52077168A
Other languages
Japanese (ja)
Other versions
JPS5411954A (en
Inventor
Takashi Adachi
Tetsuo Nakamura
Hidemasa Hidaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd filed Critical Meiji Seika Kaisha Ltd
Priority to JP7716877A priority Critical patent/JPS5411954A/en
Priority to IN689/CAL/78A priority patent/IN149335B/en
Priority to GB7827929A priority patent/GB2001075B/en
Priority to CA306,440A priority patent/CA1106304A/en
Priority to FR7820414A priority patent/FR2396079A1/en
Publication of JPS5411954A publication Critical patent/JPS5411954A/en
Publication of JPS6226336B2 publication Critical patent/JPS6226336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K7/00Maltose

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、粘度、褐変性、吸湿性が低くしかも
低甘味性であり、また保存中に結晶化しにくいた
めに、食品、飲料、製菓、製パン等の食料加工分
野で極めて有利に利用できる殿粉分解糖組成物及
びその製造方法に関するものである。 最近の消費者の甘味に対する嗜好の変化と共
に、甘味を適度に調整した菓子、食品の出現が要
求され、従来の観念にとらわれない新規形態の菓
子、食品の開発が行われている。このことゝ関連
して、それらの新規製品の目的に合致した糖組成
物の創成が不可欠となつて来ている。 従来、これらの菓子、食品類に使用されて来た
水飴は一般に高粘度であるため用途も使用量も限
定される。また最近注目されている異性化糖は粘
度は低いが液状において結晶化しやすく取扱いが
不便であると同時に褐変性の強い欠点があり、適
用菓子、食品加工分野におのずから一定の制限が
加わらざるを得なかつた。 以上のような食料分野における要請から、本発
明者は甘味の質が温和で、蔗糖液に近い粘度を持
ち、蔗糖又は異性化糖シラツプの結晶折出抑制の
目的で蔗糖又は異性化糖と種々な混合比率で自由
に混合、使用でき、褐変性が極めて弱く、さらに
液状において結晶が析出しない等の色々の長所の
一部又は全部を保有する糖質素材を開発すべく鋭
意研究の結果、本発明を完成した。 本発明の殿粉分解糖組成物(以下、単に殿粉糖
ということがある)はその製造時における条件の
選定によつて多少の変化が見られるが、総合的に
は次の成分組成を有する。 グルコース 10重量%以下 マルトース及びマルトトリオースの合計量
72重量%以上 マルトース 70重量%以下 マルトテトラオース以上のオリゴ糖及びデキスト
リンの合計量 20重量%以下 こゝで云うマルトテトラオース以上のオリゴ糖
とはマルトテトラオース、マルトペンタオース、
マルトヘキサオース、マルトヘプタオース及びマ
ルトオクタオース又はこれらの混合物を指し、デ
キストリンとはマルトノナオース以上のマルトオ
リゴ糖及びデキストリン又はこれら混合物を示す
ことゝする。 従つて、第1の本発明の要旨とするところは、
殿粉分解糖組成物の固形分としてグルコース、マ
ルトース、マルトトリオース、マルトテトラオー
ス、マルトペンタオース、マルトヘキサオース、
マルトヘプタオース及びマルトオクタオース並び
に少量のデキストリンを含み、また残分が水であ
る殿粉分解糖組成物において、前記の固形分の総
重量に基づいて計算して、グルコースの量が10重
量%以下、マルトース及びマルトトリオースの合
計量が72重量%以上、マルトースの量が70重量%
以下、マルトテトラオース以上のオリゴ糖及びデ
キストリンの総計量が20重量%以下であり、固形
分の濃度75重量%及び温度25℃の条件で測定した
時の粘度が2000cps以下であることを特徴とする
殿粉分解糖組成物にある。 更に上記マルトテトラオース以上のオリゴ糖の
含量は、本発明組成物の固形分について、3〜15
重量%であり、マルトテトラオース以上のオリゴ
糖及びデキストリンの合計量に対するマルトテト
ラオース以上のオリゴ糖の合計量の百分率は30%
以上であるのが好ましい。 糖組成の分析は、グルコース、マルトース、マ
ルトトリオースについては夫々、無水物を標準物
質としかつ蔗糖を内部標準としたガスクロマトグ
ラフ法で定量し、またマルトテトラオース以上の
オリゴ糖の分析はグルコースを内部標準物質とし
高速液体クロマトグラフを用いた面積比率法で定
量した。 本発明の前記組成の殿粉分解糖組成物は前記の
有利な諸性質を具備すると共に、マルトース、マ
ルトトリオースを主体とするために甘味が低く、
しかも温和である。 しかしながら本殿粉糖組成物の最大の特徴は、
その水溶液の粘度が極めて低く蔗糖液と類似した
粘度値を有することにある。 即ち、その粘度(75重量%濃度)を測定した場
合、マルトテトラオース以上のオリゴ糖及びデキ
ストリンの合計量が20%以下である要件を満たす
限り25℃での粘度は2000cps以下であり、特に前
記オリゴ糖及びデキストリンの合計量が4〜12重
量%の範囲にある時は1100〜1500cpsとなる。こ
れは同一濃度、同一温度で測定した時の蔗糖水溶
液の粘度1300cpsに極めて類似した粘度値を有す
ることを示すものである。 次に、従来知られている殿粉分解糖組成物に比
較して本発明の殿粉分解糖組成物の特長について
以下に述べる。 一般に、殿粉分解糖組成物の粘度はその中のデ
キストリン含有量の増加によつて上昇するので、
デキストリン含量の高い、従来の水飴は5000〜
10000cpsと高い粘度を有していた。 また比較的粘度の低い殿粉分解糖組成物として
は、例えば、殿粉をグルコアミラーゼ単独又はグ
ルコアミラーゼと麦芽アミラーゼとの併用で糖化
することにより製造されるデキストリンの少ない
殿粉糖がある。しかし、この場合も製造された殿
粉糖のグルコース含量が30〜50重量%と高く、そ
の結果、褐変性、吸湿性が高い欠点を有するもの
であつた。他方、グルコース含有量が低く、マル
トース、マルトトリオースを主成分とし、グルコ
ース、マルトース、マルトトリオースの合計量が
70%以上を占める点で本発明の殿粉糖と類似であ
る殿粉糖を、β−アミラーゼ、ブルラナーゼ、α
−アミラーゼの3種併用、若しくはβ−アミラー
ゼ、ブルナラーゼの2種併用で併用糖化法により
製造することが公知である。 このような公知方法で製造された殿粉糖の組成
と、本発明の殿粉糖の1例の組成を比較して第1
表に示す。
The present invention has low viscosity, browning, and hygroscopicity, as well as low sweetness, and is resistant to crystallization during storage, so it can be extremely advantageously used in food processing fields such as foods, beverages, confectionery, and bread making. The present invention relates to a powdered sugar composition and a method for producing the same. BACKGROUND OF THE INVENTION With the recent changes in consumer preference for sweetness, there is a demand for the emergence of confectionery and food products with appropriately adjusted sweetness, and new forms of confectionery and food products that are not bound by conventional ideas are being developed. In this connection, it has become essential to create sugar compositions that meet the objectives of these new products. The starch syrup that has conventionally been used in these confectionery and food products generally has a high viscosity, so its uses and amounts are limited. In addition, high-fructose isomerized sugar, which has been attracting attention recently, has a low viscosity but tends to crystallize in liquid form, making it inconvenient to handle and at the same time, has the drawback of strong browning, which naturally imposes certain restrictions on its application in the confectionery and food processing fields. Nakatsuta. In response to the above-mentioned demands in the food field, the present inventors have developed a variety of sucrose and high-fructose syrups that have a mild sweet taste, have a viscosity close to that of sucrose liquid, and are intended to suppress the crystallization of sucrose or isomerized high-fructose syrup. As a result of intensive research to develop a carbohydrate material that possesses some or all of the various advantages, such as being able to be mixed and used freely at a suitable mixing ratio, exhibiting extremely low browning, and not precipitating crystals in liquid form, we have developed this material. Completed the invention. The starch-decomposed sugar composition of the present invention (hereinafter sometimes simply referred to as starch sugar) may vary slightly depending on the selection of conditions during its production, but overall it has the following component composition: . Glucose 10% by weight or less Total amount of maltose and maltotriose
72 weight% or more maltose 70 weight% or less Total amount of maltotetraose or more oligosaccharides and dextrin 20 weight% or less Oligosaccharides maltotetraose or more referred to here include maltotetraose, maltopentaose,
It refers to maltohexaose, maltoheptaose, maltooctaose, or a mixture thereof, and dextrin refers to a maltooligosaccharide of maltononaose or higher, dextrin, or a mixture thereof. Therefore, the gist of the first invention is as follows:
The solid content of the starch decomposition sugar composition includes glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose,
In a starch-degrading sugar composition containing maltoheptaose and maltooctaose and a small amount of dextrin, and the balance being water, the amount of glucose is 10% by weight, calculated on the total weight of the solids. The total amount of maltose and maltotriose is 72% by weight or more, and the amount of maltose is 70% by weight.
The following is characterized in that the total amount of oligosaccharides of maltotetraose or higher and dextrin is 20% by weight or less, and the viscosity is 2000 cps or less when measured at a solid content concentration of 75% by weight and a temperature of 25°C. There is a starch decomposition sugar composition. Furthermore, the content of the oligosaccharide of maltotetraose or more is 3 to 15% based on the solid content of the composition of the present invention.
% by weight, and the percentage of the total amount of oligosaccharides of maltotetraose or higher relative to the total amount of oligosaccharides of maltotetraose or higher and dextrin is 30%
The above is preferable. For analysis of sugar composition, glucose, maltose, and maltotriose were determined by gas chromatography using anhydride as a standard substance and sucrose as an internal standard, and oligosaccharides of maltotetraose and higher were quantified using glucose. It was quantified by the area ratio method using a high performance liquid chromatograph as an internal standard substance. The starch-decomposed sugar composition of the present invention has the above-mentioned advantageous properties, and has low sweetness because it is mainly composed of maltose and maltotriose.
Moreover, it is gentle. However, the biggest feature of Honten powdered sugar composition is that
The viscosity of the aqueous solution is extremely low and has a viscosity value similar to that of sucrose solution. That is, when its viscosity (75% concentration by weight) is measured, the viscosity at 25°C is 2000 cps or less as long as the total amount of oligosaccharides of maltotetraose or higher and dextrin is 20% or less. When the total amount of oligosaccharide and dextrin is in the range of 4 to 12% by weight, it is 1100 to 1500 cps. This shows that the viscosity value is extremely similar to the viscosity of a sucrose aqueous solution, which is 1300 cps, when measured at the same concentration and temperature. Next, the features of the starch-degrading sugar composition of the present invention compared to conventionally known starch-degrading sugar compositions will be described below. Generally, the viscosity of a starch-degraded sugar composition increases with an increase in the dextrin content therein;
Conventional starch syrup with high dextrin content is 5000 ~
It had a high viscosity of 10,000 cps. Examples of starch-decomposed sugar compositions with relatively low viscosity include starch sugar with low dextrin, which is produced by saccharifying starch with glucoamylase alone or in combination with glucoamylase and malt amylase. However, in this case as well, the glucose content of the starch sugar produced was as high as 30 to 50% by weight, resulting in browning and high hygroscopicity. On the other hand, the glucose content is low, and the main components are maltose and maltotriose, and the total amount of glucose, maltose, and maltotriose is
Starch sugar, which is similar to the starch sugar of the present invention in that it accounts for 70% or more, is combined with β-amylase, burlanase, α
- It is known to produce by a combined saccharification method using a combination of three types of amylase or a combination of two types of β-amylase and Brunalase. The composition of starch sugar produced by such a known method and the composition of one example of starch sugar of the present invention were compared and the first
Shown in the table.

【表】 第1表に示すようにβ−アミラーゼとブルラナ
ーゼの併用糖化で製造された殿粉糖(以下、従来
の殿粉糖と称する)の粘度は固形分濃度75重量%
及び温度25℃で測定すると7200cpsであるのに反
し、本発明殿粉糖の粘度は1700cpsである。 前記の如く殿粉糖の粘度はG4以上のオリゴ糖
及びデキストリンの合計量によつて決定されるの
であるから、この含量がほゞ等しい両者の粘度は
ほゞ同一であるはづであるがそれにもかゝわらず
このような粘度に著しい差異を生ずる原因は、第
1表から明らかなようにマルトテトラオーズ以上
のオリゴ糖の含量の著しい差異にもとずくもので
ある。即ち、従来の殿粉糖ではマルトテトラオー
ズ以上のオリゴ糖がほとんど含まれないのに反
し、本発明の殿粉糖では9.0%含まれている。ま
た、従来の殿粉糖はデキストリンが14.3%含まれ
るが、本発明の殿粉糖はデキストリンが6%含ま
れているのにすぎない。 即ち、従来の殿粉糖はグルコース、マルトー
ス、マルトトリオースと巨大分子のデキストリン
とで構成されて居り、マルトテトラオース以上の
オリゴ糖が少ないが、本発明の殿粉糖はグルコー
ス、マルトース、マルトトリオース、マルトテト
ラオース、マルトペンタオース、マルトヘキサオ
ース、マルトヘプタオース、マルトオクタオース
が主成分であり、粘度の増大の原因となるデキス
トリン含量が微量である。このように従来の殿粉
糖と本発明の殿粉糖とはその組成が根本的に異つ
て居り、その故に、蔗糖に類似した低粘性を有す
る新規な殿粉糖組成物が、創成できたのである。
また、マルトース含量が固形分中70重量%以下で
あることによつて結晶化性がない特長を本組成物
は有する。 このような特徴的な組成と食品類の新らしい食
料加工分野の開発を可能(後記の参考例参照)な
らしめる本発明の新規な糖組成物は、β−アミラ
ーゼとブルナラーゼの併用糖化法、等の既知の方
法ではなく特定の前処理を経た殿粉原料(殿粉処
理液)に対して、放線菌の産生する特定の酵素
(以下、放線菌アミラーゼと称するる)を作用さ
せ、選定された条件下で加水分解することにより
製造されるものである。 すなわち、第2の本発明によると、ストレプト
ミセス属の微生物により産生されるアミラーゼ酵
素であつて、殿粉系基質に作用させた場合、最適
作用PHが4.5〜5.0、分解限度がマルトース換算75
%以上、グルコース対マルトースの生成比が0.06
以下である性質を示すアミラーゼ酵素を用いて、
殿粉液化処理液を処理して糖化させることを特徴
とする、殿粉分解糖組成物の固形分としてグルコ
ース、マルトース、マルトトリオース、マルトテ
トラオース、マルトペンタオース、マルトヘキサ
オース、マルトヘプタオース及びマルトオクタオ
ース並びに少量のデキストリンを含み、また残分
が水である殿粉分解糖組成物であつて、前記の固
形分の総重量に基づいて計算して、グルコースの
量が10重量%以下、マルトース及びマルトトリオ
ースの合計量が72重量%以上、マルトースの量が
70重量%以下、マルトテトラオース以上のオリゴ
糖及びデキストリンの総計量が20重量%以下であ
り、固形分の濃度75重量%及び温度25℃の条件で
測定した時の粘度が2000cps以下である殿粉分解
糖組成物の製造法が提供される。 本発明の殿粉分解糖組成物を製造する方法につ
いて以下に述べる。 本発明の方法の糖化工程を行うに先だつてま
ず、糖化を受けるべき殿粉処理液を調製するため
に殿粉の液化を行う。殿粉原料としては、コーン
スターチ、馬れいしよ殿粉、甘しよ殿粉、タピオ
カ殿粉等、殿粉質原料の全てが使用可能である。
液化法としては、加熱を伴う機械液化法、酸によ
る酸液化法、α−アミラーゼによる酵素液化法、
更には、本発明で使用する放線菌アミラーゼを用
いた液化法、等を採用することができる。この段
階における殿粉液化液のDEは20以下であれば、
その目的を達することができる。 本発明の方法では、上記の如く得られた液化殿
粉液化処理液に放線菌アミラーゼを作用させる。
本発明において使用される放線菌アミラーゼは、
特公昭49−1871号及び特公昭51−20575号公報に
記載の通り、ストレプトミセス・トサエンシス
(FERM−P601号、ATCC21723)ストレプトミ
セス・オーレオフアシエンス、(FERM−P606
号)、ストレプトミセス・フラバス(FERM)−
P605号)、ストレプトミセス・ハイグロスコピカ
ス、SF−1084(FERM−P602号、ATCC21722)
ストレプトミセス・ビリドクロモゲネスSF−
1087(FERM−P603号、ATCC21724号)等のス
トレプトミセス属の微生物の産生するアミラーゼ
であり、本酵素は最適作用PHが4.5〜5.0、分解限
度マルトース換算75%以上、グルコース対マルト
ースの生成比0.06以下の酵素活性を示す。 さらにその物理化学的性状は下記の通りであ
る; 元素分析;C 44.87%、H 6.84%、 N 13.84% 分子量;約35000(ゲル過法) 紫外部吸収;E1cn=13.1、280mμ(PH=6.8) 等電点;約PH4.3(焦点電気泳動) 本発明の方法においては、前記性状の放線菌ア
ミラーゼを含有する培養液若しくはそれの処理
液、又はこれらの培養液から抽出した酵素品を使
用し、これを前記の通り処理した殿粉液化処理液
に次の条件下にて作用させて糖化工程を行い得
る。 即ち、糖化温度60〜65、糖化時のPH5.0〜7.0の
範囲で糖化する場合には、得られた殿粉分解糖組
成物の固形分中のマルトース含量は70重量%以下
に抑制され、これに主として基因して本組成物は
難結晶性を示す。しかも、その殿粉糖の糖組成物
及び粘度は使用酵素量、仕込濃度、糖化時間によ
り若干異つた値となるが、酵素使用量200〜2000
単位/g殿粉、好ましくは1000〜2000単位/g殿
粉、糖化時間6〜72時間、仕込濃度20〜40%の範
囲で条件を組合せることにより所望の組成及び粘
度を有する本発明の殿粉糖組成物を得ることがで
きる。又、上記の条件は放線菌アミラーゼのみを
用いて糖化しした場合であるが、放線菌アミラー
ゼとβ−アミラーゼ、麦芽アミラーゼ、ブルラナ
ーゼ等を適当量組合せて、糖化することによつて
も、本発明に規定した組成と粘度を有する殿粉糖
組成物が製造できることは云うまでもない。 なお、上記に言うアミラーゼの単位は、次の如
く定義されるものである。 2%可溶性殿粉2ml、PH5.5、マツキルバン緩
衝液2ml及びアミラーゼ酵素液1mlの反応組成に
て40℃で3分間反応後、反応液1mlをソモギー滴
定法の銅試薬中に加え反応を停止させ、ソモギー
滴定法により生成還元糖を定量し反応混液5ml中
に生じた還元糖をマルトースとして換算、算出す
る。糖化活性は60分間に反応混液5ml中に1mgの
マルトースを生成する酵素量を1単位と定める。 上記の糖化工程終了後、常法に従つて活性炭で
脱色し、イオン交換樹脂による脱塩工程を行つた
後、適当な公知手段で脱水し固形分濃度が60〜95
重量%、水分濃度40〜5重量%になるまで濃縮す
ることにより本発明の殿粉糖組成物を製造するこ
とができる。 このようにして得られた本発明の殿粉糖組成物
は、前述したように低粘性、温和な低甘味性、低
吸湿性、低着色(褐変)性、適度な保湿性、必結
晶化性、結晶抑制効果、等のすぐれた特長を有す
るので、この特長を生かして既存菓子食品類の性
質の改良、製造工程の改善はもとより新規な製品
の開発が可能になる。 例えば硬質キヤンデー類の製造に応用する場
合、本発明の殿粉糖組成物を使用することにより
得られる高温煮詰後の飴生地の低粘性を利用する
と、12重量%以上の油脂を含みかつ成型容器へ一
定の形状で注入することが可能になり、これによ
つて高油脂含有硬質キヤンデーの製造も可能であ
る。又本発明の殿粉糖組成物を使用することによ
り、褐変性(着色)のすくない、かつ、吸湿性の
低い硬質キヤンデーを製造することも可能であ
る。 又、本発明の殿粉糖を使用することによつて得
られる高温煮詰後の飴生地の低粘性により飴生地
取扱いの容易さ、歩留り向上等、製造工程上の
種々の利点が生ずることは云うまでもないことで
ある。 さらに和菓子、洋菓子等に用いると温和な甘味
を持つと共に、本品の持つ適度な保湿性及び結晶
抑制作用によつて日持ちが長く、乾燥、結晶析出
等が抑制された制品を製造することが出来る。 又、ジヤム、ママレード、果実罐詰、等に用い
ると原料の風味を生かした味のよい製品を製造す
ることもできるし、冷菓に応用すると、なめらか
な食感を与える。更に本発明の殿粉糖組成物は蔗
糖、ブドウ糖、乳糖、等の結晶析出を抑制できる
ので蔗糖液糖、異性化糖液糖に適当な割合で混合
物することにより製品の粘度を大きく増加させる
ことなく蔗糖、ブドウ糖の結晶析出を抑制するこ
とができ、この効果を菓子、食品類に生かした新
製品を開発することも可能である。 しかも、本発明の糖組成物が蔗糖に比較して安
価であり、蔗糖に近似した粘度、ボデイー等の物
性を有し、蔗糖と自由に混合できることを利用し
て、従来、蔗糖が用いられていた食品、菓子分野
で本品を蔗糖の代替甘味料として用いることが可
能である。 実施例について本発明を説明するが、これによ
つて本発明を何ら限定するものではない。 実施例 1 馬れいしよ殿粉280Kgを水道水300に分散しPH
を6.0とした後、細菌液化型アミラーゼ(商品
名、スピターゼ、長瀬産業製)を0.07%添加し、
これとは別に準備した230の熱水中に温度70〜
71℃で投入して液化を実施した。液化終了後、
120℃、15分間加熱してスピターゼを失活させ
た。 その後、60℃へ冷却して、放線菌アミラーゼを
1000μ/g殿粉の量で加え、62℃で24時間糖化し
た。この時のPHは初発6.0とした。糖化終了後100
℃、15分加熱して放線菌アミラーゼを失活させた
後過を行い常法で活性炭により脱色し、イオン
交換樹脂により脱塩後、75重量%の固形濃度にま
で濃縮して、糖液280Kgを得た。この糖液の組成
及び粘度は以下の通りであつた。 糖組成(固形分に対する重量%で示す) グルコース:3.7%; マルトース及びマルトトリオースの合計:84.4%
(その内のマルトース、61.6%) マルトテトラオース以上のオリゴ糖 7.2% デキストリン:4.7% 粘 度:1580cps(75重量%濃度、25℃) 実施例 2 実施例1に於て糖化時間を48時間行い、同様に
糖液270Kgを得た。この糖液の組成、粘度は以下
の通りであつた。 グルコース:5.6% マルトース及びマルトトリオースの合計86.0%
(その内、マルトース66.5%) マルトテトラオース以上のオリゴ糖 6.3% デキストリン:2.1% 粘 度:1280cps(75重量%濃度、25℃) 参考例 3 本発明の殿粉糖組成物を液糖の結晶化防止に利
用した。即ち、本発明の殿粉糖組成物(固形分75
重量%濃度)を蔗糖液(75重量%濃度)に混合し
て蔗糖の結晶化状態を40日間観察したところ、第
2表に示すように蔗糖液100部に対し、殿粉糖液
60部以上を混合することにより75%濃度液で蔗糖
の結晶化を抑制できた。又、殿粉糖液を混合する
ことによる粘度の増加はわずかであつた。
[Table] As shown in Table 1, the viscosity of starch sugar produced by combined saccharification of β-amylase and bullulanase (hereinafter referred to as conventional starch sugar) is 75% by weight of solids.
The viscosity of the powdered sugar of the present invention is 1700 cps, whereas it is 7200 cps when measured at a temperature of 25°C. As mentioned above, the viscosity of starch sugar is determined by the total amount of oligosaccharides of G4 or higher and dextrin, so the viscosities of the two with approximately the same content should be approximately the same. Nevertheless, the reason for such a significant difference in viscosity is due to the significant difference in the content of oligosaccharides of maltotetraose or higher, as is clear from Table 1. That is, while conventional starch sugar contains almost no oligosaccharides of maltotetraose or higher, the starch sugar of the present invention contains 9.0%. Further, conventional starch sugar contains 14.3% dextrin, but the starch sugar of the present invention contains only 6% dextrin. That is, conventional starch sugar is composed of glucose, maltose, maltotriose, and the macromolecule dextrin, and there are few oligosaccharides larger than maltotetraose, but the starch sugar of the present invention is composed of glucose, maltose, and maltotriose. The main components are triose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, and maltooctaose, and the dextrin content, which causes an increase in viscosity, is small. As described above, the compositions of conventional starch sugar and the starch sugar of the present invention are fundamentally different, and therefore, a new starch sugar composition having a low viscosity similar to sucrose could be created. It is.
Furthermore, the present composition has the feature of not being crystallized because the maltose content is 70% by weight or less based on the solid content. The novel saccharide composition of the present invention, which has such a characteristic composition and enables the development of new food processing fields (see reference examples below), can be applied to a combination saccharification method using β-amylase and Brunalase, etc. A specific enzyme produced by actinomycetes (hereinafter referred to as actinomycete amylase) is applied to the starch raw material (starch treatment liquid) that has undergone a specific pretreatment rather than the known method. It is produced by hydrolysis under certain conditions. That is, according to the second invention, when an amylase enzyme produced by a microorganism of the genus Streptomyces acts on a starch-based substrate, the optimum action pH is 4.5 to 5.0, and the decomposition limit is 75% in terms of maltose.
% or more, the production ratio of glucose to maltose is 0.06
Using an amylase enzyme that exhibits the following properties,
The solid content of the starch decomposition sugar composition, which is characterized by treating and saccharifying the starch liquefaction treatment solution, includes glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose. and maltooctaose and a small amount of dextrin, and the remainder is water, and the amount of glucose is 10% by weight or less, calculated based on the total weight of the solid content. , the total amount of maltose and maltotriose is 72% by weight or more, the amount of maltose is
70% by weight or less, the total amount of oligosaccharides of maltotetraose or more and dextrin is 20% by weight or less, and the viscosity is 2000 cps or less when measured at a solid content concentration of 75% by weight and a temperature of 25°C. A method of manufacturing a powdered sugar composition is provided. The method for producing the starch decomposed sugar composition of the present invention will be described below. Prior to performing the saccharification step of the method of the present invention, starch is first liquefied to prepare a starch treatment solution to undergo saccharification. As starch raw materials, all starch raw materials such as corn starch, horse starch, sweet starch, and tapioca starch can be used.
Liquefaction methods include mechanical liquefaction with heating, acid liquefaction with acid, enzyme liquefaction with α-amylase,
Furthermore, a liquefaction method using actinomycete amylase used in the present invention, etc. can be employed. If the DE of the starch liquefaction liquid at this stage is 20 or less,
You can achieve that goal. In the method of the present invention, actinomycete amylase is allowed to act on the liquefied starch solution obtained as described above.
The actinobacterial amylase used in the present invention is
As described in Japanese Patent Publication No. 49-1871 and Japanese Patent Publication No. 51-20575, Streptomyces tosaensis (FERM-P601, ATCC21723), Streptomyces aureofaciens, (FERM-P606)
), Streptomyces flavus (FERM) −
P605), Streptomyces hygroscopicus, SF-1084 (FERM-P602, ATCC21722)
Streptomyces viridochromogenes SF−
1087 (FERM-P603, ATCC No. 21724) is an amylase produced by microorganisms of the genus Streptomyces, and this enzyme has an optimal action pH of 4.5 to 5.0, a degradation limit of 75% or more in terms of maltose, and a production ratio of glucose to maltose of 0.06. Shows the following enzyme activities. Further, its physicochemical properties are as follows: Elemental analysis: C 44.87%, H 6.84%, N 13.84% Molecular weight: Approximately 35000 (gel filtration method) Ultraviolet absorption: E 11cn = 13.1, 280 mμ (PH = 6.8) Isoelectric point: approximately PH4.3 (focal electrophoresis) In the method of the present invention, a culture solution containing actinomycete amylase with the above properties, a treated solution thereof, or an enzyme product extracted from these culture solutions. The saccharification step can be carried out by using the starch liquefaction solution treated as described above and allowing it to act on the starch liquefaction treatment solution under the following conditions. That is, when saccharification is performed at a saccharification temperature of 60 to 65 and a pH of 5.0 to 7.0 during saccharification, the maltose content in the solid content of the obtained starch decomposed sugar composition is suppressed to 70% by weight or less, Mainly due to this, the present composition exhibits poor crystallinity. Moreover, the sugar composition and viscosity of the starch sugar will vary slightly depending on the amount of enzyme used, the preparation concentration, and the saccharification time;
The starch of the present invention having a desired composition and viscosity can be obtained by combining the following conditions: units/g starch, preferably 1000 to 2000 units/g starch, saccharification time 6 to 72 hours, and feed concentration 20 to 40%. A powdered sugar composition can be obtained. Furthermore, although the above conditions are for saccharification using only actinobacterial amylase, the present invention can also be achieved by saccharifying by combining appropriate amounts of actinobacterial amylase, β-amylase, malt amylase, burulanase, etc. It goes without saying that a starch sugar composition having the composition and viscosity defined in the above can be produced. The amylase unit mentioned above is defined as follows. After reacting for 3 minutes at 40°C with a reaction composition of 2 ml of 2% soluble starch, pH 5.5, 2 ml of pine kirvan buffer, and 1 ml of amylase enzyme solution, 1 ml of the reaction solution was added to the copper reagent of the Somogyi titration method to stop the reaction. The reducing sugar produced is determined by the Somogyi titration method, and the reducing sugar produced in 5 ml of the reaction mixture is converted and calculated as maltose. Saccharification activity is defined as 1 unit, which is the amount of enzyme that produces 1 mg of maltose in 5 ml of reaction mixture in 60 minutes. After the above saccharification process is completed, the color is decolored with activated carbon according to the conventional method, and the desalination process is performed with an ion exchange resin, followed by dehydration using an appropriate known method until the solid content concentration is 60 to 95.
The starch sugar composition of the present invention can be produced by concentrating to a water concentration of 40 to 5% by weight. As described above, the starch sugar composition of the present invention obtained in this manner has low viscosity, mild low sweetness, low hygroscopicity, low coloring (browning) property, moderate moisture retention, and crystallization property. Since it has excellent features such as crystallization suppressing effect, etc., it is possible to utilize these features to improve the properties of existing confectionery foods, improve the manufacturing process, and develop new products. For example, when applied to the production of hard candy products, if the low viscosity of the candy dough after high-temperature boiling obtained by using the starch sugar composition of the present invention is used, it is possible to make a molded container containing 12% by weight or more of oil and fat. This makes it possible to inject in a certain shape into a container, thereby making it possible to produce hard candies containing high oil and fat contents. Furthermore, by using the starch sugar composition of the present invention, it is also possible to produce hard candy with little browning (coloration) and low hygroscopicity. Furthermore, the low viscosity of the candy dough after high-temperature boiling obtained by using the starch sugar of the present invention brings about various advantages in the manufacturing process, such as ease of handling the candy dough and improved yield. Of course. Furthermore, when used in Japanese sweets, Western sweets, etc., it has a mild sweet taste, and its moderate moisture retention and crystallization suppressing properties make it possible to produce products that have a long shelf life and suppress drying and crystal precipitation. . Furthermore, when used in jams, marmalade, canned fruits, etc., it is possible to produce delicious products that bring out the flavor of the raw materials, and when applied to frozen desserts, it gives a smooth texture. Furthermore, since the starch sugar composition of the present invention can suppress crystal precipitation of sucrose, glucose, lactose, etc., the viscosity of the product can be greatly increased by mixing it with sucrose liquid sugar or isomerized high-fructose liquid sugar in an appropriate ratio. It is possible to suppress the crystallization of sucrose and glucose, and it is also possible to develop new products that take advantage of this effect in confectionery and foods. Moreover, the sugar composition of the present invention is cheaper than sucrose, has physical properties such as viscosity and body similar to sucrose, and can be freely mixed with sucrose, which makes it easier to use than sucrose. This product can be used as an alternative sweetener to sucrose in the food and confectionery fields. The present invention will be described with reference to examples, but the invention is not limited thereto in any way. Example 1 Disperse 280kg of Umareishiyo starch in tap water 300% and adjust the pH.
After setting the temperature to 6.0, 0.07% of bacterial liquefied amylase (trade name, Spitase, manufactured by Nagase Sangyo) was added.
Separately prepared 230℃ hot water with a temperature of 70~
Liquefaction was carried out by charging at 71°C. After liquefaction,
Spitase was inactivated by heating at 120°C for 15 minutes. Then, cool to 60℃ to remove actinomycete amylase.
It was added in an amount of 1000μ/g starch and saccharified at 62°C for 24 hours. The initial pH at this time was 6.0. 100 after completion of saccharification
℃ for 15 minutes to inactivate actinobacterial amylase, filter, decolorize with activated carbon in the usual manner, desalt with ion exchange resin, concentrate to a solid concentration of 75% by weight, and make 280 kg of sugar solution. I got it. The composition and viscosity of this sugar solution were as follows. Sugar composition (expressed in weight percent relative to solid content) Glucose: 3.7%; Total maltose and maltotriose: 84.4%
(of which maltose, 61.6%) Oligosaccharide of maltotetraose or higher 7.2% Dextrin: 4.7% Viscosity: 1580 cps (75% concentration by weight, 25°C) Example 2 In Example 1, the saccharification time was 48 hours. Similarly, 270 kg of sugar solution was obtained. The composition and viscosity of this sugar solution were as follows. Glucose: 5.6% Total of maltose and maltotriose 86.0%
(of which, maltose 66.5%) Oligosaccharides of maltotetraose or higher 6.3% Dextrin: 2.1% Viscosity: 1280 cps (75% concentration by weight, 25°C) Reference Example 3 The starch sugar composition of the present invention was made into liquid sugar crystals. It was used to prevent damage. That is, the starch sugar composition of the present invention (solid content 75
When the crystallization state of sucrose was observed for 40 days by mixing sucrose (75% by weight) with sucrose solution (75% by weight), as shown in Table 2, starch sugar solution
By mixing 60 parts or more, crystallization of sucrose could be suppressed with a 75% concentration solution. Further, the viscosity increased only slightly by mixing the starch sugar solution.

【表】 表示は−が結晶しない状態、±は結晶が数個生
ずる状態、+〜++++は結晶化が起ることを示
すが、結晶化の強さの段階を順に+〜++++で
示す。 さらに、本発明の殿粉糖液(固形分75重量%濃
度)を異性化糖液(75重量%濃度)に混合してブ
ドウ糖の結晶化状態を40日間観察したところ第3
表に示すように異性化糖液100部に対し、本発明
の殿粉糖液25部以上を混合することにより結晶化
を抑制することができた。又この場合の粘度の増
加もわずかであつた。
[Table] In the display, - indicates a state in which no crystals are formed, ± indicates a state in which several crystals are formed, and + to +++++ indicates that crystallization occurs, and the stages of crystallization strength are indicated in order from + to +++++. Furthermore, when the starch sugar solution of the present invention (solid content 75% by weight) was mixed with the isomerized sugar solution (75% by weight) and the crystallization state of glucose was observed for 40 days, the third result was
As shown in the table, crystallization could be suppressed by mixing 25 parts or more of the starch sugar solution of the present invention to 100 parts of the isomerized sugar solution. Further, the increase in viscosity in this case was also slight.

【表】 表示は−が結晶しない状態、±が微量に結晶し
ている状態、+〜+++は結晶化が起ることを示
すが、その強さの順序を+〜+++で示す。 参考例 4 本発明の殿粉糖を用いて油脂を含む硬質キヤン
デーを製造する例を示す。即ち、本発明の殿粉糖
液(固形分75重量%濃度)35部、グラニユー糖42
部、バター23部(油脂分としては20部)に水15部
を加え、混合したのち150℃に煮詰め、140℃以上
の温度で金属成型容器に注入し、常温まで冷却し
たのち、型からとり出し、目的とする一定形状の
硬質キヤンデーを得た。 このキヤンデーは多量の油脂分を含有している
ため、食感がなめらかであり、かつ歯当りのさく
い美味なキヤンデーである。 油脂を含む硬質キヤンデー製造の際、配合中の
油脂分を増加させると、それに伴つて煮詰め後の
キヤンデーの粘度(140℃以上での粘度)も増加
するため、特に成型容器に注入する方法で製造す
る硬質キヤンデーの場合、配合中の油脂分には一
定の限界がある。 デキストリン含有量の多い従来の水飴(75重量
%濃度)を使用した、油脂を含む硬質キヤンデー
の場合、成形容器中に一定の形状で注入できる油
脂分含有量の上限は12〜13重量%であつた。これ
に対し、本発明の殿粉糖を使用した、油脂を含む
硬質キヤンデーの場合、油脂分含有量20〜21重量
%まで成形容器中へ一定の形状で注入することが
可能であつた。第4表に140℃及び150℃における
各キヤンデーの粘度を示す。尚、キヤンデー配合
におけるグラニユー糖と殿粉糖液(水飴)の比率
はいづれも42:35である。
[Table] - indicates the state of no crystallization, ± indicates the state of a small amount of crystallization, and + to +++ indicates that crystallization occurs, and the order of strength is indicated by + to +++. Reference Example 4 An example of producing hard candy containing fat and oil using the starch sugar of the present invention will be shown. That is, 35 parts of the starch sugar solution of the present invention (solid content 75% by weight), 42 parts of granulated sugar
23 parts butter (20 parts oil and fat) and 15 parts water, mixed, boiled down to 150℃, poured into a metal molding container at a temperature of 140℃ or higher, cooled to room temperature, and removed from the mold. Then, a hard candy with the desired constant shape was obtained. Since this candy contains a large amount of oil and fat, it has a smooth texture and is crunchy and delicious. When producing hard candies that contain fats and oils, increasing the fat content in the mixture will also increase the viscosity of the candies after boiling (viscosity at temperatures above 140℃). In the case of hard candy, there is a certain limit to the amount of oil and fat in the formulation. In the case of hard candy containing fat and oil using conventional starch syrup with a high dextrin content (75% by weight), the upper limit of the fat and oil content that can be poured into a molded container in a certain shape is 12 to 13% by weight. Ta. On the other hand, in the case of a hard candy containing fat and oil using the starch sugar of the present invention, it was possible to pour it into a molded container in a fixed shape up to an oil content of 20 to 21% by weight. Table 4 shows the viscosity of each candy at 140°C and 150°C. In addition, the ratio of granulated sugar and starch sugar solution (starz syrup) in the Candy formulation is 42:35.

【表】 糖度はいづれもブルツクフイールド粘
度計で測定した。
参考例 5 本発明の殿粉糖を金用いて硬質キヤンデー(フ
ルーツドロツプス)を製造する例を示す。即ち、
本発明の殿粉糖液(75重量%濃度)44部、グラニ
ユー糖55部に水15部を加え、混合したのち150℃
に煮詰め、この煮詰液に、クエン酸0.9部、フル
ーツ香料0.1部、着色料若干を加え、混合し80℃
〜90℃まで冷却したところで型打ちし、次いで常
温まで冷却して目的とするフルーツドロツプスを
得た。 このキヤンデーは、市販の水飴(酸糖化飴、75
重量%濃度を使用したものにくらべて飴生地の褐
変化がすくないため、着色料による着色が効果的
で色彩があざやかであり、又甘味のすくないさわ
やかな風味を有するキヤンデーである。 さらに、本キヤンデーは市販の水飴を使用した
ものにくらべて、吸湿性がすくなく、保存性が良
好であつた。 本例のキヤンデーをポリプロピレンラミネー
ト・プラスチツクフイルムにて包装し30℃、相対
湿度80%の空気中に30日間保持したところ、吸湿
量は20日目で0.75%、30日目で1.05%であつた。
これに対し、市販水飴使用品の吸湿量は同じ試験
条件で20日目1.05%、30日目1.75%であつた。 参考例 4 本発明の殿粉糖を用いてオレンジマーマレード
を製造する例を示す。 3%食塩水に一晩つけて苦味を除き水洗して塩
分を除去した後、20分程度ゆで、組織を柔かくし
た皮、84gにじようのう210gを加え、これに水
370mlを加えて後、本発明の殿粉糖液(75重量%
濃度)313gを除々に添加しつつ、30分間程度煮
つめた。温度が103〜104℃になつた時点でできあ
がりとした。この時の糖度は65%であつた。この
ようにして作成したオレンジマーマレードは、同
様な方法で砂糖を用いて作成したものに比較し
て、オレンジのさわやかな酸味がひきたち、風味
のよいオレンジマーマレードであつた。 参考例 5 本発明の殿粉糖を用いて、ねりようかんを製造
する例を示す。 寒天12gを2時間水に浸漬した後、水を切り、
これを細かくちぎつた後、水260mlを加え十分煮
とかしてから、本発明の殿粉糖液(75重量%濃
度)960gを加えて寒天が溶解したら熱いうちに
過する。この寒天を火にかけ生あん480gを加
えて十分混和し、糖度70〜71程度まで煮つめた
後、流し箱に流し入れ固めてようかんとした。本
品は、同様にして砂糖で試作したようかんに比較
して、甘味が低く、長期間シヤリも発生せず、良
好であつた。
[Table] All sugar content was measured using a Burckfield viscometer.
Reference Example 5 An example of producing hard candy (fruit drops) using the starch sugar of the present invention will be shown. That is,
Add 15 parts of water to 44 parts of the starch sugar solution of the present invention (75% concentration by weight) and 55 parts of granulated sugar, mix and heat to 150°C.
Add 0.9 part of citric acid, 0.1 part of fruit flavoring, and some coloring to this boiled liquid, mix and heat to 80℃.
After cooling to ~90°C, it was molded, and then cooled to room temperature to obtain the desired fruit drops. This Kyan Day is made with commercially available starch syrup (acid saccharified candy, 75%
Since the browning of the candy dough is less than that using weight % concentration, the coloring with the coloring agent is effective and the color is vivid, and the candy has a refreshing flavor with less sweetness. Furthermore, compared to those using commercially available starch syrup, this candy was less hygroscopic and had better storage stability. When the canday of this example was packaged in polypropylene laminate plastic film and kept in air at 30°C and 80% relative humidity for 30 days, the amount of moisture absorbed was 0.75% on the 20th day and 1.05% on the 30th day. .
In contrast, the moisture absorption of commercially available starch syrup products was 1.05% on the 20th day and 1.75% on the 30th day under the same test conditions. Reference Example 4 An example of producing orange marmalade using the starch sugar of the present invention is shown. After soaking in 3% saline overnight to remove bitterness and washing with water to remove salt, boil for about 20 minutes to soften the tissue, add 84g of the skin and 210g of rainbow yeast, and add water to this.
After adding 370ml, add the starch sugar solution of the present invention (75% by weight).
Concentration) 313g was gradually added and boiled for about 30 minutes. It was considered completed when the temperature reached 103-104°C. The sugar content at this time was 65%. The orange marmalade prepared in this manner had a refreshing acidity from the orange and had a good flavor compared to that prepared using sugar in a similar manner. Reference Example 5 An example of producing a pastry cake using the starch sugar of the present invention will be shown. Soak 12g of agar in water for 2 hours, then drain the water.
After tearing this into small pieces, add 260 ml of water and boil it thoroughly, then add 960 g of the starch sugar solution of the present invention (75% concentration by weight), and once the agar has dissolved, strain it while still hot. This agar was heated, 480g of raw bean paste was added, and mixed thoroughly. After boiling down to a sugar content of 70-71, it was poured into a sink and allowed to harden. This product had a lower sweetness and did not cause sagging over a long period of time than a similar yokan prepared using sugar.

Claims (1)

【特許請求の範囲】 1 殿粉分解糖組成物の固形分としてグルコー
ス、マルトース、マルトトリオース、マルトテト
ラオース、マルトペンタオース、マルトヘキサオ
ース、マルトヘプタオース及びマルトオクタオー
ス並びに少量のデキストリンを含み、また残分が
水である殿粉分解糖組成物において、前記の固形
分の総重量に基づいて計算して、グルコースの量
が10重量%以下、マルトース及びマルトトリオー
スの合計量が72重量%以上、マルトースの量が70
重量%以下、マルトテトラオース以上のオリゴ糖
及びデキストリンの総計量が20重量%以下であ
り、固形分の濃度75重量%及び温度25℃の条件で
測定した時の粘度が2000cps以下であることを特
徴とする殿粉分解糖組成物。 2 マルトテトラオース以上のオリゴ糖及びデキ
ストリンの総計量が4〜12重量%である特許請求
の範囲第1項記載の組成物。 3 マルトテトラオース以上のオリゴ糖及びデキ
ストリンの総計量内に占めるマルトテトラオース
からマルトオクタオースに至るオリゴ糖の含有量
の合計量が30重量%以上である特許請求の範囲第
1項記載の組成物。 4 ストレプトミセス属の微生物により産生され
るアミラーゼ酵素であつて、殿粉系基質に作用さ
せた場合、最適作用PHが4.5〜5.0、分解限度がマ
ルトース換算75%以上、グルコース対マルトース
の生成比が0.06以下である性質を示すアミラーゼ
酵素を用いて、殿粉液化処理液を処理して糖化さ
せることを特徴とする、殿粉分解糖組成物の固形
分としてグルコース、マルトース、マルトトリオ
ース、マルトテトラオース、マルトペンタオー
ス、マルトヘキサオース、マルトヘプタオース及
びマルトオクタオース並びに少量のデキストリン
を含み、また残分が水である殿粉分解糖組成物で
あつて、前記の固形分の総重量に基づいて計算し
て、グルコースの量が10重量%以下、マルトース
及びマルトトリオースの合計量が72重量%以上、
マルトースの量が70重量%以下、マルトテトラオ
ース以上のオリゴ糖及びデキストリンの総計量が
20重量%以下であり、固形分の濃度75重量%及び
温度25℃の条件で測定した時の粘度が2000cps以
下である殿粉分解糖組成物の製造法。 5 糖化温度60〜65℃、糖化PH5.0〜7.0でアミラ
ーゼ酵素を作用させる特許請求の範囲第4項記載
の方法。 6 殿粉1g当り200〜2000単位の酵素力価にて
酵素を用いて殿粉を分解する特許請求の範囲第4
項記載の方法。
[Scope of Claims] 1 The starch decomposed sugar composition contains glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, maltooctaose, and a small amount of dextrin. In addition, in a starch-decomposed sugar composition in which the remainder is water, the amount of glucose is 10% by weight or less, and the total amount of maltose and maltotriose is 72% by weight, calculated based on the total weight of the solid content. % or more, the amount of maltose is 70
The total amount of oligosaccharides and dextrin of maltotetraose or higher is 20% by weight or less, and the viscosity is 2000 cps or less when measured at a solid content of 75% by weight and a temperature of 25°C. Characteristic starch-decomposed sugar composition. 2. The composition according to claim 1, wherein the total amount of oligosaccharides of maltotetraose or higher and dextrin is 4 to 12% by weight. 3. The composition according to claim 1, wherein the total content of oligosaccharides ranging from maltotetraose to maltooctaose in the total amount of oligosaccharides of maltotetraose or more and dextrin is 30% by weight or more. thing. 4 An amylase enzyme produced by a microorganism of the genus Streptomyces, which has an optimal action pH of 4.5 to 5.0, a decomposition limit of 75% or more in terms of maltose, and a production ratio of glucose to maltose when applied to starch-based substrates. The solid content of the starch decomposition sugar composition is characterized in that the starch liquefaction treatment liquid is treated and saccharified using an amylase enzyme that exhibits a property of 0.06 or less.Glucose, maltose, maltotriose, maltotetra ose, maltopentaose, maltohexaose, maltoheptaose, and maltooctaose, and a small amount of dextrin, and the balance is water, based on the total weight of said solids. Calculated by weight, the amount of glucose is 10% by weight or less, the total amount of maltose and maltotriose is 72% by weight or more,
The amount of maltose is 70% by weight or less, and the total amount of oligosaccharides and dextrin is more than maltotetraose.
20% by weight or less, and a viscosity of 2000 cps or less when measured at a solid content concentration of 75% by weight and a temperature of 25°C. 5. The method according to claim 4, wherein the amylase enzyme is allowed to act at a saccharification temperature of 60 to 65°C and a saccharification pH of 5.0 to 7.0. 6. Claim 4, in which starch is degraded using an enzyme at an enzyme titer of 200 to 2000 units per gram of starch.
The method described in section.
JP7716877A 1977-06-30 1977-06-30 Starch suger composition and its production Granted JPS5411954A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7716877A JPS5411954A (en) 1977-06-30 1977-06-30 Starch suger composition and its production
IN689/CAL/78A IN149335B (en) 1977-06-30 1978-06-22
GB7827929A GB2001075B (en) 1977-06-30 1978-06-26 Starch hydrolyzate
CA306,440A CA1106304A (en) 1977-06-30 1978-06-28 Starch hydrolyzate
FR7820414A FR2396079A1 (en) 1977-06-30 1978-06-29 NEW STARCH HYDROLYSATE USED AS A SWEETENER AND ITS PREPARATION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7716877A JPS5411954A (en) 1977-06-30 1977-06-30 Starch suger composition and its production

Publications (2)

Publication Number Publication Date
JPS5411954A JPS5411954A (en) 1979-01-29
JPS6226336B2 true JPS6226336B2 (en) 1987-06-08

Family

ID=13626249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7716877A Granted JPS5411954A (en) 1977-06-30 1977-06-30 Starch suger composition and its production

Country Status (5)

Country Link
JP (1) JPS5411954A (en)
CA (1) CA1106304A (en)
FR (1) FR2396079A1 (en)
GB (1) GB2001075B (en)
IN (1) IN149335B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210896A (en) * 2006-02-07 2007-08-23 Kao Corp Keratotic plug-remover

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2445839A1 (en) * 1979-01-08 1980-08-01 Roquette Freres HYDROLYSATE OF POSSIBLE HYDROGEN STARCH, PROCESS FOR THE PREPARATION THEREOF AND APPLICATIONS THEREOF
JPS59213723A (en) * 1983-05-20 1984-12-03 Mitsui Petrochem Ind Ltd Manufacture of polyamide copolymer
FR2555992B1 (en) * 1983-12-05 1986-10-24 Grain Processing Corp PROCESS FOR PRODUCING A STARCH HYDROLYSATE
JPS6196942A (en) * 1984-10-19 1986-05-15 明治製菓株式会社 Fermented food containing fructo-oligosaccharide and its production
JP3533239B2 (en) * 1994-03-01 2004-05-31 株式会社林原生物化学研究所 Maltohexaose / maltoheptaose-forming amylase, method for producing the same and use thereof
FR3045055B1 (en) 2015-12-10 2020-02-21 Roquette Freres LOW VISCOSITY STARCH HYDROLYSAT HAVING IMPROVED RETROGRADATION BEHAVIOR
CN109549059B (en) * 2018-12-10 2022-06-17 山东百龙创园生物科技股份有限公司 Moisture-preserving syrup and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120575A (en) * 1974-08-12 1976-02-18 Omron Tateisi Electronics Co KINSETS SUUITSUCHI

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1037254A (en) * 1962-06-14 1966-07-27 Staley Mfg Co A E Method of producing starch syrup
JPS491871B1 (en) * 1970-10-27 1974-01-17
US3922196A (en) * 1974-01-28 1975-11-25 Cpc International Inc Enzymatic hydrolysis of granular starch
US4032403A (en) * 1974-07-17 1977-06-28 Kabushiki-Kaisha Hayashibara Selbutsukagaku Kenkyujo Process for the production of saccharified starch products wherein maltose is the predominant constituent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120575A (en) * 1974-08-12 1976-02-18 Omron Tateisi Electronics Co KINSETS SUUITSUCHI

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210896A (en) * 2006-02-07 2007-08-23 Kao Corp Keratotic plug-remover

Also Published As

Publication number Publication date
FR2396079A1 (en) 1979-01-26
GB2001075B (en) 1982-05-26
GB2001075A (en) 1979-01-24
CA1106304A (en) 1981-08-04
JPS5411954A (en) 1979-01-29
FR2396079B1 (en) 1983-08-19
IN149335B (en) 1981-10-24

Similar Documents

Publication Publication Date Title
KR100390882B1 (en) High trehalose content syrup
US3708396A (en) Process for producing maltitol
KR100468930B1 (en) High-trehalose content syrup, its preparation and uses
US3705039A (en) Low calorie sweetener mixture of maltitol and maltotritol
US5219842A (en) Method of improving intestinal floras
DE3146085A1 (en) WATER-FREE MALTITE CRYSTALS, COMPLETELY CONTAINING CRYSTALLINE SOLID MIXTURE OF HYDROGENATED STARCH HYDROLYSATE, METHOD FOR PRODUCTION AND USE
DE69535029T2 (en) Thermostable non-reducing saccharide-forming enzyme, its preparation and uses
DE2162276C3 (en) Process for the preparation of sucrose-starch products essentially free of reducing sugars and cyclodextrin
JPH07236478A (en) Amylase producing maltohexaose and maltoheptaose and production thereof
US3741776A (en) Process for preparing foods and drinks
US2822303A (en) High d. e. syrup and method of making same
JP3557287B2 (en) Thermostable non-reducing saccharide-forming enzyme, its production method and use
JPS6226336B2 (en)
JPH0873482A (en) Glucide reduced in reducing property and its production and use
DE3008668C2 (en) Process for sweetening food
JP3102624B2 (en) Buckwheat candy-containing food
TW397840B (en) Crystalline maltotetraosyl glucoside, and its production and use
US3691013A (en) Process for producing ketose
US3692580A (en) Process for the production of starch syrups
JPS6324871A (en) Low calorie bulking agent
KR820000329B1 (en) Method for manufacturing starch glucose
JP3969511B2 (en) Sugar composition with an effect of improving the taste of food and drink
DE2038230A1 (en) Process for the production of lactulose and lactobionic acid from lactose
JPH03224431A (en) Bread dough
DE69730766T2 (en) Maltooligosylturanose and maltooligosylpalatinose-containing polysaccharide composition, preparation and use