JPS62263140A - Production of alpha-phenylpropionic acid derivative - Google Patents

Production of alpha-phenylpropionic acid derivative

Info

Publication number
JPS62263140A
JPS62263140A JP61106403A JP10640386A JPS62263140A JP S62263140 A JPS62263140 A JP S62263140A JP 61106403 A JP61106403 A JP 61106403A JP 10640386 A JP10640386 A JP 10640386A JP S62263140 A JPS62263140 A JP S62263140A
Authority
JP
Japan
Prior art keywords
compound
oxygen
containing organic
solvent
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61106403A
Other languages
Japanese (ja)
Other versions
JPH0625088B2 (en
Inventor
Yasutaka Tanaka
康隆 田中
Yasuo Tsuji
康雄 辻
Hidetaka Kojima
秀隆 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP61106403A priority Critical patent/JPH0625088B2/en
Publication of JPS62263140A publication Critical patent/JPS62263140A/en
Publication of JPH0625088B2 publication Critical patent/JPH0625088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the titled substance exhibiting pharmacological activities such as analgesic, anti-inflammatory and antipyretic actions, in high yield, by reacting an alpha-phenylethyl alcohol derivative with carbon dioxide using a specific solvent produced by mixing a hydrocarbon with an oxygen-containing organic compound. CONSTITUTION:The compound of formula II is produced by reacting an alpha-phenyl alcohol derivative of formula I (R is H, alkyl, alkenyl or aryl) with carbon monoxide usually at 30-130 deg.C, preferably at 60-100 deg.C under atmospheric pressure - 100kg/cm<2> in a solvent produced by mixing a hydrocarbon with an oxygen-containing organic compound, in the presence of a catalyst (preferably a transition metal compound) preferably using a rhodium compound as a catalyst and iodine as a cocatalyst. The hydrocarbon used in the above solvent is pentane, benzene, etc., and the oxygen-containing organic compound is acetic acid, etc. The ratio of the solvent components is e.g. preferably 2/98-30/70 by volume in the case of acetic acid/hexane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、α−フェニルプロピオン酸誘導体の工業的製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an industrial method for producing α-phenylpropionic acid derivatives.

α−フェニルプロピオン酸誘導体は、鎮痛、消炎、解熱
等の薬理作用を有し、医薬品として有用−である。
α-Phenylpropionic acid derivatives have pharmacological effects such as analgesia, anti-inflammatory, and antipyretic properties, and are useful as pharmaceuticals.

〔従来の技術及び問題点〕[Conventional technology and problems]

α−フェニルプロピオン酸誘導体の製造法については、
近年数多くの合成経路が提示されているが、何れも、反
応工程が長い、高価である、   ゛あるいは有毒な試
薬を使用するなど工業的に満足すべきものではなかった
Regarding the production method of α-phenylpropionic acid derivatives,
Many synthetic routes have been proposed in recent years, but none of them are industrially satisfactory, as they require long reaction steps, are expensive, or use toxic reagents.

そこで、本発明者らは先に、上記の欠点を克服すべく研
究を重ねた結果、α−フェニルエチルアルコール誘導体
をロジウム触媒とヨウ素化合物の存在下に一酸化炭素と
反応させることにより、α−フェニルプロピオン酸誘導
体を好収率で得る工業的に有利な方法を見出し、特許出
願した(昭和61年4月15日提出の特許願(1))。
Therefore, as a result of repeated research to overcome the above-mentioned drawbacks, the present inventors discovered that α-phenylethyl alcohol derivatives were reacted with carbon monoxide in the presence of a rhodium catalyst and an iodine compound. They discovered an industrially advantageous method for obtaining phenylpropionic acid derivatives in good yields and filed a patent application (patent application (1) filed on April 15, 1988).

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記発明にいたる研究に際して、反応に使
用する溶媒を変えることにより、α−フェニルプロピオ
ン酸誘導体の収率が極めて大幅に変化することに着目し
、より一層の収率向上を目指し、各種反応溶媒の検討を
鋭意重ねた結果、意外にも、炭化水素と含酸素有機化合
物とを混合した溶媒を反応に使用することにより、それ
ぞれを単独で溶媒として用いた場合に比し、大幅にα−
フェニルプロピオン酸誘導体の収率が向上することを見
出し、本発明の完成に至ったものである。
During the research that led to the above invention, the present inventors focused on the fact that the yield of α-phenylpropionic acid derivatives changes significantly by changing the solvent used in the reaction, and aimed to further improve the yield. As a result of intensive studies on various reaction solvents, surprisingly, by using a mixed solvent of hydrocarbon and oxygen-containing organic compound in the reaction, the reaction rate was significantly greater than when each solvent was used alone. α−
It was discovered that the yield of phenylpropionic acid derivatives was improved, and the present invention was completed.

即ち、本発明は、 (式中、Rは水素、アルキル基、アルケニル基、又はア
リール基を表す) で示されるα−フェニルエチルアルコール誘導体を、炭
化水素と含酸素有機化合物とを混合した溶媒中において
、触媒の存在下に一酸化炭素と反応させることを特徴と
する一般式 で示されるα−フェニルプロピオン酸誘導体の製造法に
係わるものである。
That is, the present invention provides an α-phenylethyl alcohol derivative represented by (wherein R represents hydrogen, an alkyl group, an alkenyl group, or an aryl group) in a solvent containing a mixture of a hydrocarbon and an oxygen-containing organic compound. The present invention relates to a method for producing an α-phenylpropionic acid derivative represented by the general formula, which comprises reacting with carbon monoxide in the presence of a catalyst.

以下、本発明を具体的に説明する。The present invention will be specifically explained below.

(11原料アルコール ■ で示される原料となるα−フェニルエチルアルコール誘
導体において、置換基Rは水素、アルキル基、アルケニ
ル基、又はアリール基を表す、アルキル基、アルケニル
基としては、鎖状、分枝状あるいは環状のもの、例えば
メチル基、エチル基、プロピル基、イソブチル基、イソ
プレニル基、シクロヘキシル基等が挙げられる。アリー
ル基としては、例えばフェニル基、トリル基、キシリル
基、ナフチル基等が挙げられる。
(11 Raw material alcohol ■ In the α-phenylethyl alcohol derivative that is the raw material, the substituent R represents hydrogen, an alkyl group, an alkenyl group, or an aryl group. Examples of aryl groups include phenyl, tolyl, xylyl, naphthyl, etc. .

(2)溶媒 本発明は、反応溶媒として炭化水素と含酸素有機化合物
との混合物を用いることにその特徴がある。炭化水素と
しては、反応条件下で液体として存在し得るものであれ
ばいずれも使用可能で、例えば、ペンタン、ヘキサン、
シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トル
エン、キシレン等の芳香族炭化水素類、及びそれらの混
合物が通常用いられる。
(2) Solvent The present invention is characterized by using a mixture of a hydrocarbon and an oxygen-containing organic compound as a reaction solvent. Any hydrocarbon that can exist as a liquid under the reaction conditions can be used, such as pentane, hexane,
Aliphatic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as benzene, toluene, xylene, and mixtures thereof are commonly used.

含酸素有機化合物としては、例えば、酢酸、プロピオン
酸、安息香酸等の有機カルボン酸類、アセトン、メチル
エチルケトン等のケトン類、ジオキサン、テトラハイド
ロフラン、ジエチルエーテル等のエーテル類及びそれら
の混合物が好ましく用いられる。
As the oxygen-containing organic compound, for example, organic carboxylic acids such as acetic acid, propionic acid, and benzoic acid, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane, tetrahydrofuran, and diethyl ether, and mixtures thereof are preferably used. .

炭化水素と含酸素有機化合物との最適な混合比は、用い
られる両者の化合物の種類により大きく異なるが、ヘキ
サンと酢酸との混合物での例を挙げれば、酢酸/ヘキサ
ン容量比で2/98〜30/70程度が好ましい結果を
与える。
The optimal mixing ratio of hydrocarbon and oxygen-containing organic compound varies greatly depending on the types of both compounds used, but for example, in the case of a mixture of hexane and acetic acid, the acetic acid/hexane volume ratio is 2/98 to 2/98. A ratio of about 30/70 gives preferable results.

また、上記混合溶媒中における、原料アルコールの濃度
としては、通常1〜50重量%程度が好ましい。
Further, the concentration of the raw material alcohol in the mixed solvent is usually preferably about 1 to 50% by weight.

(3)触媒 本発明は、触媒として遷移金属化合物及び必要に応じて
助触媒の存在下で実施される。
(3) Catalyst The present invention is carried out in the presence of a transition metal compound as a catalyst and, if necessary, a co-catalyst.

遷移金属化合物中の金属としては、ロジウム、パラジウ
ム、コバルト、ニッケル等が挙げられ、助触媒としては
、ハロゲン族原子、三価の燐化合物等が挙げられる。就
中、本発明においては、遷移金属化合物としてロジウム
化合物、助触媒としてヨウ素の組み合わせが好ましい結
果を与える。具体的には、ロジウム化合物としては、ハ
ロゲン化ロジウム、ロジウムカルボニル、酢酸ロジウム
等が、ヨウ素助触媒としては、Iz、旧、ヨウ化アルキ
ル等のヨウ素化合物が一般的に用いられる。またロジウ
ム化合物としてヨウ化ロジウムを用いる場合は、助触媒
としてヨウ素化合物を必ずしも追加する必要はない。
Examples of the metal in the transition metal compound include rhodium, palladium, cobalt, nickel, etc., and examples of the promoter include halogen group atoms, trivalent phosphorus compounds, and the like. In particular, in the present invention, a combination of a rhodium compound as the transition metal compound and iodine as the co-catalyst gives preferable results. Specifically, as the rhodium compound, rhodium halide, rhodium carbonyl, rhodium acetate, etc. are generally used, and as the iodine promoter, iodine compounds such as Iz, former, alkyl iodide, etc. are generally used. Further, when rhodium iodide is used as the rhodium compound, it is not necessarily necessary to add an iodine compound as a promoter.

(4)−酸化炭素 一酸化炭素は、純粋なもの、またはこれに窒素等の不活
性ガス、あるいは水素を含むものが使用可能である。反
応圧力は、常圧でも高圧でも反応は進行するが、反応速
度及び経済的な面からは、常圧〜100kg/ca+”
が好ましい。また水素を含む場合、その分圧が常圧〜5
kg/c+a!程度であれば、遷移金属化合物の溶解を
助ける意味でむしろ好ましいが、それ以上の高圧の場合
、水素化副生物を増加させ不利である。
(4) - Carbon oxide Carbon monoxide may be pure or may contain an inert gas such as nitrogen, or hydrogen. The reaction proceeds at both normal pressure and high pressure, but from the viewpoint of reaction rate and economy, the reaction pressure is between normal pressure and 100 kg/ca+.
is preferred. In addition, when hydrogen is included, its partial pressure is between normal pressure and 5.
kg/c+a! If the pressure is higher than that, it is preferable in the sense that it helps dissolve the transition metal compound, but if the pressure is higher than that, hydrogenation by-products will increase, which is disadvantageous.

(5)反応温度 反応温度は通常30℃〜130℃であるが、経済的な面
及び副反応抑制の面から60℃〜100℃が好ましい。
(5) Reaction temperature The reaction temperature is usually 30°C to 130°C, but preferably 60°C to 100°C from the economical and side reaction viewpoints.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に具体的に説明するが
、本発明はこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 ハステロイ製、容量300−のオートクレーブにα−(
4−イソブチルフェニル)エチルアルコール9.8g 
(55,1mmol) 、ヨウ化ロジウム1.5g (
3,10mmol) 、及び溶媒として酢酸5m7、ヘ
キサン95m1を入れ、水素圧力1atm、−酸化炭素
圧力6kg/cab” 、反応温度85℃で3時間攪拌
しながら反応させた。冷却後、内容物を取り出し溶媒を
減圧留去した。残渣をヘンイソ50@7に溶解し、2N
−NaO)1水溶液100 m7を加え、酸成分を水層
に抽出した。抽出液に塩酸を加え遊離した酸をエーテル
に抽出した。エーテルを留去して得た粗結晶をn−ヘキ
サン中で再結晶させα−(4−イソブチルフェニル)プ
ロピオン酸の白色結晶6.9 g (33,5mmol
)を得た(収率60.8%)。
Example 1 α-(
9.8 g of 4-isobutylphenyl)ethyl alcohol
(55.1 mmol), rhodium iodide 1.5 g (
3,10 mmol), and 5 m7 of acetic acid and 95 ml of hexane as solvents, and the mixture was reacted with stirring at a hydrogen pressure of 1 atm, a carbon oxide pressure of 6 kg/cab, and a reaction temperature of 85°C for 3 hours. After cooling, the contents were taken out. The solvent was distilled off under reduced pressure.The residue was dissolved in Heniso 50@7 and diluted with 2N
-NaO)1 aqueous solution (100 m7) was added to extract the acid component into the aqueous layer. Hydrochloric acid was added to the extract, and the liberated acid was extracted into ether. The crude crystals obtained by distilling off the ether were recrystallized in n-hexane to give 6.9 g (33.5 mmol) of white crystals of α-(4-isobutylphenyl)propionic acid.
) was obtained (yield 60.8%).

実施例2〜3、比較例1〜4 表1に示す溶媒、原料アルコール、触媒を用い、表1に
示す条件で実施例1に準じて反応を行った。その結果を
表1に示した。
Examples 2 to 3, Comparative Examples 1 to 4 A reaction was carried out according to Example 1 under the conditions shown in Table 1 using the solvent, raw material alcohol, and catalyst shown in Table 1. The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

上記実施例からも明らかなように、本発明の製造法によ
ると、大幅にα−フェニルプロピオン酸誘導体の収率を
向上させることができる。
As is clear from the above examples, according to the production method of the present invention, the yield of α-phenylpropionic acid derivatives can be significantly improved.

Claims (1)

【特許請求の範囲】 一般式▲数式、化学式、表等があります▼ (式中、Rは水素、アルキル基、アルケニル基、又はア
リール基を表す) で示されるα−フェニルエチルアルコール誘導体を、炭
化水素と含酸素有機化合物とを混合した溶媒中において
、触媒の存在下に一酸化炭素と反応させることを特徴と
する一般式 ▲数式、化学式、表等があります▼(式中Rは前記と同
意義) で示されるα−フェニルプロピオン酸誘導体の製造法。
[Claims] An α-phenylethyl alcohol derivative represented by the general formula ▲ includes numerical formulas, chemical formulas, tables, etc. ▼ (in the formula, R represents hydrogen, an alkyl group, an alkenyl group, or an aryl group), There are general formulas that are characterized by reacting with carbon monoxide in the presence of a catalyst in a mixed solvent of hydrogen and an oxygen-containing organic compound. There are mathematical formulas, chemical formulas, tables, etc. (in the formula, R is the same as above) Significance) A method for producing an α-phenylpropionic acid derivative represented by:
JP61106403A 1986-05-09 1986-05-09 Process for producing α-phenylpropionic acid derivative Expired - Lifetime JPH0625088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106403A JPH0625088B2 (en) 1986-05-09 1986-05-09 Process for producing α-phenylpropionic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106403A JPH0625088B2 (en) 1986-05-09 1986-05-09 Process for producing α-phenylpropionic acid derivative

Publications (2)

Publication Number Publication Date
JPS62263140A true JPS62263140A (en) 1987-11-16
JPH0625088B2 JPH0625088B2 (en) 1994-04-06

Family

ID=14432717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106403A Expired - Lifetime JPH0625088B2 (en) 1986-05-09 1986-05-09 Process for producing α-phenylpropionic acid derivative

Country Status (1)

Country Link
JP (1) JPH0625088B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285229A (en) * 1988-09-22 1990-03-26 Mitsubishi Gas Chem Co Inc Production of alpha-(4-isobutylphenyl) propionic acid
US5166418A (en) * 1990-06-04 1992-11-24 Hoechst Celanese Corporation Method for producing ibuprofen
US5271811A (en) * 1988-01-29 1993-12-21 Hoechst Celanese Corporation Process for purifying 2-(4-isobutylphenyl)-propionic acid by vacuum distillation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527147A (en) * 1978-08-16 1980-02-27 Mitsubishi Petrochem Co Ltd Preparation of carboxylic acid having aryl substituent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527147A (en) * 1978-08-16 1980-02-27 Mitsubishi Petrochem Co Ltd Preparation of carboxylic acid having aryl substituent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271811A (en) * 1988-01-29 1993-12-21 Hoechst Celanese Corporation Process for purifying 2-(4-isobutylphenyl)-propionic acid by vacuum distillation
JPH0285229A (en) * 1988-09-22 1990-03-26 Mitsubishi Gas Chem Co Inc Production of alpha-(4-isobutylphenyl) propionic acid
US5166418A (en) * 1990-06-04 1992-11-24 Hoechst Celanese Corporation Method for producing ibuprofen

Also Published As

Publication number Publication date
JPH0625088B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
JPS60136525A (en) Production of ethanol
JPS60152437A (en) Manufacture of 4-substituted butene-(3)-1-carboxylic acid and ester
JPS62263140A (en) Production of alpha-phenylpropionic acid derivative
JPS63159341A (en) Production of alpha-phenylpropionic acid derivative
JPH0248544A (en) Production of alpha-phenylpropionic acid derivative
JP3691235B2 (en) Process for producing optically active piperidines
JP2860676B2 (en) Method for producing 1-isoquinolines
JPS6137753A (en) Method of oxidizing cinnamic aldehyde
JPS5925776B2 (en) Production method of carboxylic acid alkyl ester
JPS62242642A (en) Production of alpha-phenylpropionic acid
JPS6038343A (en) Production of phenylacetic acid derivative
JPH06104663B2 (en) Method for producing aromatic cyclic acid anhydride
JP3207954B2 (en) Method for producing 2-acetylpyrazine
JP2662162B2 (en) Method for producing 3-alkylpyrrole
JPH0285229A (en) Production of alpha-(4-isobutylphenyl) propionic acid
JP2618442B2 (en) Method for producing benzonitrile
JPS62242641A (en) Production of alpha-phenylpropionic acid derivative
KR100484497B1 (en) Process for The Preparation of Esters from Olefins
JPS6157532A (en) Manufacture of phenylacetic acid and derivatives of same by catalytic rearrangement of benzyl formate and derivatives ofsame
JPS63162653A (en) Production of alpha-phenylpropionic acid derivative
JPH0386840A (en) Production of alpha,beta-unsaturated carbonyl compound
JPH0113704B2 (en)
Kubota et al. CH bond cleavage in alkenyl carboxylates promoted by methylcopper complexes and formation of six-membered acetoxyvinylcopper chelates
JPS6314698B2 (en)
JPH02115139A (en) Production of phenylhydroquinones