JPS62242641A - Production of alpha-phenylpropionic acid derivative - Google Patents

Production of alpha-phenylpropionic acid derivative

Info

Publication number
JPS62242641A
JPS62242641A JP61086531A JP8653186A JPS62242641A JP S62242641 A JPS62242641 A JP S62242641A JP 61086531 A JP61086531 A JP 61086531A JP 8653186 A JP8653186 A JP 8653186A JP S62242641 A JPS62242641 A JP S62242641A
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
reaction
reaction solution
zinc iodide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61086531A
Other languages
Japanese (ja)
Inventor
Yasutaka Tanaka
田中 康▲隆▼
Hidetaka Kojima
小島 秀▲隆▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP61086531A priority Critical patent/JPS62242641A/en
Publication of JPS62242641A publication Critical patent/JPS62242641A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound advantageously, by carbonylating an alpha-phenylethyl alcohol derivative in the presence of a rhodium catalyst, etc., adding the prepared reaction solution to water in the presence of zinc iodide, separating the mixture into two phases and repeatedly using the catalyst. CONSTITUTION:A compound shown by formula I (R is H, alkyl, alkenyl or aryl) is reacted with carbon monoxide in the presence of a rhodium catalyst and an iodine compound to give a reaction solution containing the aimed compound shown by the formula II. Water is added to the reaction solution in the presence of zinc iodide, the reaction solution is separated into two phases of a reaction product phase and a hydrous phase. The catalyst in the hydrous phase is repeatedly used to give the aimed compound useful as analgesic, etc., industrially advantageously. Since the zinc iodide prevents insoluble rhodium from precipitating, makes operation of the phase separation easy and has no bad influence on carbonylation activity of the catalyst at all, the separated catalyst can be returned to the reaction state directly in the state of the mixture with zinc iodide and circulated and used efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、α〜フェニルプロピオン酸誘導体の工業的製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an industrial method for producing α-phenylpropionic acid derivatives.

α−フェニルプロピオン酸誘導体は鎮痛、消炎、解熱等
の薬理作用を有し、医薬品として有用である。
α-Phenylpropionic acid derivatives have pharmacological effects such as analgesia, anti-inflammatory, and antipyretic properties, and are useful as pharmaceuticals.

〔従来の技術及び問題点〕[Conventional technology and problems]

本発明者らは別に、α−フェニルエチルアルコール誘導
体を、ロジウム触媒とヨウ素化合物の存在下に一酸化炭
素と反応させることによりα−フェニルプロピオン酸誘
導体を好収率で得る工業的に有利な方法を見出し特許出
願した。
The present inventors have separately developed an industrially advantageous method for obtaining α-phenylpropionic acid derivatives in good yield by reacting α-phenylethyl alcohol derivatives with carbon monoxide in the presence of a rhodium catalyst and an iodine compound. A patent application was filed under the heading.

しかし、この製造法では極めて高価なロジウム触媒を用
いることから、実際の応用に当たっては、ロジウム触媒
を効率良く生成物と分離し、再び反応系に戻すことによ
り循環使用する方法の確立が不可欠となる。
However, since this production method uses an extremely expensive rhodium catalyst, in actual applications it is essential to establish a method for efficiently separating the rhodium catalyst from the product and recycling it by returning it to the reaction system. .

従来より、この種の均一系触媒の分離再使用法としては
、蒸留分離法又は相分離法の二法が用いられている。
Conventionally, two methods have been used to separate and reuse this type of homogeneous catalyst: a distillation separation method and a phase separation method.

蒸留分離法とは、反応器から抜き出された反応液より反
応生成物ないし一部反応溶媒を留去して得られる触媒を
含む蒸留残渣を触媒液として反応器に循環する方法であ
るが、この方法はα−フェニルエチルアルコール誘導体
のカルボニル化によるα−フェニルプロピオン酸誘導体
の製造に適用した場合、生成物のα−フェニルプロピオ
ン酸誘導体が高沸点であり、その留去に高度の減圧及び
高温を要するため、ロジウムのメタル化等、触媒の不活
性化を起こし易い上に、当反応の主たる副生物であるス
チレン誘導体のポリマーが触媒液中に次第に蓄積すると
いう問題点がある。
The distillation separation method is a method in which a reaction product or a portion of the reaction solvent is distilled off from a reaction liquid extracted from a reactor, and the distillation residue containing the catalyst is circulated to the reactor as a catalyst liquid. When this method is applied to the production of α-phenylpropionic acid derivatives by carbonylation of α-phenylethyl alcohol derivatives, the product α-phenylpropionic acid derivatives have a high boiling point, and its distillation requires high vacuum and high temperature. As a result, there is a problem in that the catalyst is easily deactivated, such as rhodium metalation, and a polymer of styrene derivative, which is the main by-product of this reaction, gradually accumulates in the catalyst solution.

一方、相分離法とは、反応液に水等の極性溶媒及び場合
によっては、パラフィン等の無極性溶媒を添加し、主と
して反応生成物を含有する相と触媒を含有する相との二
相に分離し、分離された触媒を再び反応系に戻すことに
より循環使用するものである。この方法をロジウム触媒
によるα−フェニルプロピオン酸誘導体の製造に適用し
た場合には、反応液中のロジウム錯体が極めて不安定で
あるため、たとえ窒素雰囲気下であっても反応液に水を
添加すると、ロジウム錯体の分解が促進され、不溶性の
ロジウム化合物が析出するため相分離操作が困難であっ
た。
On the other hand, the phase separation method involves adding a polar solvent such as water and, in some cases, a non-polar solvent such as paraffin to the reaction solution to separate two phases: a phase containing the reaction product and a phase containing the catalyst. The catalyst is separated and recycled by returning the separated catalyst to the reaction system. When this method is applied to the production of α-phenylpropionic acid derivatives using a rhodium catalyst, the rhodium complex in the reaction solution is extremely unstable, so if water is added to the reaction solution even under a nitrogen atmosphere, , the phase separation operation was difficult because the decomposition of the rhodium complex was accelerated and insoluble rhodium compounds were precipitated.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の相分離法を行うに際し、不溶性の
ロジウム化合物の析出を防止する目的で、各種のヨウ化
物塩或いはホスフィン類等ロジウム錯体の安定化配位子
となり得る化合物の添加を試みたが、それらはいずれも
不溶性ロジウム化合物の析出防止効果は示すものの、同
時にα−フェニルエチルアルコール誘導体のカルボニル
化反応におけるロジウムの触媒活性を低下させてしまう
ため、それらの添加物の共存下に回収されたロジウムを
そのまま反応系に戻しても所期の触媒活性は得られなか
った。
When carrying out the above phase separation method, the present inventors added compounds that can serve as stabilizing ligands for rhodium complexes, such as various iodide salts or phosphines, in order to prevent the precipitation of insoluble rhodium compounds. However, although they all have the effect of preventing the precipitation of insoluble rhodium compounds, they also reduce the catalytic activity of rhodium in the carbonylation reaction of α-phenylethyl alcohol derivatives. Even if the recovered rhodium was directly returned to the reaction system, the desired catalytic activity could not be obtained.

ところが、本発明者らは以外にもヨウ化亜鉛を添加した
場合には相分離時の不溶性ロジウム化合物の析出が防止
され、相分離操作を容易に行えるばかりでなく、ヨウ化
亜鉛はロジウム触媒のカルボニル化活性に何ら悪影響も
有しないため、分離されたロジウム触媒を、ヨウ化亜鉛
との混合物のまま反応系に戻し、効率良く循環使用する
ことができることを見出し、α−フェニルプロピオン酸
誘導体を製造する工業的に有利な方法を確立し、本発明
を完成した。
However, the present inventors found that when zinc iodide was added, the precipitation of insoluble rhodium compounds during phase separation was prevented, and the phase separation operation was not only facilitated, but zinc iodide was also added to the rhodium catalyst. It was discovered that the separated rhodium catalyst could be returned to the reaction system as a mixture with zinc iodide and recycled efficiently since it had no adverse effect on carbonylation activity, and α-phenylpropionic acid derivatives were produced. The present invention was completed by establishing an industrially advantageous method.

即ち、本発明は、一般式 (式中、Pは水素、アルキル基、アルケニル基、又は了
り−ル基を表す) で示されるα−フェニルエチルアルコール誘導体を、ロ
ジウム触媒とヨウ素化合物の存在下、−酸化炭素と反応
させることにより得られる、一般式 (式中、Pは前記と同意義) で示されるα−フェニルプロピオン酸誘導体を含有する
反応液に、ヨウ化亜鉛の共存下に水を添加することによ
り、反応生成物権と含水相とに二相分離し、含水相中の
ロジウム触媒を反復使用することを特徴とするα−フェ
ニルプロピオン酸誘導体の製造法に係わるものである。
That is, the present invention provides an α-phenylethyl alcohol derivative represented by the general formula (wherein P represents hydrogen, an alkyl group, an alkenyl group, or an aryl group) in the presence of a rhodium catalyst and an iodine compound. , -To a reaction solution containing an α-phenylpropionic acid derivative represented by the general formula (wherein P has the same meaning as above) obtained by reacting with carbon oxide, water was added in the coexistence of zinc iodide. The present invention relates to a method for producing α-phenylpropionic acid derivatives, which is characterized in that the addition of the compound results in two-phase separation into a reaction product and a water-containing phase, and the rhodium catalyst in the water-containing phase is repeatedly used.

以下、本発明を具体的に説明する。1 (a)  触媒 ロジウム触媒としては、ハロゲン化ロジウム、ロジウム
カルボニル、酢酸ロジウム等のロジウム化合物が一般的
に用いられる。ロジウム触媒は、反応時に原料と共に仕
込んでも、反応前に、−酸化炭素及び水素加圧下、10
0℃乃至200℃でカルボニル錯体としたものを使用し
てもよい。
The present invention will be explained in detail below. 1 (a) Catalyst As the rhodium catalyst, rhodium compounds such as rhodium halide, rhodium carbonyl, and rhodium acetate are generally used. Even if the rhodium catalyst is charged together with the raw materials at the time of the reaction, the rhodium catalyst can be used under pressure of -carbon oxide and hydrogen under pressure of 10
A carbonyl complex formed at 0°C to 200°C may be used.

(b)  ヨウ素化合物(助触媒) 助触媒として、I2、■、ヨウ化アルキル等のヨウ素化
合物を、ロジウム原子に対しヨウ素原子が0.5乃至6
グラム当量程度の割合で添加する必要がある。ロジウム
触媒としてヨウ化ロジウム或いは反応液より回収された
ロジウム触媒を用いる場合は、助触媒としてヨウ素化合
物を必ずしも追加する必要はない。
(b) Iodine compound (co-catalyst) As a co-catalyst, use an iodine compound such as I2, ■, alkyl iodide, etc. in a ratio of 0.5 to 6 iodine atoms to rhodium atoms.
It is necessary to add it at a rate of approximately gram equivalent. When using rhodium iodide or a rhodium catalyst recovered from the reaction solution as the rhodium catalyst, it is not necessarily necessary to add an iodine compound as a co-catalyst.

(C)  ヨウ化亜鉛 ヨウ化亜鉛はカルボニル化反応後に、相分離操作に先立
ち、反応液又は添加水に加えても、カルボニル化反応に
先立ち、原料と共に加えておいても良い。添加量は通常
はRh : Zn原子比で1:1〜1:6の範囲である
。又、相分離により回収されたロジウム触媒を用いた場
合は、必ずしもヨウ化亜鉛を追加する必要はない。
(C) Zinc Iodide Zinc iodide may be added to the reaction solution or added water after the carbonylation reaction and prior to the phase separation operation, or may be added together with the raw materials prior to the carbonylation reaction. The amount added is usually in the range of 1:1 to 1:6 in Rh:Zn atomic ratio. Furthermore, when using a rhodium catalyst recovered by phase separation, it is not necessarily necessary to add zinc iodide.

(d)溶媒 カルボニル化反応自体は溶媒なしでも進行するが、副反
応抑制及び相分離操作上、溶媒を使用のが好ましい。溶
媒としては、1.4−ジオキサン等のエーテル類、ベン
ゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプ
タン等の脂肪族炭化水素類、酢酸等のカルボン酸類、ア
セトン等のケトン類、乃至はそれらの混合物が好ましく
用いられる。又、溶媒を使用する場合の原料アルコール
濃度は通常1〜50重量%程度である。
(d) Solvent Although the carbonylation reaction itself proceeds without a solvent, it is preferable to use a solvent in order to suppress side reactions and operate phase separation. Examples of solvents include ethers such as 1,4-dioxane, aromatic hydrocarbons such as benzene and toluene, aliphatic hydrocarbons such as hexane and heptane, carboxylic acids such as acetic acid, ketones such as acetone, or Mixtures thereof are preferably used. Further, when a solvent is used, the raw alcohol concentration is usually about 1 to 50% by weight.

(e)  原料アルコール で示される原料となるα−フェニルエチルアルコール誘
導体において、置換基Rは水素、アルキル基、アルケニ
ル基、又は了り−ル基を表す。アルキル基、アルケニル
基としては、鎖状、分枝状あるいは環状のもの、例えば
、メチル基、エチル基、プロピル基、イソブチル5、イ
ソプレニル基、シクロヘキンルM等が挙げられる。アリ
ール基としては、例えばフェニル基、トリル基、キシリ
ル基、ナフチル基等が挙げられる。
(e) In the α-phenylethyl alcohol derivative serving as a raw material represented by raw alcohol, the substituent R represents hydrogen, an alkyl group, an alkenyl group, or an aryol group. Examples of the alkyl group and alkenyl group include chain, branched, or cyclic groups, such as methyl group, ethyl group, propyl group, isobutyl group, isoprenyl group, and cyclohexyl group. Examples of the aryl group include phenyl group, tolyl group, xylyl group, and naphthyl group.

(f)水 反応後の反応液に水を加える。水の添加量は反応溶媒に
より異なるが、1.4−ジオキサンを溶媒とする場合、
通常は反応液の175〜1/l(容量比)の範囲である
(f) Adding water to the reaction solution after the water reaction. The amount of water added varies depending on the reaction solvent, but when using 1,4-dioxane as the solvent,
Usually, it is in the range of 175 to 1/l (volume ratio) of the reaction solution.

(g)  −酸化炭素 一酸化炭素は、純粋なもの又はこれに窒素等の不活性ガ
ス、あるいは水素を含むものが使用可能である。反応圧
力は、常圧でも高圧でも反応は進行するが、反応速度及
び経済的な面からは、常圧〜100 kg/cm”が好
ましい。
(g) - Carbon oxide Carbon monoxide may be pure or may contain an inert gas such as nitrogen, or hydrogen. The reaction proceeds at either normal pressure or high pressure, but from the viewpoint of reaction rate and economy, a range of normal pressure to 100 kg/cm'' is preferable.

又、水素を含む場合、その分圧が常圧〜5kg/ca+
”程度であれば、ロジウム化合物の溶解を助ける意味で
むしろ好ましいが、それ以上の高圧の場合、水素化副生
物を増加させ不利である。
In addition, if hydrogen is included, its partial pressure is between normal pressure and 5 kg/ca+
``If the pressure is higher than that, it is preferable in the sense that it helps the dissolution of the rhodium compound, but if the pressure is higher than that, hydrogenation by-products will increase, which is disadvantageous.

(h)  反応温度 反応温度は通常30〜130℃であるが、経済的な面及
び副反応抑制の面から60〜100℃が好ましい。
(h) Reaction temperature The reaction temperature is usually 30 to 130°C, but preferably 60 to 100°C from the economic point of view and suppression of side reactions.

〔実施例〕〔Example〕

以下、実施例によりロジウム触媒の分離、回収及び再使
用法を具体的に説明する。尚、実施例には回分法による
例を示したが、公知技術の適用により連続反応及び連続
抽出も可能なことは言うまでもない。
Hereinafter, methods for separating, recovering, and reusing a rhodium catalyst will be specifically explained using examples. Incidentally, in the Examples, an example using a batch method is shown, but it goes without saying that continuous reaction and continuous extraction are also possible by applying known techniques.

実施例1 ハステロイ製、容量300−のオートクレーブにα−(
4−イソブチルフェニル)エチルアルコール9.0g、
ヨウ化ロジウム1.5 g、ヨウ化亜鉛2.0g及び溶
媒としてジオキサン100−を入れ、水素圧力1at+
s、、−酸化炭素圧力6 kg/cm”、反応温度85
℃で3時間、攪拌しながら反応させた。
Example 1 α-(
9.0 g of 4-isobutylphenyl)ethyl alcohol,
Add 1.5 g of rhodium iodide, 2.0 g of zinc iodide, and 100- of dioxane as a solvent, and set the hydrogen pressure to 1 at+.
s, - carbon oxide pressure 6 kg/cm", reaction temperature 85
The reaction was allowed to proceed at ℃ for 3 hours with stirring.

冷却後の反応液100−に窒素下で水40−を加え数分
間攪拌後、静置すると2層に分液した。
After cooling, 100% of water was added to 100% of the cooled reaction solution under nitrogen, and after stirring for several minutes, the mixture was allowed to stand and was separated into two layers.

各層中の成分をNMR及び原子吸光により分析し、表1
に示す結果を得た。
The components in each layer were analyzed by NMR and atomic absorption, and Table 1
The results shown are obtained.

表     1 下層を上層より分離し、20m+*Hg減圧下、30℃
で水及びジオキサンを留去した。得られた残渣を再びオ
ートクレーブに、α−(4−イソブチルフェニル)エチ
ルアルコール8.0g及びジオキサン90mZと共に入
れ、初回と同様に反応させた所、初回とほぼ同一の触媒
活性が得られた。
Table 1 Separate the lower layer from the upper layer and heat at 30°C under 20m+*Hg vacuum.
Water and dioxane were distilled off. The obtained residue was again put into the autoclave together with 8.0 g of α-(4-isobutylphenyl)ethyl alcohol and 90 mZ of dioxane, and the reaction was carried out in the same manner as the first time, and almost the same catalytic activity as the first time was obtained.

以下、同様にロジウム触媒の再使用を更に5回にわたり
繰り返し、表2に示す結果を得た。
Thereafter, the rhodium catalyst was similarly reused five more times, and the results shown in Table 2 were obtained.

表2の結果よりロジウム触媒を繰り返し使用した際にも
、触媒活性が保持されることが明らかである。
From the results in Table 2, it is clear that the catalytic activity is maintained even when the rhodium catalyst is used repeatedly.

表       2 比較例1 ハステロイ製、容i 300−のオートクレーブにα−
(4−イソブチルフェニル)エチルアルコール9.0g
、ヨウ化ロジウム1.5g及び溶媒としてジオキサン1
00 mlを入れ、水素圧力latm。
Table 2 Comparative Example 1 α-
(4-isobutylphenyl)ethyl alcohol 9.0g
, 1.5 g of rhodium iodide and 1 dioxane as solvent
00 ml and hydrogen pressure latm.

−酸化炭素圧力6 kg/cn+”、反応温度85℃で
3時間、攪拌しながら反応させた。
-The reaction was carried out at a carbon oxide pressure of 6 kg/cn+'' and a reaction temperature of 85° C. for 3 hours with stirring.

冷却後の反応液100 mZに窒素雰囲気下で水4゜−
を加え数分間攪拌後、静置したが、不溶性ロジウム化合
物の析出のため懸濁液状となり分液は起こらなかった。
After cooling, add 4° of water to 100 mZ of the reaction solution under nitrogen atmosphere.
was added and stirred for several minutes, then allowed to stand, but due to the precipitation of the insoluble rhodium compound, it became a suspension and no liquid separation occurred.

比較例2 ハステロイ製、容量300II+7のオートクレーブに
α−(4−イソブチルフェニル)エチルアルコール9.
0g、ヨウ化ロジウム1.5g、ヨウ化カリウム1.0
 g及び溶媒としてジオキサン10〇−を入れ、水素圧
力1at11、−酸化炭素圧力6kg7cm”、反応温
度85℃で3時間、攪拌しながら反応させたがヨウ化亜
鉛を添加した場合と比較し、反応速度は1/10以下で
あり、イブプロフェン生成量も痕跡量であった。
Comparative Example 2 α-(4-isobutylphenyl)ethyl alcohol 9.
0g, rhodium iodide 1.5g, potassium iodide 1.0
g and dioxane 100 as a solvent, hydrogen pressure 1at11, carbon oxide pressure 6kg7cm'', reaction temperature 85℃ for 3 hours with stirring.The reaction rate was lower than when zinc iodide was added. was less than 1/10, and the amount of ibuprofen produced was also a trace amount.

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼ (式中、Rは水素、アルキル基、アルケニル基、又はア
リール基を表す) で示されるα−フェニルエチルアルコール誘導体を、ロ
ジウム触媒とヨウ素化合物の存在下、一酸化炭素と反応
させることにより得られる、一般式 ▲数式、化学式、表等があります▼ (式中、Rは前記と同意義) で示されるα−フェニルプロピオン酸誘導体を含有する
反応液に、ヨウ化亜鉛の共存下に水を添加することによ
り、反応生成物相と含水相とに二相分離し、含水相中の
ロジウム触媒を反復使用することを特徴とするα−フェ
ニルプロピオン酸誘導体の製造法。
[Claims] 1. An α-phenylethyl alcohol derivative represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R represents hydrogen, an alkyl group, an alkenyl group, or an aryl group) , α-phenylpropylene, which is obtained by reacting with carbon monoxide in the presence of a rhodium catalyst and an iodine compound, is represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (wherein R has the same meaning as above) By adding water to the reaction solution containing the ionic acid derivative in the presence of zinc iodide, the reaction product phase and the water-containing phase are separated into two phases, and the rhodium catalyst in the water-containing phase can be repeatedly used. A method for producing a characterized α-phenylpropionic acid derivative.
JP61086531A 1986-04-15 1986-04-15 Production of alpha-phenylpropionic acid derivative Pending JPS62242641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61086531A JPS62242641A (en) 1986-04-15 1986-04-15 Production of alpha-phenylpropionic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61086531A JPS62242641A (en) 1986-04-15 1986-04-15 Production of alpha-phenylpropionic acid derivative

Publications (1)

Publication Number Publication Date
JPS62242641A true JPS62242641A (en) 1987-10-23

Family

ID=13889575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61086531A Pending JPS62242641A (en) 1986-04-15 1986-04-15 Production of alpha-phenylpropionic acid derivative

Country Status (1)

Country Link
JP (1) JPS62242641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166418A (en) * 1990-06-04 1992-11-24 Hoechst Celanese Corporation Method for producing ibuprofen
US5271811A (en) * 1988-01-29 1993-12-21 Hoechst Celanese Corporation Process for purifying 2-(4-isobutylphenyl)-propionic acid by vacuum distillation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271811A (en) * 1988-01-29 1993-12-21 Hoechst Celanese Corporation Process for purifying 2-(4-isobutylphenyl)-propionic acid by vacuum distillation
US5166418A (en) * 1990-06-04 1992-11-24 Hoechst Celanese Corporation Method for producing ibuprofen

Similar Documents

Publication Publication Date Title
JP3320728B2 (en) Polymer carbonylation catalyst system
EP0497521A2 (en) Removal of carbonyl impurities from a carbonylation process stream
US20130079515A1 (en) Complexes of Ruthenium, Method of Production Thereof And Use Thereof As (Pre)Catalysts of the Metathesis Reaction
JPS60120837A (en) Manufacture of carboxylic acid ester of ethylene glycol
JPS5923858B2 (en) How to obtain rhodium complexes
US3446591A (en) Preparation of trimeric ruthenium tetracarbonyl
JP4048076B2 (en) Decomposition method of Michael adduct
US4843172A (en) Process for preparing α-phenylpropionic acid derivative
US4950629A (en) Process for catalyst recovery
KR970002901B1 (en) Method for stabilizing rhodium compound
JPS62242641A (en) Production of alpha-phenylpropionic acid derivative
JP3885497B2 (en) Method for producing 1,2,4-butanetriol
JP2510785B2 (en) Octa-2,7-diene-1-ol production method
JPS63162653A (en) Production of alpha-phenylpropionic acid derivative
JPS62263140A (en) Production of alpha-phenylpropionic acid derivative
US4355173A (en) Process for the preparation of alkyl carboxylate
US3803212A (en) Mono-(beta-acetoxyethyl) terephthalate and process
JP3269938B2 (en) Method for separating and purifying m-ethylphenol
JPH0446936B2 (en)
JPS63162654A (en) Production of alpha-phenylpropionic acid derivative
CA1272488A (en) Production of acetate esters from alcohols using rhodium complex catalysts
JPH0653705B2 (en) Method for producing α-phenylpropionic acid
JPS584690B2 (en) Olefin hydroformylation method
JPH0248544A (en) Production of alpha-phenylpropionic acid derivative
JPS626532B2 (en)