JPH0248544A - Production of alpha-phenylpropionic acid derivative - Google Patents

Production of alpha-phenylpropionic acid derivative

Info

Publication number
JPH0248544A
JPH0248544A JP63198489A JP19848988A JPH0248544A JP H0248544 A JPH0248544 A JP H0248544A JP 63198489 A JP63198489 A JP 63198489A JP 19848988 A JP19848988 A JP 19848988A JP H0248544 A JPH0248544 A JP H0248544A
Authority
JP
Japan
Prior art keywords
alpha
phenylpropionic acid
acid derivative
reaction
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63198489A
Other languages
Japanese (ja)
Inventor
Kiyuuichi Ooyama
大山 求一
Kazuhiko Saeki
和彦 佐伯
Takashi Ueno
貴史 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP63198489A priority Critical patent/JPH0248544A/en
Publication of JPH0248544A publication Critical patent/JPH0248544A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To readily obtain the subject compounds as a medicine having pharmacological actions such as analgesic action, antiphlogistic action and alleviation of fever in high yield with industrial advantage by reacting an alpha-phenylethyl alcohol derivative with CO in the presence of a catalyst using a specified solvent. CONSTITUTION:An alpha-phenylethyl alcohol derivative of formula I (R is H, alkyl, alkenyl or aryl) is reacted with CO in the presence of a catalyst such as rhodium iodide in a mixture solvent of a hydrocarbon such as hexane and alpha- phenylpropionic acid derivative, preferably at 60-100 deg.C, preferably under ordinary pressure-100kg/cm<2> CO to obtain the objective compound of formula II. As the mixture ratio of the above-mentioned solvents, for example the weight ratio of the alpha-phenylpropionic acid derivative/hexane is (1/30)-(1/8). The alpha- phenylpropionic acid derivative used as the solvent may be different from the objective compound obtained as the reaction product but the same compound as the reaction product is better considering purification, etc., after the reaction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、α−7エニルプロピオン酸訪導体の工業的製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an industrial method for producing an α-7 enylpropionic acid visiting conductor.

α−フェニルゾロピオン酸誘導体は、鎮痛、消炎、解熱
等の薬理作用を有し、医薬品として有用である。
α-Phenylzolopionic acid derivatives have pharmacological effects such as analgesia, anti-inflammatory, and antipyretic properties, and are useful as pharmaceuticals.

〔従来の技術及び発明が解決しようとする課題〕α−フ
エエルグロピオン酸誘導体の製造法については、近年数
多くの合成経路が提示されているが、何れも、反応工程
が長い、高価である、あるいは有毒な試薬を使用するな
ど工業的に満足すべきものではなかった。
[Prior art and problems to be solved by the invention] Many synthetic routes have been proposed in recent years for the production of α-pheergropionic acid derivatives, but all of them require long reaction steps, are expensive, and In addition, the process was not industrially satisfactory due to the use of toxic reagents.

そこで、本出願人は先に、上記の欠点を克服すべく研究
を重ねた結果、α−フェニルエチルアルコール誘導体を
ロノウム触媒とヨウ素化合物の存在下に一酸化炭素と反
応させることにより、α−フェニルゾロピオン酸誘導体
を好収率で得る工業的に有利な方法を見出し、特許出願
した。(特開昭62−242642) 本出願人は上記発明にいたる研究に際して、反応溶媒と
して炭化水素と含酸素化合物との混合物が有効であると
して特許出願した。(特開昭62−263140)Lか
し、まだ十分満足できる収率を達成することができなか
った。
Therefore, as a result of repeated research in order to overcome the above-mentioned drawbacks, the applicant of the present invention discovered that α-phenylethyl alcohol derivatives were reacted with carbon monoxide in the presence of a ronium catalyst and an iodine compound. He discovered an industrially advantageous method for obtaining zolopionic acid derivatives in good yields and filed a patent application. (Japanese Unexamined Patent Publication No. 62-242642) During the research leading to the above invention, the present applicant filed a patent application claiming that a mixture of a hydrocarbon and an oxygen-containing compound is effective as a reaction solvent. (JP-A-62-263140) However, a sufficiently satisfactory yield could not yet be achieved.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は前記の反応溶媒について更に検討し次結果、
意外にも、炭化水素とα−フェニル!ロピオン酸誘導体
ki媒として反応に使用することにより、炭化水素にα
−フェニルプロピオン酸誘導体以外の含酸素化合物とを
混合した溶媒より太幅にα−フェニルプロピオン酸誘導
体の収率が向上することを見出し、本発明の完成に至っ
たものである。
The inventor further studied the above reaction solvent and found the following results:
Surprisingly, hydrocarbons and α-phenyl! By using ropionic acid derivatives as ki medium in the reaction, α
It has been found that the yield of α-phenylpropionic acid derivatives is significantly improved compared to a solvent mixed with an oxygen-containing compound other than -phenylpropionic acid derivatives, and the present invention has been completed.

即ち、本発明は、 (式中、Rは水素、アルキル基、アルケニル基、又はア
リール基を表す〕 で示されるα−フェニルエチルアルコール誘導体を、炭
化水素とα−フェニルプロピオン酸誘導体とを混合した
溶媒中において、触媒の存在下に一酸化炭素と反応させ
ることを特徴とする一形式で示されるα−7エニルゾロ
ビオン峻訪導体の製造法に係わるものである。
That is, the present invention provides an α-phenylethyl alcohol derivative represented by (wherein R represents hydrogen, an alkyl group, an alkenyl group, or an aryl group) mixed with a hydrocarbon and an α-phenylpropionic acid derivative. The present invention relates to a method for producing an α-7 enylzolobion radical conductor, which is characterized in that it is reacted with carbon monoxide in a solvent in the presence of a catalyst.

以下、本発明を具体的に説明する。The present invention will be explained in detail below.

(1)原料アルコール で示される原料となるα−フェニルエチルアルコール誘
導体において、置換基Rは水素、アルキル基、アルケニ
ル基、又はアリール基を表す。アルキル基、アルケニル
基としては、鎖状、分枝状あるいは環状のもの、例えば
メチル基、エチル基、グロビル基、インブチル基、イン
プレニル基、シクロヘキシル基等が挙げられる。アリー
ル基としては、例えばフェニル基、トリル基、キシリル
基、ナフチル基等が挙げられる。
(1) In the α-phenylethyl alcohol derivative serving as a raw material represented by raw material alcohol, the substituent R represents hydrogen, an alkyl group, an alkenyl group, or an aryl group. Examples of the alkyl group and alkenyl group include chain, branched, or cyclic groups, such as methyl group, ethyl group, globyl group, inbutyl group, imprenyl group, and cyclohexyl group. Examples of the aryl group include phenyl group, tolyl group, xylyl group, and naphthyl group.

(2)   溶  媒 本発明は、反応溶媒として炭化水素とα−フェニルプロ
ピオン酸誘導体との混合物を用いることにその特徴があ
る。炭化水素としては、反応条件下で液体として存在し
得るものであればいずれも使用可能で、例えば、被ンタ
ン、ヘキサン、シクロヘキサン等の脂肪族炭化水素類、
ベンゼン、トルエン、キシレン等の芳香族炭化水素類、
及びそれらの混合物が通常用いられる。炭化水素とα−
フェニルプロピオン酸誘導体との最適な混合比は、用い
られる両者の化合物の拙類により大きく異なるが、ヘキ
サンとα−フェニルプロピオン酸誘導体との混合物での
例を挙げれば、α−7エニルゾロピオン酸誘導体/ヘキ
サンの重量比で1/3o〜1/8で好ましくは、171
0〜l/16程度が良い結果を与える。
(2) Solvent The present invention is characterized by using a mixture of a hydrocarbon and an α-phenylpropionic acid derivative as a reaction solvent. Any hydrocarbon can be used as long as it can exist as a liquid under the reaction conditions; for example, aliphatic hydrocarbons such as ethane, hexane, and cyclohexane;
Aromatic hydrocarbons such as benzene, toluene, xylene,
and mixtures thereof are commonly used. Hydrocarbons and α−
The optimal mixing ratio with the phenylpropionic acid derivative varies greatly depending on the type of both compounds used, but to give an example of a mixture of hexane and α-phenylpropionic acid derivative, α-7enylzolopionic acid derivative/α-7enylzolopionic acid derivative/ The weight ratio of hexane is 1/3 to 1/8, preferably 171
A value of about 0 to 1/16 gives good results.

溶媒として用いるα−フェニルプロピオン酸誘導体と製
品として得るα−フェニルプロピオン酸誘導体は違うも
のでも良いが、反応後の精製等を考えると同じ物が良い
Although the α-phenylpropionic acid derivative used as a solvent and the α-phenylpropionic acid derivative obtained as a product may be different, they are preferably the same in consideration of purification after the reaction.

また、上記混合溶媒中における、原料アルコールの濃度
としては、通常1〜50Tii%程度が好ましい。
Further, the concentration of the raw material alcohol in the mixed solvent is usually preferably about 1 to 50%.

(3)触媒 本発明は、触媒として遷移金属化合物及び必要に応じて
助触媒の存在下で実施される。遷移金属化合物中の金属
としては、ロノウム、ノ!ラジウム、コバルト、ニッケ
ル等が挙げられ、助触媒としては、ハロゲノ族原子、三
価の燐化合物等が挙げられる。就中、本発明においては
、遷移金属化合物としてロジウム化合物、助触媒として
ヨウ素の組み合わせが好ましい結果を与える。具体的に
は、ロジウム化合物としては、ハロゲン化ロジウム、ロ
ジウムカルボニル、酢酸ロジウム等が、ヨウ素助触媒と
しては、Ia e HI eヨウ化アルキル等のヨウ素
化合物が一般的に用いられる。またロジウム化合物とし
てヨウ化ロジウムを用いる場合は、助触媒としてヨウ素
化合物を必ずしも追加する必要はない。
(3) Catalyst The present invention is carried out in the presence of a transition metal compound as a catalyst and, if necessary, a co-catalyst. Metals in transition metal compounds include ronium, no! Examples include radium, cobalt, nickel, etc., and examples of cocatalysts include halogeno group atoms, trivalent phosphorus compounds, etc. In particular, in the present invention, a combination of a rhodium compound as the transition metal compound and iodine as the co-catalyst gives preferable results. Specifically, as the rhodium compound, rhodium halide, rhodium carbonyl, rhodium acetate, etc. are generally used, and as the iodine promoter, iodine compounds such as Ia e HI e alkyl iodide are generally used. Further, when rhodium iodide is used as the rhodium compound, it is not necessarily necessary to add an iodine compound as a promoter.

(4)−酸化炭素 一酸化炭素は、純粋なもの、またはこれに窒素等の不活
性がス、あるいは水素を含むものが使用可能である0反
応圧力は、常圧でも高圧でも反応は進行するが、反応速
度及び経済的な面からは、常圧〜100 Kg/cm2
が好ましい。また水素を含む場合、その分圧が常圧〜5
Kg/α2程度であれば、遷移金属化合物の溶解を助け
る意味でむしろ好ましいが、それ以上の高圧の場合、水
素化副生物を増加させ不利である。
(4) - Carbon oxide Carbon monoxide can be pure, or it can contain an inert gas such as nitrogen, or hydrogen.The reaction proceeds at zero reaction pressure, whether it is normal pressure or high pressure. However, from the viewpoint of reaction rate and economy, normal pressure to 100 Kg/cm2
is preferred. In addition, when hydrogen is included, its partial pressure is between normal pressure and 5.
A pressure of about Kg/α2 is rather preferable in the sense that it helps dissolve the transition metal compound, but higher pressures are disadvantageous because they increase hydrogenation by-products.

(5)  反応温度 反応温度は通常30℃〜130℃であるが、経済的な面
及び副反応抑制の面から60℃〜100℃が好ましい。
(5) Reaction temperature The reaction temperature is usually 30°C to 130°C, but preferably 60°C to 100°C from the economical and side reaction viewpoints.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に具体的に説明するが
、本発明はこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 ハステロイ製、容t3Jのオートクレーブにα−(4−
インブチルフェニル〕エチルアルコール1605’ (
0,899mot) Eつ化ロジウム15.0? (0
,031mot)、及び溶媒としてα−(4一イソブチ
ルフエニル〕グロピオンwsoy、ヘキサン637.5
Pを入れ、−酸化炭素圧力16 Ky/暦、反応温度7
5℃で反応させたところ、反応開始後18時間でガス吸
収が止まり反応が終了した。冷却後、反応液を取り出し
、ガスクロマトグラムで分析した。その結果α−(4−
インブチルフェニル)fロビオン酸157.4Pを得た
。収率85チ比較例1 実施例1で溶媒をヘキサン7151酢酸60Pの混合溶
媒を用いて反応した場合収率は、75%であった。
Example 1 α-(4-
imbutylphenyl]ethyl alcohol 1605' (
0,899mot) Rhodium chloride 15.0? (0
, 031mot), and α-(4-isobutylphenyl)gropion wsoy, hexane 637.5 as a solvent.
Add P, -carbon oxide pressure 16 Ky/calendar, reaction temperature 7
When the reaction was carried out at 5°C, gas absorption stopped and the reaction was completed 18 hours after the start of the reaction. After cooling, the reaction solution was taken out and analyzed by gas chromatography. As a result α−(4−
(butylphenyl) f-robionic acid 157.4P was obtained. Yield: 85% Comparative Example 1 When the reaction was carried out in Example 1 using a mixed solvent of 7151 hexane and 60P acetic acid, the yield was 75%.

実施例2 実施例1と同様な方法で反応温度を85℃にして反応さ
せたところ、反応開始後13時間でガス吸収が止まり反
応が終了した。冷却後、反応液を取り出し、ガスクロマ
トグラムで分析した。その結果α−(4−インブチルフ
ェニル〕グロピオンrf1142.65”e得た。収率
77%比較例2 実施例2の反応を溶媒をヘキサン7157、酢酸605
’の混合溶媒を用いて反応した場合、収率は70チであ
った。
Example 2 When the reaction was carried out in the same manner as in Example 1 at a reaction temperature of 85°C, gas absorption stopped and the reaction was completed 13 hours after the start of the reaction. After cooling, the reaction solution was taken out and analyzed by gas chromatography. As a result, α-(4-inbutylphenyl)gropion rf1142.65"e was obtained. Yield 77% Comparative Example 2 The reaction of Example 2 was carried out using hexane 7157 and acetic acid 605 as the solvent.
When the reaction was carried out using a mixed solvent of ', the yield was 70%.

比較例3 実施例1の反応を溶媒をヘキサン7751の単独溶媒で
反応した場合、収率は、52%であった。
Comparative Example 3 When the reaction of Example 1 was carried out using hexane 7751 as the sole solvent, the yield was 52%.

この結果より反応途中で生成してくるα−(4−インプ
チルフエニル)−グロピオン酸では、収率向上に有効で
ないことがわかった。
From this result, it was found that α-(4-impltylphenyl)-gropionic acid produced during the reaction is not effective in improving the yield.

〔発明の効果〕〔Effect of the invention〕

上記実施例からも明らかなように、本発明の製造法によ
ると特定の溶媒を用いるだけで、大幅にα−フェニルプ
ロピオン酸誘導体の収率を向上させることができる。
As is clear from the above examples, according to the production method of the present invention, the yield of α-phenylpropionic acid derivatives can be significantly improved simply by using a specific solvent.

Claims (1)

【特許請求の範囲】 一般式▲数式、化学式、表等があります▼ (式中、Rは水素、アルキル基、アルケニル基、又はア
リール基を表す) で示されるα−フェニルエチルアルコール誘導体を、炭
化水素とα−フェニルプロピオン酸誘導体とを混合した
溶媒中において、触媒の存在下に一酸化炭素と反応させ
ることを特徴とする一般式▲数式、化学式、表等があり
ます▼(式中Rは前記と同意義) で示されるα−フェニルプロピオン酸誘導体の製造法。
[Claims] An α-phenylethyl alcohol derivative represented by the general formula ▲ includes numerical formulas, chemical formulas, tables, etc. ▼ (in the formula, R represents hydrogen, an alkyl group, an alkenyl group, or an aryl group), There are general formulas that are characterized by reacting with carbon monoxide in the presence of a catalyst in a mixed solvent of hydrogen and an α-phenylpropionic acid derivative. There are mathematical formulas, chemical formulas, tables, etc. (in the formula, R is the A method for producing an α-phenylpropionic acid derivative represented by
JP63198489A 1988-08-09 1988-08-09 Production of alpha-phenylpropionic acid derivative Pending JPH0248544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198489A JPH0248544A (en) 1988-08-09 1988-08-09 Production of alpha-phenylpropionic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198489A JPH0248544A (en) 1988-08-09 1988-08-09 Production of alpha-phenylpropionic acid derivative

Publications (1)

Publication Number Publication Date
JPH0248544A true JPH0248544A (en) 1990-02-19

Family

ID=16391968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198489A Pending JPH0248544A (en) 1988-08-09 1988-08-09 Production of alpha-phenylpropionic acid derivative

Country Status (1)

Country Link
JP (1) JPH0248544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285229A (en) * 1988-09-22 1990-03-26 Mitsubishi Gas Chem Co Inc Production of alpha-(4-isobutylphenyl) propionic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285229A (en) * 1988-09-22 1990-03-26 Mitsubishi Gas Chem Co Inc Production of alpha-(4-isobutylphenyl) propionic acid

Similar Documents

Publication Publication Date Title
JPS60500282A (en) Leaching-resistant catalyst useful for dimerization of acrylic compounds
JPH0248544A (en) Production of alpha-phenylpropionic acid derivative
JPS63159341A (en) Production of alpha-phenylpropionic acid derivative
JPS62263140A (en) Production of alpha-phenylpropionic acid derivative
JPS6035347B2 (en) Synthesis method of α-tocopherol
Fan et al. Rhodium catalyzed asymmetric Pauson-Khand reaction using SDP ligands
JPH0557250B2 (en)
JPH01233255A (en) Cyclopentenone derivative and production thereof
JP3691235B2 (en) Process for producing optically active piperidines
JPS6038343A (en) Production of phenylacetic acid derivative
JPS60158124A (en) Manufacture of 1,4-butanediol
JPS6137753A (en) Method of oxidizing cinnamic aldehyde
Klingler et al. Catalytic methanol synthesis from carbon monoxide and water
JPS5944303B2 (en) Production method of α-ketoacids
JPH0285229A (en) Production of alpha-(4-isobutylphenyl) propionic acid
JP3292559B2 (en) Method for producing catechol derivative
JPS6157532A (en) Manufacture of phenylacetic acid and derivatives of same by catalytic rearrangement of benzyl formate and derivatives ofsame
JPS62242641A (en) Production of alpha-phenylpropionic acid derivative
JPS59157053A (en) Manufacture of ester
JPS5944304B2 (en) Method for producing α-ketoamides
JPS6314698B2 (en)
JPS588382B2 (en) Amino Sanno Seizouhou
JPH0386840A (en) Production of alpha,beta-unsaturated carbonyl compound
JPH09309887A (en) Samarium complex
Kubota et al. CH bond cleavage in alkenyl carboxylates promoted by methylcopper complexes and formation of six-membered acetoxyvinylcopper chelates