JPS62261934A - 電気化学的に温度を測定する温度センサ - Google Patents
電気化学的に温度を測定する温度センサInfo
- Publication number
- JPS62261934A JPS62261934A JP10344787A JP10344787A JPS62261934A JP S62261934 A JPS62261934 A JP S62261934A JP 10344787 A JP10344787 A JP 10344787A JP 10344787 A JP10344787 A JP 10344787A JP S62261934 A JPS62261934 A JP S62261934A
- Authority
- JP
- Japan
- Prior art keywords
- temperature sensor
- sensor according
- temperature
- electrolyte
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003792 electrolyte Substances 0.000 claims description 37
- 239000000126 substance Substances 0.000 claims description 12
- 230000001419 dependent effect Effects 0.000 claims description 11
- 239000007784 solid electrolyte Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 4
- 238000004377 microelectronic Methods 0.000 claims description 4
- 239000011253 protective coating Substances 0.000 claims description 4
- 239000010408 film Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 239000010416 ion conductor Substances 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 5
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- -1 5 or α-Agl Substances 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052979 sodium sulfide Inorganic materials 0.000 description 3
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000036647 reaction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910019017 PtRh Inorganic materials 0.000 description 1
- KFVBMBOOLFSJHV-UHFFFAOYSA-K aluminum;sodium;hexane-1,2,3,4,5,6-hexol;carbonate;hydroxide Chemical compound [OH-].[Na+].[Al+3].[O-]C([O-])=O.OCC(O)C(O)C(O)C(O)CO KFVBMBOOLFSJHV-UHFFFAOYSA-K 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- XMFOQHDPRMAJNU-UHFFFAOYSA-N lead(II,IV) oxide Inorganic materials O1[Pb]O[Pb]11O[Pb]O1 XMFOQHDPRMAJNU-UHFFFAOYSA-N 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/26—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being an electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Thermistors And Varistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
産業上の利用分野:
本発明は電気化学的に温度を測定する温度測定器(温度
センサ)に関する。
センサ)に関する。
従来の技術:
科学および技術にきわめて重要な意義を有する温度測定
のため多数の方法が公知である。この場合とくにセンサ
のミニチュア化およびたとえば制御および調節目的のた
めまたはロボット技術で得られた信号を直接評価しうる
ように電気的信号を表示する方法はとくに関心がもたれ
る。現在そのために主として熱電対が使用される。熱電
対による温度測定の基礎は2つの異なる金属導体間の温
度に依存する電位変化である。この方法の重要な欠点は
測定信号のレベルが非常に低いことでありたとえばPt
/ PtRh系で僅か0 、 OI IV/’Kまたは
NiCr/Ni系で0.04mV/’にであり、かつ参
照点たとえば氷水または温度依存抵抗の必要性および異
なる金属導体からなる導線による導出の必要性にある。
のため多数の方法が公知である。この場合とくにセンサ
のミニチュア化およびたとえば制御および調節目的のた
めまたはロボット技術で得られた信号を直接評価しうる
ように電気的信号を表示する方法はとくに関心がもたれ
る。現在そのために主として熱電対が使用される。熱電
対による温度測定の基礎は2つの異なる金属導体間の温
度に依存する電位変化である。この方法の重要な欠点は
測定信号のレベルが非常に低いことでありたとえばPt
/ PtRh系で僅か0 、 OI IV/’Kまたは
NiCr/Ni系で0.04mV/’にであり、かつ参
照点たとえば氷水または温度依存抵抗の必要性および異
なる金属導体からなる導線による導出の必要性にある。
とくに後者によりたとえば温度勾配のある容器壁を通し
て引出す際、技術的理由から引出のため付加的熱電対を
有する他の材料へ移行しなければならない場合、困難が
生ずる。熱電対は熱電対の正確な化学組成にも著しく関
係するので、精密測定にはそれぞれ較正測定を実施する
ことが必要である。熱電対はさらに測定する温度を考慮
してその使用が制限され、かつ電圧の温度による変化は
直線的でない (したがって複雑な数値的近似法が必要
である。)。
て引出す際、技術的理由から引出のため付加的熱電対を
有する他の材料へ移行しなければならない場合、困難が
生ずる。熱電対は熱電対の正確な化学組成にも著しく関
係するので、精密測定にはそれぞれ較正測定を実施する
ことが必要である。熱電対はさらに測定する温度を考慮
してその使用が制限され、かつ電圧の温度による変化は
直線的でない (したがって複雑な数値的近似法が必要
である。)。
西独公開特許公報第2750049号から高温にさらさ
れる回路素子を有する高温測定−1制御−または調節回
路が公知であり、この場合この回路素子は固体電解質で
あり、その伝導度の温度依存性が温度の測定、制御また
は調節に利用される。
れる回路素子を有する高温測定−1制御−または調節回
路が公知であり、この場合この回路素子は固体電解質で
あり、その伝導度の温度依存性が温度の測定、制御また
は調節に利用される。
しかしイオン伝導性は半導体の電子伝導性と同様子くは
不純物(ドーピング)、製法ならびに粒界および電極の
抵抗に依存する。
不純物(ドーピング)、製法ならびに粒界および電極の
抵抗に依存する。
W、 T、 LindsayおよびR,J、Rukaに
よりElectrochemica Acta l 3
(1968) 1867ペーノに固体電解質を有す
る高温酸素濃淡電池が記載され、このセルは銀、金およ
びパラジウムの融点のような高い固定点温度を熱力学的
温度スケールで決定するために役立つ。固体電解質の両
側に、温度と無関係に種々の値へ一定に保持された酸素
分圧を有するガスがあらかじめ供給される。ネルンスト
の式に絶対温度Tが現れろことが利用される: [ここにRはガス定数、Fはファラデ一定数、P02′
およびPo2”は固体電解質両側の酸素分圧を表わす。
よりElectrochemica Acta l 3
(1968) 1867ペーノに固体電解質を有す
る高温酸素濃淡電池が記載され、このセルは銀、金およ
びパラジウムの融点のような高い固定点温度を熱力学的
温度スケールで決定するために役立つ。固体電解質の両
側に、温度と無関係に種々の値へ一定に保持された酸素
分圧を有するガスがあらかじめ供給される。ネルンスト
の式に絶対温度Tが現れろことが利用される: [ここにRはガス定数、Fはファラデ一定数、P02′
およびPo2”は固体電解質両側の酸素分圧を表わす。
]。対数値の温度依存性は使用されない。このような温
度センサは複雑な構造したがって非常に故障しやすいか
さ張るガス電極の使用を必要とし、測定装置のミニチュ
ア化は不可能である。もう1つの欠点は非常に低い感度
であり、温度による電圧変化は約0.03忍V/”Kに
過ぎない。
度センサは複雑な構造したがって非常に故障しやすいか
さ張るガス電極の使用を必要とし、測定装置のミニチュ
ア化は不可能である。もう1つの欠点は非常に低い感度
であり、温度による電圧変化は約0.03忍V/”Kに
過ぎない。
発明が解決しようとする問題点:
本発明の目的はとくに熱電対使用に伴って現れろ前記欠
点を避けることができ、がっミニチュア化した形すなわ
ちきわめて小さい寸法でも工業的に簡単に製造可能であ
り、良好な結果が得られる温度センサを得ることである
。
点を避けることができ、がっミニチュア化した形すなわ
ちきわめて小さい寸法でも工業的に簡単に製造可能であ
り、良好な結果が得られる温度センサを得ることである
。
問題点を解決するための手段:
この目的は本発明によって解決される。
本発明の対象は温度依存素子として2つの不同の電極お
よび1つの電解質からなる電池を含み、この電池の温度
依存起電力を測定する測定装置を有することを特徴とす
る電気化学的に温度を測定する温度センサである。この
温度センサの有利な態様は特許請求の範囲第2〜15項
に記載される。
よび1つの電解質からなる電池を含み、この電池の温度
依存起電力を測定する測定装置を有することを特徴とす
る電気化学的に温度を測定する温度センサである。この
温度センサの有利な態様は特許請求の範囲第2〜15項
に記載される。
作用;
温度依存素子として電池を使用することによって本発明
の温度センサはその完全な出力および使用性を保持しな
がら徹底的にミニチュア化することができる。というの
は起電力 (セル電圧)は電池(セル)の大きさおよび
形状に依存しないからである。一定温度にある電池のと
くに電圧測定器たとえばボルトメータまたは工し/クト
口メータである測定装置への導出線は一般に同じ材料か
らなる。しかし導線に異なる材料を使用することによっ
て熱電圧が発生する場合でも、これは電池の電圧に比し
て一般に無視可能に小さく、それゆえ多くの場合考慮す
る必要がない。一定の電極/電解質系に対して較正を実
施した後、個々のセルをさらに較正することは一般にも
はや必要でない。というのは電池に発生する電圧は一般
に熱電圧より著しく少ししか材料性質に依存せず、それ
ゆえ材料性質たとえば不純物の影響はほぼ無視しうるか
らである液体電解質および(または)電極も適するけれ
ど、実地の理由からとくにミニチュア化も考慮して、電
解質としては固体電解質および(または)電極として固
体もしくは一部固体の電極がとくに有利に使用される。
の温度センサはその完全な出力および使用性を保持しな
がら徹底的にミニチュア化することができる。というの
は起電力 (セル電圧)は電池(セル)の大きさおよび
形状に依存しないからである。一定温度にある電池のと
くに電圧測定器たとえばボルトメータまたは工し/クト
口メータである測定装置への導出線は一般に同じ材料か
らなる。しかし導線に異なる材料を使用することによっ
て熱電圧が発生する場合でも、これは電池の電圧に比し
て一般に無視可能に小さく、それゆえ多くの場合考慮す
る必要がない。一定の電極/電解質系に対して較正を実
施した後、個々のセルをさらに較正することは一般にも
はや必要でない。というのは電池に発生する電圧は一般
に熱電圧より著しく少ししか材料性質に依存せず、それ
ゆえ材料性質たとえば不純物の影響はほぼ無視しうるか
らである液体電解質および(または)電極も適するけれ
ど、実地の理由からとくにミニチュア化も考慮して、電
解質としては固体電解質および(または)電極として固
体もしくは一部固体の電極がとくに有利に使用される。
それゆえ@池は有利に固体電池である。
本発明の温度センサのとくに有利な実施例によれば温度
依存素子として固体電解質が2つの不同の電極と接触し
ている電池が使用され、この電池はそれぞれ所定の温度
および所定の全圧で、電解質中で変換したイオン種の正
確に一定の化学ボテンンアルを有し、その化学ポテンシ
アルはそれゆえ所定温度および所定圧力でその組成とほ
ぼ無関係である。このような条件はたとえば1つの電極
に化学ポテンシアルの調節にあずかるn個の活性成分が
存在する際、ギブスの相律によりn個の相が熱力学的平
衡で存在する場合に充足される。nはこの場合1〜5と
くに1〜3の整数である。電極はたとえば電解質中で変
換しうる成分のみたとえば銅、2成分を有する2相混合
物たとえばCub/ Cu2O,3成分を有する3相混
合物たとえばGeO2/Cu2O/CuGeO3等から
なることができる。付加的に不純物および不活性化学種
として隣接相と交換せず、したがって化学ポテンシアル
の調節にあずからない他の成分を含むことができろ。と
くに変換した成分の化学ボテンンアルの温度依存性がで
きるだけ異なる電極の組合わせが使用される。
依存素子として固体電解質が2つの不同の電極と接触し
ている電池が使用され、この電池はそれぞれ所定の温度
および所定の全圧で、電解質中で変換したイオン種の正
確に一定の化学ボテンンアルを有し、その化学ポテンシ
アルはそれゆえ所定温度および所定圧力でその組成とほ
ぼ無関係である。このような条件はたとえば1つの電極
に化学ポテンシアルの調節にあずかるn個の活性成分が
存在する際、ギブスの相律によりn個の相が熱力学的平
衡で存在する場合に充足される。nはこの場合1〜5と
くに1〜3の整数である。電極はたとえば電解質中で変
換しうる成分のみたとえば銅、2成分を有する2相混合
物たとえばCub/ Cu2O,3成分を有する3相混
合物たとえばGeO2/Cu2O/CuGeO3等から
なることができる。付加的に不純物および不活性化学種
として隣接相と交換せず、したがって化学ポテンシアル
の調節にあずからない他の成分を含むことができろ。と
くに変換した成分の化学ボテンンアルの温度依存性がで
きるだけ異なる電極の組合わせが使用される。
2つの電極の間に発生する電圧Eには種へのZ 価に帯
電したイオンの変換の隔成。
電したイオンの変換の隔成。
E(T)−[μ′(T)−μ=A(T)]zq
A か適用され、ここにμ′およびμ#Aは2つの異なる電
極に関し、qは素電荷(化学ポテンシアルが粒子に関す
る場合)またはファラデ一定数(化学ポテンシアルがモ
ルに関する場合)である。変換した成分の化学ポテンン
アルμはlイオンまたは1モルイオン1z+の (見掛
の)通過の際、ギブスのエネルギー変化ΔGと次の関係
にある: E(T) =□ΔG(T) q すなわちセル反応進行の際遊離するまたは必要な化学エ
ネルギーは得られたまたは所要の電気エネルギーと等価
である。セル反応のギブスエネルギーの変化は一般に温
度依存性なので、セル電圧は温度の函数である。
A か適用され、ここにμ′およびμ#Aは2つの異なる電
極に関し、qは素電荷(化学ポテンシアルが粒子に関す
る場合)またはファラデ一定数(化学ポテンシアルがモ
ルに関する場合)である。変換した成分の化学ポテンン
アルμはlイオンまたは1モルイオン1z+の (見掛
の)通過の際、ギブスのエネルギー変化ΔGと次の関係
にある: E(T) =□ΔG(T) q すなわちセル反応進行の際遊離するまたは必要な化学エ
ネルギーは得られたまたは所要の電気エネルギーと等価
である。セル反応のギブスエネルギーの変化は一般に温
度依存性なので、セル電圧は温度の函数である。
本発明による電池の使用によって、温度測定は十分に一
定な再現可能の熱力学データに帰せられる。たとえば電
圧測定装置によって測定しうるセル電圧と温度の関係を
決定するため、それゆえ熱力学データが十分正確に既知
である場合、この熱力学データを使用することができ、
または特殊な系に対して較正測定を実施し、これを次の
系から形成したすべてのセルに適用することができる。
定な再現可能の熱力学データに帰せられる。たとえば電
圧測定装置によって測定しうるセル電圧と温度の関係を
決定するため、それゆえ熱力学データが十分正確に既知
である場合、この熱力学データを使用することができ、
または特殊な系に対して較正測定を実施し、これを次の
系から形成したすべてのセルに適用することができる。
セル電圧の単位温度当たりの変化は選択した1組の電極
、とくに電極に依存する化合物の生成エンタルピーに依
存する。できるだけ高い感度を達成するため、それゆえ
できるだけ異なる生成エンタルピーを有する電極が有利
に使用される。生成エンタルピーは広い温度範囲にわた
ってほぼ一定なので、セル電圧の温度による変化は高精
度をもって直線的である。しかし使用する系に応じて、
とくに電極の1つに温度の変化によって相変換が発生し
、または新たな相平衡が生ずる場合、変化が生ずる。こ
のような場合セル電圧の温度依存性はそれぞれ良好な精
度をもって直線である2つの曲線から合成される。それ
ゆえ熱電対の場合のような温度の函数としての測定信号
の曲線の形の複雑な説明は本発明の温度センサでは不用
である電解質および電極として一般にそれぞれの使用条
件(測定する温度範囲、圧力、温度センサの大きさおよ
び形状等)のちとに適当なすべての電解質および電極を
使用することができる。
、とくに電極に依存する化合物の生成エンタルピーに依
存する。できるだけ高い感度を達成するため、それゆえ
できるだけ異なる生成エンタルピーを有する電極が有利
に使用される。生成エンタルピーは広い温度範囲にわた
ってほぼ一定なので、セル電圧の温度による変化は高精
度をもって直線的である。しかし使用する系に応じて、
とくに電極の1つに温度の変化によって相変換が発生し
、または新たな相平衡が生ずる場合、変化が生ずる。こ
のような場合セル電圧の温度依存性はそれぞれ良好な精
度をもって直線である2つの曲線から合成される。それ
ゆえ熱電対の場合のような温度の函数としての測定信号
の曲線の形の複雑な説明は本発明の温度センサでは不用
である電解質および電極として一般にそれぞれの使用条
件(測定する温度範囲、圧力、温度センサの大きさおよ
び形状等)のちとに適当なすべての電解質および電極を
使用することができる。
電解質としては主としてイオン伝導性であることだけが
必要であり、その際伝導度の大きさは電圧測定装置の初
期抵抗に依存する最低値を超えている限り重要性はない
。固体電解質としてはたとえばとくに次のものが挙げら
れる:最高温用にはO−イオン伝導体としてコランダム
系セラミックおよび立方晶に安定化したZrO2;室温
と数100″Cの間の範囲用にはたとえば八g4Rb1
5またはα−Aglのような銀イオン伝導体、たとえば
ハロゲン化銅のような銅イオン伝導体、たとえば多数の
リチウム化合物とくにチッ化リチウムハロゲン化物また
はLi4SiO4/Li3PO4、たとえばナシコン
(NASICON)のようなナトリウムイオン伝導体、
多数の1価イオンのためのイオン伝導体としてβ−^1
2203および2価に帯電したイオンたとえばpb+十
のためのβ“−A12203が挙げられる。液体電解質
はたとえば溶融塩である。
必要であり、その際伝導度の大きさは電圧測定装置の初
期抵抗に依存する最低値を超えている限り重要性はない
。固体電解質としてはたとえばとくに次のものが挙げら
れる:最高温用にはO−イオン伝導体としてコランダム
系セラミックおよび立方晶に安定化したZrO2;室温
と数100″Cの間の範囲用にはたとえば八g4Rb1
5またはα−Aglのような銀イオン伝導体、たとえば
ハロゲン化銅のような銅イオン伝導体、たとえば多数の
リチウム化合物とくにチッ化リチウムハロゲン化物また
はLi4SiO4/Li3PO4、たとえばナシコン
(NASICON)のようなナトリウムイオン伝導体、
多数の1価イオンのためのイオン伝導体としてβ−^1
2203および2価に帯電したイオンたとえばpb+十
のためのβ“−A12203が挙げられる。液体電解質
はたとえば溶融塩である。
電池系にとくに有利に使用される電解質、電極およびそ
の組合わせの例は下記のとおりでる電解質として立方晶
に安定化したZrO2と電極としてN+/ NtOおよ
びFe2O3/ Fe3O4; Co/ Cooおよび
Fe3O4/ Fe2O3; Co/ CooおよびN
i/NiO;銅およびCub/ Cu2O、銅およびC
uS/CuS電極を有する電解質としての銅イオン伝導
体; NaS電極たとえばNa2S/NaSおよびNa
2S5/ Na52と電解質ナトリウム−β−AQ20
3 ;電解質としてのβ′−八〇203と鉛およびPb
O/ Pb+O+電極。
の組合わせの例は下記のとおりでる電解質として立方晶
に安定化したZrO2と電極としてN+/ NtOおよ
びFe2O3/ Fe3O4; Co/ Cooおよび
Fe3O4/ Fe2O3; Co/ CooおよびN
i/NiO;銅およびCub/ Cu2O、銅およびC
uS/CuS電極を有する電解質としての銅イオン伝導
体; NaS電極たとえばNa2S/NaSおよびNa
2S5/ Na52と電解質ナトリウム−β−AQ20
3 ;電解質としてのβ′−八〇203と鉛およびPb
O/ Pb+O+電極。
電池のセル電圧はその寸法に無関係なので、本発明の温
度センサによって実際的および工業的形成法によって制
限されるだけのミニチュア化が達成される。本発明によ
る小さい温度センサを形成するため、たとえば公知の薄
膜および厚膜技術を使用し、これによってたとえば電解
質および(または)電極膜を互いに上下にまたは基板上
に設置することができる。本発明の1つの実施例によれ
ば電極はたとえば電解質の異なる表面に配置され、もう
1つの実施例では同じ表面に配置される。とくに電解質
は機緘的支持要素として形成されるけれど、電解質およ
び電極は機緘的支持要素としての絶縁性または導電性基
板たとえばサファイヤ基板上にあることもできろ。本発
明のミニチュア化した実施例を製造するため、マイクロ
エレクトロニクスの製法を使用することができる。この
ように製造した温度センサはマイクロエレクトロニクス
回路に集積することができる。
度センサによって実際的および工業的形成法によって制
限されるだけのミニチュア化が達成される。本発明によ
る小さい温度センサを形成するため、たとえば公知の薄
膜および厚膜技術を使用し、これによってたとえば電解
質および(または)電極膜を互いに上下にまたは基板上
に設置することができる。本発明の1つの実施例によれ
ば電極はたとえば電解質の異なる表面に配置され、もう
1つの実施例では同じ表面に配置される。とくに電解質
は機緘的支持要素として形成されるけれど、電解質およ
び電極は機緘的支持要素としての絶縁性または導電性基
板たとえばサファイヤ基板上にあることもできろ。本発
明のミニチュア化した実施例を製造するため、マイクロ
エレクトロニクスの製法を使用することができる。この
ように製造した温度センサはマイクロエレクトロニクス
回路に集積することができる。
とくに電極および(または)電解質が使用の際の環境に
対して不活性でない場合、電池または少なくともその個
々の成分すなわち電解質および(または)電極に保護被
覆とくに絶縁または気密被覆を設けるのが適当である。
対して不活性でない場合、電池または少なくともその個
々の成分すなわち電解質および(または)電極に保護被
覆とくに絶縁または気密被覆を設けるのが適当である。
そのため電池をたとえばガラスパールへ融封し、または
たとえば蒸着らしくはスパッタリングによって保護被覆
が設けられる。電圧測定装置への導出体としては一般に
任意の種類の導体を使用することができる。
たとえば蒸着らしくはスパッタリングによって保護被覆
が設けられる。電圧測定装置への導出体としては一般に
任意の種類の導体を使用することができる。
実施例:
第1〜6図は電解質11電極2.3および導出体(4,
5)の本発明による種々の配置を横断面で示す。
5)の本発明による種々の配置を横断面で示す。
第1図では電極が電解質の相反する面に配置され、第2
図では電極は電解質の同じ面にあり、その際電解質(固
体電解質)は機械的支持要素として形成される。
図では電極は電解質の同じ面にあり、その際電解質(固
体電解質)は機械的支持要素として形成される。
第3および4図では電解質および電極が支持要素として
の基板6上にあり、第3図は電極が電解質の反対面にあ
る配置、第4図は電極が電解質の同じ面にある配置を示
す。
の基板6上にあり、第3図は電極が電解質の反対面にあ
る配置、第4図は電極が電解質の同じ面にある配置を示
す。
第5図は電池をガラスパールまたは他の適当な気密材料
7へ融封した配置を示す。第6a、bおよび0図は蒸着
またはスパッタリングによって設けうるたとえばAC2
03からなる保護層を有する実施例を示す。
7へ融封した配置を示す。第6a、bおよび0図は蒸着
またはスパッタリングによって設けうるたとえばAC2
03からなる保護層を有する実施例を示す。
本発明による温度センサによって高い温度感度をもって
直接電気信号を発する温度測定装置が得られる。一定の
参照温度を有する比較素子は必要がない。多数の適当な
イオン伝導体および電極ならびにその組合わせに基づく
広範囲の電解質−電極系を使用することができ、それに
よってそれぞれの分野に適当な系を選択することができ
る。この場合適当な系の選択はそれぞれの測定目的およ
びとくに温度範囲に依存する。電解質および電極として
高融点セラミックを使用することによって本発明の温度
センサはきわめて高温の測定にも適する。本発明の温度
センサのもう1つの利点は熱電対に比して一般に著しく
簡単な構造的形成であり、そのつとの使用目的に最適の
形成が可能になる。
直接電気信号を発する温度測定装置が得られる。一定の
参照温度を有する比較素子は必要がない。多数の適当な
イオン伝導体および電極ならびにその組合わせに基づく
広範囲の電解質−電極系を使用することができ、それに
よってそれぞれの分野に適当な系を選択することができ
る。この場合適当な系の選択はそれぞれの測定目的およ
びとくに温度範囲に依存する。電解質および電極として
高融点セラミックを使用することによって本発明の温度
センサはきわめて高温の測定にも適する。本発明の温度
センサのもう1つの利点は熱電対に比して一般に著しく
簡単な構造的形成であり、そのつとの使用目的に最適の
形成が可能になる。
一定温度で起電力の大きい変化が生ずる本発明の温度セ
ンサは常用熱電対の較正のために使用することもできる
。この変化はとくに状態図が変化し、すなわちたとえば
新しい相が形成され、または相が他の形で互いに平衡す
る温度センサに生ずる。たとえば成分の濃度を1010
℃以上で相の混合物Fe1−yO/ YFe204−X
/YFe03が存在するように選択する場合、酸素分圧
の対数は絶対温度の逆数とともに変化する。101O℃
以下で相YFe204−xはもはや安定でない。相Fe
/ YFe03/ Fe1−yOの平衡が生ずる。この
3相混合物の酸素分圧の対数の温度依存性は高温の場合
の値が著しく異なる。それゆえ酸素分圧の対数の変化に
1010℃で明らかな折点が現れる(Il、 Pie
karczyk、 W、 胃eppnerおよびA
、 Rabenauによる雑誌Naturforsc
hung 34 A (1979)430ページ参照)
。酸素イオン伝導電解質により酸素分圧を測定する場合
、101θ℃で起電力の温度依存性の明らかに目に見え
る変化が生ずる。この折点は温度制御または較正に使用
することができる。
ンサは常用熱電対の較正のために使用することもできる
。この変化はとくに状態図が変化し、すなわちたとえば
新しい相が形成され、または相が他の形で互いに平衡す
る温度センサに生ずる。たとえば成分の濃度を1010
℃以上で相の混合物Fe1−yO/ YFe204−X
/YFe03が存在するように選択する場合、酸素分圧
の対数は絶対温度の逆数とともに変化する。101O℃
以下で相YFe204−xはもはや安定でない。相Fe
/ YFe03/ Fe1−yOの平衡が生ずる。この
3相混合物の酸素分圧の対数の温度依存性は高温の場合
の値が著しく異なる。それゆえ酸素分圧の対数の変化に
1010℃で明らかな折点が現れる(Il、 Pie
karczyk、 W、 胃eppnerおよびA
、 Rabenauによる雑誌Naturforsc
hung 34 A (1979)430ページ参照)
。酸素イオン伝導電解質により酸素分圧を測定する場合
、101θ℃で起電力の温度依存性の明らかに目に見え
る変化が生ずる。この折点は温度制御または較正に使用
することができる。
以下に多数の系を例示し、これらの系の起電力の温度依
存性を第7〜14図に示す。
存性を第7〜14図に示す。
第7図はイオン伝導体として立方晶に安定化したZrO
2ならびに電極として混合物Nt/N10およびFe2
O3/Fe3O4を有する固体電池の絶対温度とセル電
圧の測定した関係を示す。電圧の温度依存性は0.24
51V/’にである。したがってこれは熱電対の場合よ
り著しく高い。
2ならびに電極として混合物Nt/N10およびFe2
O3/Fe3O4を有する固体電池の絶対温度とセル電
圧の測定した関係を示す。電圧の温度依存性は0.24
51V/’にである。したがってこれは熱電対の場合よ
り著しく高い。
第8〜14図は使用した系の熱力学データから求めた起
電力の温度依存性に関する。第8および9図は第7図で
使用した同じ電解質に対するCo+’CoOおよびFe
O/FeO電極(第8図)ならびにCo/Cooおよび
Ni/NiO電極(第9図)による温度依存性を示す。
電力の温度依存性に関する。第8および9図は第7図で
使用した同じ電解質に対するCo+’CoOおよびFe
O/FeO電極(第8図)ならびにCo/Cooおよび
Ni/NiO電極(第9図)による温度依存性を示す。
電圧の温度による変化は第1の電極組合わせの場合著し
く高い0.319mV/’にの値を有し、第2の電極組
合わせの場合変化ハ0.073 zV/@K テある。
く高い0.319mV/’にの値を有し、第2の電極組
合わせの場合変化ハ0.073 zV/@K テある。
銅およびCuO/Cu2O電極を有する銅イオン伝導体
を使用する場合、CuOおよびCシ20の形成のため第
10図に示す経過が生ずる。電圧の温度依存性はO、l
6 iV/”Kである。
を使用する場合、CuOおよびCシ20の形成のため第
10図に示す経過が生ずる。電圧の温度依存性はO、l
6 iV/”Kである。
第11図の場合元素鋼とCuS/Cu2S電極の間に銅
イオン伝導体が存在する。この場合セル電圧の著しく高
い温度依存性0.389 mV/’Kが得られる。
イオン伝導体が存在する。この場合セル電圧の著しく高
い温度依存性0.389 mV/’Kが得られる。
元素鋼の代わりにCuS/Cu2S電極は残してたとえ
ばCuO/Cu2O対極を使用することができる。この
場合第12図に示す電圧と温度の関係が得られる。傾斜
は0.229 JIV/”Kである。
ばCuO/Cu2O対極を使用することができる。この
場合第12図に示す電圧と温度の関係が得られる。傾斜
は0.229 JIV/”Kである。
ナトリウムイオン伝導体Na−β−kfho+を使用し
て異なる硫化ナトリウム (Na2S/ NaSおよび
Na2S5/ Na52)の平衡に対して第13図に示
すセル電圧Eと温度の関係が得られる。感度はこの場合
1.172mV/’K テアル。
て異なる硫化ナトリウム (Na2S/ NaSおよび
Na2S5/ Na52)の平衡に対して第13図に示
すセル電圧Eと温度の関係が得られる。感度はこの場合
1.172mV/’K テアル。
元素鉛およびPbO/ Pb3O4の混合物からなる電
極とともに鉛イオン伝導体pb++−β”−A1220
3を使用したセル電圧と温度の関係が第14図に示され
る。セル電圧の温度係数はこの場合0.115RV/”
Kである。
極とともに鉛イオン伝導体pb++−β”−A1220
3を使用したセル電圧と温度の関係が第14図に示され
る。セル電圧の温度係数はこの場合0.115RV/”
Kである。
起電力の温度依存性の実験的測定は第8〜14図に示す
直線の勾配(温度感度)に対して少し異なる結果が得ら
れろけれど、この系の基本的使用可能性は少しも変わら
ない。
直線の勾配(温度感度)に対して少し異なる結果が得ら
れろけれど、この系の基本的使用可能性は少しも変わら
ない。
第1図〜第6c図は電解質、電極および導出体の本発明
による種々の配置を示す断面図、第7図〜第14図は種
々の系の温度と起電力の関係を示す図である。 置・・電解質、2.3川電極、4.5・・・導出体、6
・・・基板、7・・・ガラスパール、8・・・保護層F
IG、I FIG、3 FIG、2 FIG、4 FIG、6b FIG、6c FIG、5
による種々の配置を示す断面図、第7図〜第14図は種
々の系の温度と起電力の関係を示す図である。 置・・電解質、2.3川電極、4.5・・・導出体、6
・・・基板、7・・・ガラスパール、8・・・保護層F
IG、I FIG、3 FIG、2 FIG、4 FIG、6b FIG、6c FIG、5
Claims (17)
- 1.2つの不同の電極および1つの電解質からなる電池
を温度依存素子として含み、この電池の温度依存起電力
を測定する測定装置を有することを特徴とする電気化学
的に温度を測定する温度センサ。 - 2.電解質として固体電解質を使用し、電極として固体
または一部固体の電極を使用する特許請求の範囲第1項
記載の温度センサ。 - 3.固体電解質が2つの不同の電極と接触し、その化学
ポテンシアルが所定の温度および所定の圧力でその組成
とほぼ無関係である特許請求の範囲第2項記載の温度セ
ンサ。 - 4.化学ポテンシアルの調節に役立つn個の活性成分か
らなる電極の場合、n個の相が熱力学的平衡に存在する
特許請求の範囲第3項記載の温度センサ。 - 5.n=1〜5である特許請求の範囲第4項記載の温度
センサ。 - 6.電池が固体電池である特許請求の範囲第1項から第
5項までのいずれか1項に記載の温度センサ。 - 7.測定装置が電圧計である特許請求の範囲第1項から
第6項までのいずれか1項に記載の温度センサ。 - 8.電極が電解質の異なる表面に配置されている特許請
求の範囲第2項から第7項までのいずれか1項に記載の
温度センサ。 - 9.電極が電解質の同じ表面に配置されている特許請求
の範囲第2項から第7項までのいずれか1項に記載の温
度センサ。 - 10.電解質が支持要素として形成されている特許請求
の範囲第8項または第9項記載の温度センサ。 - 11.電解質および電極が支持要素としての1つの基板
上に配置されている特許請求の範囲第8項または第9項
記載の温度センサ。 - 12.電解質および(または)電極が厚膜または薄膜法
により被覆した膜の形で存在する特許請求の範囲第8項
から第11項までのいずれか1項に記載の温度センサ。 - 13.電池が保護被覆で被覆されている特許請求の範囲
第8項から第12項までのいずれか1項に記載の温度セ
ンサ。 - 14.保護被覆が絶縁性または気密性被覆である特許請
求の範囲第13項記載の温度センサ。 - 15.電池がガラスパールに融封されている特許請求の
範囲第14項記載の温度センサ。 - 16.マイクロエレクトロニクスの方法によりミニチュ
ア化した形で存在する特許請求の範囲第12項記載の温
度センサ。 - 17.マイクロエレクトロニクス回路へ集積されている
特許請求の範囲第16項記載の温度センサ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3614686.2 | 1986-04-30 | ||
DE19863614686 DE3614686C1 (de) | 1986-04-30 | 1986-04-30 | Elektrochemischer Temperatursensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62261934A true JPS62261934A (ja) | 1987-11-14 |
Family
ID=6299896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10344787A Pending JPS62261934A (ja) | 1986-04-30 | 1987-04-28 | 電気化学的に温度を測定する温度センサ |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0243975A3 (ja) |
JP (1) | JPS62261934A (ja) |
DE (1) | DE3614686C1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008096373A (ja) * | 2006-10-16 | 2008-04-24 | Shimadzu Corp | ナノ粒子の測定方法および装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150016210A (ko) | 2012-03-01 | 2015-02-11 | 엑셀라트론 솔리드 스테이트 엘엘씨 | 고용량 고체상 복합물 양극, 고체상 복합물 분리막, 재충전가능한 고체상 리튬 전지 및 이의 제조 방법 |
US10084168B2 (en) | 2012-10-09 | 2018-09-25 | Johnson Battery Technologies, Inc. | Solid-state battery separators and methods of fabrication |
DE102014012771A1 (de) * | 2014-09-02 | 2016-03-03 | Gensoric Gmbh | Verfahren zur Bestimmung der Temperatur an Elektroden in einem Medium |
WO2017112804A1 (en) | 2015-12-21 | 2017-06-29 | Johnson Ip Holding, Llc | Solid-state batteries, separators, electrodes, and methods of fabrication |
US10218044B2 (en) | 2016-01-22 | 2019-02-26 | Johnson Ip Holding, Llc | Johnson lithium oxygen electrochemical engine |
CN110137563A (zh) * | 2019-05-31 | 2019-08-16 | 深圳小穗科技有限公司 | 一种硫化铜固态电池及其制作方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1379204A (en) * | 1970-12-18 | 1975-01-02 | Graviner Ltd | Flamedetection methods and apparatus |
US4294898A (en) * | 1980-05-05 | 1981-10-13 | International Business Machines Corporation | Solid state battery |
JPS5961726A (ja) * | 1982-10-01 | 1984-04-09 | Asahi Chem Ind Co Ltd | 温度センサ− |
JPS59226472A (ja) * | 1983-06-06 | 1984-12-19 | Hitachi Ltd | 薄膜リチウム電池 |
-
1986
- 1986-04-30 DE DE19863614686 patent/DE3614686C1/de not_active Expired
-
1987
- 1987-04-28 JP JP10344787A patent/JPS62261934A/ja active Pending
- 1987-04-30 EP EP87106307A patent/EP0243975A3/de not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008096373A (ja) * | 2006-10-16 | 2008-04-24 | Shimadzu Corp | ナノ粒子の測定方法および装置 |
Also Published As
Publication number | Publication date |
---|---|
EP0243975A3 (de) | 1989-06-21 |
DE3614686C1 (de) | 1987-11-05 |
EP0243975A2 (de) | 1987-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5755940A (en) | Lithium ionic conducting glass thin film and carbon dioxide sensor comprising the glass thin film | |
Sato | Electrochemical measurements and control of oxygen fugacity and other gaseous fugacities with solid electrolyte sensors | |
US4307373A (en) | Solid state sensor element | |
US4632732A (en) | Ion-selective measuring electrode device and method for measuring hydrogen ion | |
Dudley et al. | Studies of potassium ferrite K1+ xFe11O17. III. Ionic conductivity and chemical diffusion | |
JPS6122260B2 (ja) | ||
US5344547A (en) | Polycrystalline ion selective electrode | |
JPS62261934A (ja) | 電気化学的に温度を測定する温度センサ | |
US4414093A (en) | Multifunctional reference electrode | |
US5855849A (en) | Solid state humidity sensor | |
US5741540A (en) | Method of forming solid state humidity sensor | |
US4608148A (en) | Combination pH/reference electrode with improved temperature response | |
US3974054A (en) | Measuring cell for determining oxygen concentrations in a gas mixture | |
US3658479A (en) | Device for measuring the pressure of a gas | |
JPH0130102B2 (ja) | ||
US5393404A (en) | Humidity sensor with nasicon-based proton-conducting electrolyte | |
Rochow | Electrical conduction in quartz, periclase, and corundum at low field strength | |
JPS62298755A (ja) | 酸素分圧を測定する固体電池およびその製法 | |
JP3770456B2 (ja) | ガス濃度の測定方法 | |
JPS6111376B2 (ja) | ||
JPH0933483A (ja) | Co2 センサ | |
Wang et al. | Improved methods to determine the electrochemical Peltier heat using a thermistor I: Improved heat-sensor electrodes and lumped-heat-capacity analysis | |
GB2117121A (en) | Electrochemical chlorine sensor | |
JPH03505483A (ja) | 固相イオン選択電極 | |
US3440101A (en) | Temperature responsive galvanic cell |