JPS62261649A - Fiber-reinforced cylinder-block - Google Patents

Fiber-reinforced cylinder-block

Info

Publication number
JPS62261649A
JPS62261649A JP10447486A JP10447486A JPS62261649A JP S62261649 A JPS62261649 A JP S62261649A JP 10447486 A JP10447486 A JP 10447486A JP 10447486 A JP10447486 A JP 10447486A JP S62261649 A JPS62261649 A JP S62261649A
Authority
JP
Japan
Prior art keywords
fiber
cylinder
reinforced
main
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10447486A
Other languages
Japanese (ja)
Other versions
JPH0776541B2 (en
Inventor
Nobuaki Takatori
高取 宣明
Masanobu Ishikawa
石川 正信
Shigeki Matsumoto
茂樹 松本
Yuji Ohara
裕二 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10447486A priority Critical patent/JPH0776541B2/en
Publication of JPS62261649A publication Critical patent/JPS62261649A/en
Publication of JPH0776541B2 publication Critical patent/JPH0776541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0002Cylinder arrangements
    • F02F7/0007Crankcases of engines with cylinders in line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To uniformalize the variation of the inner diameter of a cylinder bore by constituting a fiber-reinforced composite body for forming a cylinder bore from a main cylindrical body and a reinforced cylindrical body fitted onto the outer peripheral surface of the high temperature part of the main cylindrical body and selecting the thermal expansion coefficient volume rate of the both reinforced fiber. CONSTITUTION:The cylinder bore 7 of a cylinder barrel 1 is divided by a cylindrical fiber shaped body F which is constituted by a main cylindrical body F1 and a cylindrical reinforcing shaped body F2 and a fiber-reinforced composite cylindrical body C made of aluminum alloy as light alloy matrix. The main shaped body F1 is formed by binding the carbon fiber as reinforced fiber and alumina fiber by an inorganic binder, and the fiber volume rate of the small outside diameter part Fa in the high temperature part is set higher than that of other parts. The reinforced-shaped body F2 is fitted onto the outer peripheral surface of the small outside diameter part Fa, and formed by binding the silica- alumina fiber having the lower expansion coefficient than that of the main shaped body F1 by an inorganic binder, and the maintenance volume rate is set higher.

Description

【発明の詳細な説明】 A1発明の目的 (t+  産業上の利用分野 本発明は繊維強化シリンダブロック、特に強化繊維およ
び軽合金マトリックスよりなる繊維強化複合筒体により
シリンダボアを画成したものの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION A1 OBJECTS OF THE INVENTION (t+ INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to improvements in fiber-reinforced cylinder blocks, particularly those in which the cylinder bore is defined by a fiber-reinforced composite cylinder made of reinforcing fibers and a light alloy matrix.

(2)  従来の技術 従来、繊維強化複合筒体に複合される強化繊維の繊維体
積率は、繊維強化複合筒体全体に亘って比較的低く、且
つ等しくなるように設定されている。
(2) Prior Art Conventionally, the fiber volume fraction of reinforcing fibers composited into a fiber-reinforced composite cylinder is set to be relatively low and equal throughout the fiber-reinforced composite cylinder.

(3)発明が解決しようとする問題点 エンジン運転中において、繊維強化複合筒体の、シリン
ダヘッド接合面側端部から所定の範囲に亘る部分は燃料
の燃焼熱を直接受けて高温になるが、他の部分は燃焼熱
の伝導量が少ないので比較的低温に保たれ、その結果高
温部と低温部との温度差は100℃以上にも達する。
(3) Problems to be solved by the invention During engine operation, the portion of the fiber-reinforced composite cylindrical body extending over a predetermined range from the end on the cylinder head joint surface directly receives the combustion heat of the fuel and becomes high temperature. Since the other parts conduct less combustion heat, they are kept at a relatively low temperature, and as a result, the temperature difference between the high temperature part and the low temperature part reaches 100°C or more.

このような状況下において、強化繊維の繊維体積率を従
来のように設定すると、繊維強化複合筒体の高温部と低
温部とのマトリックス量が等しく、且つ多くなるため、
高温部の、主としてマトリックスに起因した熱膨張量が
低温部のそれに比べて多くなり、その結果シリンダボア
の内径変化が高温部と低温部とで不均一になるという問
題がある。
Under such circumstances, if the fiber volume fraction of the reinforcing fibers is set as conventionally, the matrix amounts in the high-temperature part and the low-temperature part of the fiber-reinforced composite cylinder will be equal and larger.
There is a problem in that the amount of thermal expansion in the high temperature section, mainly due to the matrix, is greater than that in the low temperature section, and as a result, the change in the inner diameter of the cylinder bore becomes non-uniform between the high temperature section and the low temperature section.

また高温部はエンジン運転中燃料の爆発荷重を受けるた
め高剛性を要求されるが、従来のように強化繊維の繊維
体積率が低いと十分な剛性が得られず、ピストンとシリ
ンダボアとの間隙を一定に保つことができなくなってブ
ローバイガスおよびオイル消費量の増加を来たすという
問題もある。
In addition, high-temperature parts are required to have high rigidity because they receive the explosion load of fuel during engine operation, but if the fiber volume ratio of the reinforcing fibers is low as in the past, sufficient rigidity cannot be obtained, and the gap between the piston and cylinder bore is reduced. There is also the problem that it is no longer possible to maintain a constant level, resulting in an increase in blow-by gas and oil consumption.

本発明は前記問題を解決し得る前記シリンダブロックを
提供することを目的とする。
An object of the present invention is to provide the cylinder block that can solve the above problems.

B0発明の構成 +11  問題点を解決するための手段本発明は、前記
繊維強化複合筒体を、前記シリンダボアを画成する主筒
体と該主筒体の、エンジン運転中高温となる高温部外周
面に嵌着される補強筒体とより構成し、該補強筒体に複
合される強化繊維の熱膨脹係数を前記主筒体に複合され
る強化繊維の熱膨脹係数よりも低く設定し、前記主筒体
の前記高温部および前記補強筒体に複合される両強化繊
維の繊維体積率を、前記主筒体の、エンジン運転中低温
に保たれる低温部に複合される強化繊維の繊維体積率よ
りも高く設定したことを特徴とする。
B0 Configuration of the Invention +11 Means for Solving Problems The present invention provides the fiber-reinforced composite cylindrical body with a main cylindrical body defining the cylinder bore and an outer periphery of a high-temperature portion of the main cylindrical body that becomes high temperature during engine operation. a reinforcing cylinder fitted to the surface, the coefficient of thermal expansion of the reinforcing fibers composited with the reinforcing cylinder is set lower than the coefficient of thermal expansion of the reinforcing fibers composited with the main cylinder; The fiber volume fraction of both reinforcing fibers that are composited in the high temperature part of the body and the reinforcing cylinder body is determined from the fiber volume ratio of the reinforcing fibers composited in a low temperature part of the main cylinder that is kept at a low temperature during engine operation. It is also characterized by a high setting.

(2)作 用 前記のように構成すると、主筒体の高温部における繊維
量が多く、またマトリックス量が少な(なり、一方主筒
体の低温部における繊維量が少なく、またマトリックス
量が多くなる。これにより、マトリックスに起因した熱
膨張量を主筒体の高温部と、低温部とで略等しくして、
両部におけるシリンダボアの内径変化を略均−にするこ
とができる。
(2) Effect When configured as described above, the amount of fibers and the amount of matrix are large in the high temperature section of the main cylinder (on the other hand, the amount of fibers is small and the amount of matrix is large in the low temperature section of the main cylinder). As a result, the amount of thermal expansion caused by the matrix is made approximately equal in the high temperature part and the low temperature part of the main cylinder,
Changes in the inner diameter of the cylinder bore in both parts can be made approximately equal.

また、補強筒体に複合される強化繊維の繊維体積率が高
く、且つ熱膨脹係数が前記高温部のそれよりも低いので
、補強筒体の熱変形が大幅に抑制され、これにより補強
一体によって高温部を確実に補強して−の剛性を向上し
、エンジン運転中におけるピストンとシリンダボアとの
間隙を略一定に保つことができる。
In addition, since the fiber volume fraction of the reinforcing fibers composited into the reinforcing cylinder is high and the coefficient of thermal expansion is lower than that of the high-temperature section, thermal deformation of the reinforcing cylinder is greatly suppressed. By reliably reinforcing the parts, the rigidity of the parts can be improved, and the gap between the piston and the cylinder bore can be kept substantially constant during engine operation.

(3)実施例 第1〜第3図は、圧力鋳造法により得られた繊維強化ア
ルミニウム合金製サイアミーズ型シリンダブロックSを
示し、そのシリンダブロックSは、直列に並ぶ複数、図
示例は4個のシリンダバレル1+ 〜14相互を結合し
てなるサイアミーズシリンダバレル1と、そのサイアミ
ーズシリンダバレル1を囲繞するシリンダブロック外壁
2と、サイアミーズシリンダバレル1およびシリンダブ
ロック外壁2の下縁に連設されたクランクケース3とよ
り構成される。
(3) Example Figures 1 to 3 show a Siamese-type cylinder block S made of fiber-reinforced aluminum alloy obtained by a pressure casting method. A Siamese cylinder barrel 1 formed by connecting cylinder barrels 1+ to 14 with each other, a cylinder block outer wall 2 surrounding the Siamese cylinder barrel 1, and a crankcase connected to the lower edges of the Siamese cylinder barrel 1 and the cylinder block outer wall 2. It consists of 3.

サイアミーズシリンダバレル1とシリンダブロック外壁
2間に、サイアミーズシリンダバレル1の外周が臨む水
ジャケット4が形成される。その水ジャケット4におけ
るシリンダヘッド接合面a側の端部において、サイアミ
ーズシリンダバレル1とシリンダブロック外壁2間は複
数の補強デツキ部5により部分的に連結され、相隣る補
強デツキ部5間はシリンダヘッド側への連通口6として
機能する。これによりシリンダブロックSはクローズド
デツキ型に構成される。
A water jacket 4 facing the outer periphery of the Siamese cylinder barrel 1 is formed between the Siamese cylinder barrel 1 and the cylinder block outer wall 2. At the end of the water jacket 4 on the cylinder head joint surface a side, the Siamese cylinder barrel 1 and the cylinder block outer wall 2 are partially connected by a plurality of reinforcing deck parts 5, and the cylinder It functions as a communication port 6 to the head side. As a result, the cylinder block S is configured into a closed deck type.

各シリンダバレル11〜14におけるシリンダボア7は
、強化繊維より成形された円筒状繊維成形体F(第4.
第5図)と、軽合金マトリックスとしてのアルミニウム
合金とよりなる繊維強化複合筒体Cにより画成される。
The cylinder bore 7 in each cylinder barrel 11 to 14 has a cylindrical fiber molded body F (fourth.
5) and a fiber-reinforced composite cylinder C made of an aluminum alloy as a light alloy matrix.

第4.第5図に示すように、円筒状繊維成形体Fは、円
筒状主成形体F、と円筒状補強成形体F2とより構成さ
れる。主成形体F、は、強化繊維としての炭素繊維とア
ルミナ繊維との混合繊維をシリカゾル等の無機バインダ
により結合したもので、小外径部Faと、大外径部Fb
と、両部Fa。
4th. As shown in FIG. 5, the cylindrical fiber molded body F is composed of a cylindrical main molded body F and a cylindrical reinforced molded body F2. The main molded body F is made by bonding mixed fibers of carbon fiber and alumina fiber as reinforcing fibers with an inorganic binder such as silica sol, and has a small outer diameter part Fa and a large outer diameter part Fb.
And both sides Fa.

Fbを連結する連結部Fcとよりなる。連結部FCは、
その外径が小外径部Fa側より大外径部Fbに向けて漸
増するように成形される。繊維成形体Fの内径は全長に
亘って等しい。
It consists of a connecting part Fc that connects Fb. The connecting part FC is
It is formed so that its outer diameter gradually increases from the small outer diameter section Fa toward the large outer diameter section Fb. The inner diameter of the fiber molded body F is the same over the entire length.

小外径部Faの繊維体積率(Vf)は、例えば20〜5
0%と高く設定され、また大外径部Fbの繊維体積率は
、例えば5〜30%と低く設定される。連結部Fcの繊
維体積率は小外径部Fa側から大外径部Fbに向けて漸
減するようになっている。
The fiber volume fraction (Vf) of the small outer diameter portion Fa is, for example, 20 to 5.
The fiber volume fraction of the large outer diameter portion Fb is set as high as 0%, and the fiber volume fraction of the large outer diameter portion Fb is set as low as, for example, 5 to 30%. The fiber volume fraction of the connecting portion Fc gradually decreases from the small outer diameter portion Fa toward the large outer diameter portion Fb.

補強成形体F2は主成形体F、よりも熱膨脹係数の低い
強化繊維、例えばシリカ−アルミナ繊維(または炭素繊
維等)をシリカゾル等の無機バインダにより結合したも
ので、その繊維体積率は小外径部Faと同様に20〜5
0%と高(設定される。補強成形体F2は小外径部Fa
の外周面に嵌着される。
The reinforced molded body F2 is made by bonding reinforcing fibers with a lower thermal expansion coefficient than that of the main molded body F, such as silica-alumina fibers (or carbon fibers, etc.) with an inorganic binder such as silica sol, and its fiber volume fraction is small in outer diameter. Similar to part Fa, 20-5
0% and high (set. The reinforced molded body F2 has a small outer diameter part Fa
It is fitted onto the outer peripheral surface of.

このような繊維成形体Fを製作する場合には、大外径部
Fbと同様の内外径および繊維体積率を有する円筒状主
成形体素材と、その素材と同様の繊維体積率を持つ円筒
状補強成形体素材とを成形し、次いで補強成形体素材を
主成形体素材の小外径部Faに対応する部位の外周面に
嵌合し、その後補強成形体素材外周面をラバーを介しプ
レスしてその外径を大外径部Fbの外径に合致させるも
のである。
When manufacturing such a fiber molded body F, a cylindrical main molded body material having the same inner and outer diameters and fiber volume percentage as the large outer diameter portion Fb, and a cylindrical main molded body material having the same fiber volume percentage as that material are used. The reinforcing molded body material is then molded, and then the reinforced molded body material is fitted onto the outer peripheral surface of the portion corresponding to the small outer diameter portion Fa of the main molded body material, and then the outer peripheral surface of the reinforced molded body material is pressed through rubber. The outer diameter thereof is made to match the outer diameter of the large outer diameter portion Fb.

第2図に明示するように繊維成形体Fは、その小外径部
Faおよび補強成形体F2端面がシリンダヘッド接合面
aに略合致するように複合化されている。
As clearly shown in FIG. 2, the fiber molded body F is composited so that its small outer diameter portion Fa and the end face of the reinforced molded body F2 substantially match the cylinder head joint surface a.

これにより主成形体F1とアルミニウム合金とよりシリ
ンダボア7を画成する、繊維強化複合筒体Cの主筒体C
Iが構成される。また主成形体F1の高繊維体積率の小
外径部Faが、シリンダボア7の、シリンダヘッド接合
面a@端部と略ピストン下死点に対応する部位との間に
配設され、その小外径部Faとアルミニウム合金により
主筒体C1の、エンジン運転中高温となる高温部Caが
構成される。またクランクケース3側には低繊維体積率
の大外径部Fbとアルミニウム合金により主筒体C1の
、エンジン運転中低温に保たれる低湯部cbが構成され
る。
As a result, the main cylinder C of the fiber-reinforced composite cylinder C defines the cylinder bore 7 by the main molded body F1 and the aluminum alloy.
I is constructed. In addition, the small outer diameter portion Fa with a high fiber volume fraction of the main molded body F1 is disposed between the cylinder head joint surface a@end of the cylinder bore 7 and a portion approximately corresponding to the bottom dead center of the piston. The outer diameter portion Fa and the aluminum alloy constitute a high temperature portion Ca of the main cylinder C1 that becomes hot during engine operation. Further, on the crankcase 3 side, a low hot water portion cb of the main cylinder C1 is formed of a large outer diameter portion Fb with a low fiber volume fraction and an aluminum alloy, and is maintained at a low temperature during engine operation.

さらに補強成形体F2とアルミニウム合金によ、  リ
、高温部Ca外周面に嵌着された補強筒体Ctとが構成
される。
Furthermore, the reinforcing molded body F2 and the aluminum alloy constitute a reinforcing cylinder Ct fitted to the outer peripheral surface of the high temperature section Ca.

このように構成すると、主筒(4Cc lの、エンジン
運転中高温となる高温部Caでは繊維量が多く、またマ
トリックス量が少なくなり、一方、低温部cbでは繊維
量が少なく、またマトリックス量が多くなる。
With this configuration, in the main cylinder (4Ccl), the high temperature section Ca, which becomes high temperature during engine operation, has a large amount of fibers and the amount of matrix is small, while the low temperature section cb has a small amount of fibers and a small amount of matrix. There will be more.

これにより、マトリックスに起因した熱膨張量を高温部
Caと低温部cbとで略等しくして、両部Ca、Cbに
おけるシリンダボア7の内径変化を略均−にすることが
てきる。
Thereby, the amount of thermal expansion caused by the matrix can be made substantially equal in the high temperature section Ca and the low temperature section cb, and the change in the inner diameter of the cylinder bore 7 in both sections Ca and Cb can be made approximately equal.

第6.第7図は上記効果を裏付けるテスト結果を示し、
第6図において線Wは、繊維強化複合筒体COのクラン
クケース側端面からシリンダヘッド接合面2までの長さ
しと、繊維成形体Fの繊維体積率との関係を、また線X
は前記長さLと、エンジン運転中でのシリンダボア7の
温度との関係をそれぞれ示す。
6th. Figure 7 shows test results that support the above effects.
In FIG. 6, the line W represents the relationship between the length from the crankcase side end surface of the fiber-reinforced composite cylinder CO to the cylinder head joint surface 2 and the fiber volume fraction of the fiber molded body F, and the line
shows the relationship between the length L and the temperature of the cylinder bore 7 during engine operation.

図中、’l’opはシリンダヘッド接合面aに対応する
In the figure, 'l'op corresponds to the cylinder head joint surface a.

使用された繊維成形体Fにおける小外径部Faの繊維体
積率は25%であり、また大外径部Fbの繊維体積率は
5%である。
In the fiber molded body F used, the fiber volume fraction in the small outer diameter portion Fa is 25%, and the fiber volume fraction in the large outer diameter portion Fb is 5%.

第7図は、繊維強化複合筒体の長さLと、エンジン運転
中でのシリンダボア内径増加量との関係を示し、線Y、
は第6図&IWの繊維体積率配分を持つ繊維強化複合筒
体COを備えた本発明に該当し、&IY!は前記長さL
の全長に亘って繊維体積率を5%に設定される繊維強化
複合筒体を備えた比較例に該当する。
FIG. 7 shows the relationship between the length L of the fiber-reinforced composite cylinder and the increase in cylinder bore inner diameter during engine operation, with lines Y,
corresponds to the present invention equipped with a fiber-reinforced composite cylinder CO having a fiber volume fraction distribution of &IW in FIG. 6, and &IY! is the length L
This corresponds to a comparative example equipped with a fiber-reinforced composite cylinder in which the fiber volume fraction is set to 5% over the entire length.

第7図から明らかなように本発明Y1は比較例Y!に比
べて高温部におけるシリンダボア内径の増加量が少なく
、その結果シリンダボアの内径変化は全長しに亘って略
均−となる。
As is clear from FIG. 7, the present invention Y1 is the comparative example Y! The amount of increase in the inner diameter of the cylinder bore in the high temperature section is smaller than that in the high temperature section, and as a result, the change in the inner diameter of the cylinder bore is approximately uniform over the entire length.

また補強筒体C3に複合される強化繊維の繊維体積率が
高(、且つ熱膨脹係数が前記高温部Caのそれよりも低
いので、補強筒体C8の熱変形が大幅に抑制され、これ
により補強筒体Ctによって高温部Caを確実に補強し
てその剛性を向上し、エンジン運転中におけるピストン
とシリンダボア7との間隙を略一定に保ち、ブローバイ
ガスおよびオイル消費量を低減することができる。
Furthermore, since the fiber volume fraction of the reinforcing fibers composited into the reinforcing cylinder C3 is high (and the coefficient of thermal expansion is lower than that of the high temperature section Ca, thermal deformation of the reinforcing cylinder C8 is greatly suppressed, thereby reinforcing The cylindrical body Ct reliably reinforces the high temperature section Ca to improve its rigidity, and the gap between the piston and the cylinder bore 7 can be kept substantially constant during engine operation, thereby reducing blow-by gas and oil consumption.

第8図は上記効果を裏付けるテスト結果を示し、線Z+
は本発明に、また線z3は比較例にそれぞれ該当する0
本発明2.は、第6図線Wの繊維体積率配分を持つ繊維
強化複合筒体COと、その高温部Ca外周面に嵌着され
た、繊維体積率25%の補強成形体F8を用いた補強筒
体Ctとを備えており、比較例Z2は長さしの全長に亘
って繊維積車を5%に設定された繊維強化複合筒体を備
えている。
Figure 8 shows the test results that support the above effect, and the line Z+
corresponds to the present invention, and line z3 corresponds to the comparative example.
Present invention 2. This is a reinforced cylinder using a fiber-reinforced composite cylinder CO having a fiber volume fraction distribution as shown by the line W in Fig. 6, and a reinforced molded body F8 with a fiber volume ratio of 25% fitted to the outer peripheral surface of the high-temperature part Ca. Ct, and Comparative Example Z2 is equipped with a fiber-reinforced composite cylindrical body in which the fiber load is set to 5% over the entire length.

本発明および比較例のシリンダブロックは鋳造後溶体化
処理および時効処理を施されている。
The cylinder blocks of the present invention and comparative examples were subjected to solution treatment and aging treatment after casting.

第8W!Jから明らかなように、本発明z1は比較例Z
tに比べて引張強さが優れており、これは補強筒体Ct
の補強効果に基づくものである。
8th W! As is clear from J, the present invention Z1 is the comparative example Z
The tensile strength is superior to that of the reinforcing cylinder Ct.
This is based on the reinforcing effect of

C2発明の効果 本発明によれば、繊維強化複合筒体の主筒体における強
化繊維の繊維体積率配分を前記のように行うので、主筒
体の高温部と低温部との熱膨張量を略等しくして、両部
におけるシリンダボアの内径変化を略均−にすることが
できる。
C2 Effects of the Invention According to the present invention, the fiber volume percentage distribution of the reinforcing fibers in the main cylinder of the fiber-reinforced composite cylinder is performed as described above, so that the amount of thermal expansion between the high-temperature part and the low-temperature part of the main cylinder can be reduced. By making them substantially equal, changes in the inner diameter of the cylinder bore in both parts can be made substantially equal.

また補強筒体により主筒体の高温部を確実に補強してエ
ンジン運転中におけるピストンとシリンダボアとの間隙
を略一定に保つことができる。
Further, the high temperature portion of the main cylinder is reliably reinforced by the reinforcing cylinder, so that the gap between the piston and the cylinder bore can be kept substantially constant during engine operation.

これによりエンジン性能を向上させることのできる前記
シリンダブロックを提供し得るものである。
This makes it possible to provide the cylinder block that can improve engine performance.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図はサイアミーズ
型シリンダブロックの斜視図、第2図は第1図n−n線
断面図、第3図は第2図m−m線断面図、第4図は繊維
成形体の斜視図、第5図は第1図n−n線断面図、第6
図は繊維強化複合筒体の長さと、繊維体積率およびエン
ジン運転中のシリンダボア温度との関係を示すグラフ、
第7図は繊維強化複合筒体の長さと、エンジン運転中の
シリンダボア内径増加量との関係を示すグラフ、第8図
は温度と引張強さとの関係を示すグラフである。 7・・・シリンダボア、C・・・繊維強化複合筒体、C
1・・・主筒体、C7・・・補強筒体、Ca・・・高温
部、Cb・・・低温部 第8図 1逼;  β (’C) 第2図 第5図 第4図
The drawings show one embodiment of the present invention; FIG. 1 is a perspective view of a Siamese type cylinder block, FIG. 2 is a sectional view taken along the line nn in FIG. 1, and FIG. 3 is a sectional view taken along the line m-m in FIG. 2. , FIG. 4 is a perspective view of the fiber molded product, FIG. 5 is a sectional view taken along the line nn in FIG. 1, and FIG.
The figure is a graph showing the relationship between the length of the fiber-reinforced composite cylinder, the fiber volume ratio, and the cylinder bore temperature during engine operation.
FIG. 7 is a graph showing the relationship between the length of the fiber-reinforced composite cylinder and the increase in cylinder bore inner diameter during engine operation, and FIG. 8 is a graph showing the relationship between temperature and tensile strength. 7... Cylinder bore, C... Fiber reinforced composite cylinder, C
1... Main cylinder body, C7... Reinforcement cylinder body, Ca... High temperature section, Cb... Low temperature section Fig.8 1; β ('C) Fig.2 Fig.5 Fig.4

Claims (1)

【特許請求の範囲】[Claims] 強化繊維および軽合金マトリックスよりなる繊維強化複
合筒体によりシリンダボアを画成した繊維強化シリンダ
ブロックにおいて、前記繊維強化複合筒体を、前記シリ
ンダボアを画成する主筒体と該主筒体の、エンジン運転
中高温となる高温部外周面に嵌着される補強筒体とより
構成し、該補強筒体に複合される強化繊維の熱膨脹係数
を前記主筒体に複合される強化繊維の熱膨脹係数よりも
低く設定し、前記主筒体の前記高温部および前記補強筒
体に複合される両強化繊維の繊維体積率を、前記主筒体
の、エンジン運転中低温に保たれる低温部に複合される
強化繊維の繊維体積率よりも高く設定したことを特徴と
する繊維強化シリンダブロック。
In a fiber-reinforced cylinder block in which a cylinder bore is defined by a fiber-reinforced composite cylinder made of reinforced fibers and a light alloy matrix, the fiber-reinforced composite cylinder is connected to a main cylinder defining the cylinder bore and an engine of the main cylinder. It is composed of a reinforcing cylinder fitted to the outer peripheral surface of the high temperature part that becomes high temperature during operation, and the coefficient of thermal expansion of the reinforcing fibers combined with the reinforcing cylinder is determined from the coefficient of thermal expansion of the reinforcing fibers combined with the main cylinder. is also set low, and the fiber volume percentage of both the reinforcing fibers that are composited in the high temperature part of the main cylinder and the reinforcing cylinder is set low, and the fiber volume percentage of both the reinforcing fibers that are composited in the high temperature part of the main cylinder and the reinforcing cylinder are composited in the low temperature part of the main cylinder that is kept at a low temperature during engine operation. A fiber-reinforced cylinder block characterized by having a fiber volume percentage higher than that of reinforcing fibers.
JP10447486A 1986-05-07 1986-05-07 Fiber reinforced cylinder block Expired - Fee Related JPH0776541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10447486A JPH0776541B2 (en) 1986-05-07 1986-05-07 Fiber reinforced cylinder block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10447486A JPH0776541B2 (en) 1986-05-07 1986-05-07 Fiber reinforced cylinder block

Publications (2)

Publication Number Publication Date
JPS62261649A true JPS62261649A (en) 1987-11-13
JPH0776541B2 JPH0776541B2 (en) 1995-08-16

Family

ID=14381572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10447486A Expired - Fee Related JPH0776541B2 (en) 1986-05-07 1986-05-07 Fiber reinforced cylinder block

Country Status (1)

Country Link
JP (1) JPH0776541B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151545A (en) * 1989-10-31 1991-06-27 Inco Ltd Piston-cylinder assembly
EP1474594A1 (en) * 2001-12-18 2004-11-10 Mechanical Innovation, Inc. Internal combustion engine using opposed pistons
JP2014001732A (en) * 2012-06-20 2014-01-09 General Electric Co <Ge> Coating with nonconstant thickness for cylinder liner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151545A (en) * 1989-10-31 1991-06-27 Inco Ltd Piston-cylinder assembly
EP1474594A1 (en) * 2001-12-18 2004-11-10 Mechanical Innovation, Inc. Internal combustion engine using opposed pistons
EP1474594A4 (en) * 2001-12-18 2008-12-10 Mechanical Innovation Inc Internal combustion engine using opposed pistons
JP2014001732A (en) * 2012-06-20 2014-01-09 General Electric Co <Ge> Coating with nonconstant thickness for cylinder liner

Also Published As

Publication number Publication date
JPH0776541B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
CN104696093B (en) Engine with compounding of cyclinder body
US4658706A (en) Cast light metal component for internal combustion engines
US4694735A (en) Piston for internal combustion engine
US4831918A (en) Light alloy pistons with reinforcing inserts for the piston pin bores
US4856462A (en) Cylinder block made of fiber-reinforced light alloy for internal combustion engine
US4350056A (en) Connecting rod of an internal combustion engine
JPS59218342A (en) Fiber reinforced light alloy piston for internal- combustion engine
US4651629A (en) Piston of refractory materials, particularly for compression-ignition engines
GB2294102A (en) Fibre-reinforced metal pistons
US4742759A (en) Ceramic insert cast piston
JPS62261649A (en) Fiber-reinforced cylinder-block
US4314531A (en) Pistons and cylinder liners
DE102018122899A1 (en) Aluminum cylinder block assemblies and methods of making same
JPS62261648A (en) Fiber-reinforced cylinder block
US4730548A (en) Light metal alloy piston
JP3191677B2 (en) Piston for internal combustion engine
US7066078B2 (en) Piston for internal combustion engine
US6886504B2 (en) Engine of reciprocating piston type
JPS62266266A (en) Wrist pin
US5174252A (en) Exhaust manifold expansion slot for internal combustion motor
US4614172A (en) Cylinder head for internal combustion engine
US1799369A (en) Cylinder manifold for internal-combustion engines
JPS63238227A (en) Fiber reinforced light alloy member
JPS62278308A (en) Cylinder block made of light alloy
JPS59229034A (en) Piston for internal-combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees