JPH0776541B2 - Fiber reinforced cylinder block - Google Patents

Fiber reinforced cylinder block

Info

Publication number
JPH0776541B2
JPH0776541B2 JP10447486A JP10447486A JPH0776541B2 JP H0776541 B2 JPH0776541 B2 JP H0776541B2 JP 10447486 A JP10447486 A JP 10447486A JP 10447486 A JP10447486 A JP 10447486A JP H0776541 B2 JPH0776541 B2 JP H0776541B2
Authority
JP
Japan
Prior art keywords
cylinder
fiber
reinforcing
main
volume ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10447486A
Other languages
Japanese (ja)
Other versions
JPS62261649A (en
Inventor
宣明 高取
正信 石川
茂樹 松本
裕二 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10447486A priority Critical patent/JPH0776541B2/en
Publication of JPS62261649A publication Critical patent/JPS62261649A/en
Publication of JPH0776541B2 publication Critical patent/JPH0776541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0002Cylinder arrangements
    • F02F7/0007Crankcases of engines with cylinders in line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 A.発明の目的 (1)産業上の利用分野 本発明は繊維強化シリンダブロック、特に強化繊維およ
び軽合金マトリックスよりなる繊維強化複合筒体により
シリンダボアを画成したものの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Objects of the Invention (1) Field of Industrial Application The present invention is an improvement of a fiber reinforced cylinder block, in particular, a cylinder bore defined by a fiber reinforced composite cylinder made of a reinforced fiber and a light alloy matrix. Regarding

(2)従来の技術 従来、繊維強化複合筒体に複合される強化繊維の繊維体
積率は、繊維強化複合筒体全体に亘って比較的低く、且
つ等しくなるように設定されている。
(2) Conventional Technology Conventionally, the fiber volume ratio of the reinforcing fibers compounded in the fiber-reinforced composite cylinder is set to be relatively low and equal over the entire fiber-reinforced composite cylinder.

(3)発明が解決しようとする問題点 エンジン運転中において、繊維強化複合筒体の、シリン
ダヘッド接合面側端部から所定の範囲に亘る部分は燃料
の燃焼熱を直接受けて高温になるが、他の部分は燃焼熱
の伝導量が少ないので比較的低温に保たれ、その結果高
温部と低温部との温度差は100℃以上にも達する。
(3) Problems to be Solved by the Invention While the engine is in operation, the portion of the fiber-reinforced composite cylinder extending from the end on the cylinder head joint surface side to a predetermined range directly receives the combustion heat of the fuel and becomes high in temperature. , The other parts are kept at a relatively low temperature because the amount of conduction of combustion heat is small, and as a result, the temperature difference between the high temperature part and the low temperature part reaches 100 ° C or more.

このような状況下において、強化繊維の繊維体積率を従
来のように設定すると、繊維強化複合筒体の高温部と低
温部とのマトリックス量が等しく、且つ多くなるため、
高温部の、主としてマトリックスに起因した熱膨脹量が
低温部のそれに比べて多くなり、その結果シリンダボア
の内径変化が高温部と低温部とで不均一になるという問
題がある。
In such a situation, if the fiber volume ratio of the reinforcing fiber is set as in the conventional case, the matrix amounts of the high temperature portion and the low temperature portion of the fiber reinforced composite cylinder are equal and large,
There is a problem that the amount of thermal expansion in the high temperature portion, which is mainly due to the matrix, becomes larger than that in the low temperature portion, and as a result, the change in the inner diameter of the cylinder bore becomes uneven between the high temperature portion and the low temperature portion.

また高温部はエンジン運転中燃料の爆発荷重を受けるた
め高剛性を要求されるが、従来のように強化繊維の繊維
体積率が低いと十分な剛性が得られず、ピストンとシリ
ンダボアとの間隙を一定に保つことができなくなってブ
ローバイガスおよびオイル消費量の増加を来たすという
問題もある。
The high temperature part is required to have high rigidity because it receives an explosive load of fuel while the engine is operating. There is also a problem in that the amount of blow-by gas and oil consumption cannot be kept constant, resulting in an increase in consumption of blow-by gas and oil.

本発明は前記問題を解決し得る前記シリンダブロックを
提供することを目的とする。
An object of the present invention is to provide the cylinder block which can solve the above problems.

B.発明の構成 (1)問題点を解決するための手段 本発明は、前記繊維強化複合筒体を、前記シリンダボア
を画成する主筒体と該主筒体の、エンジン運転中高温と
なる高温部外周面に嵌着される補強筒体とより構成し、
該補強筒体に複合される強化繊維の熱膨脹係数を前記主
筒体に複合される強化繊維の熱膨脹係数よりも低く設定
し、前記主筒体の前記高温部および前記補強筒体に複合
される両強化繊維の繊維体積率を、前記主筒体の、エン
ジン運転中低温に保たれる低温部に複合される強化繊維
の繊維体積率よりも高く設定したことを特徴とする。
B. Structure of the Invention (1) Means for Solving the Problems In the present invention, the fiber-reinforced composite cylinder is heated to a high temperature during engine operation of the main cylinder defining the cylinder bore and the main cylinder. Comprised of a reinforcing cylindrical body fitted to the outer peripheral surface of the high temperature portion,
The coefficient of thermal expansion of the reinforcing fiber compounded in the reinforcing cylinder is set lower than the coefficient of thermal expansion of the reinforcing fiber compounded in the main cylinder, and combined with the high temperature portion of the main cylinder and the reinforcing cylinder. The fiber volume ratios of both the reinforcing fibers are set to be higher than the fiber volume ratios of the reinforcing fibers compounded in the low temperature portion of the main cylinder, which is kept at a low temperature during engine operation.

(2)作用 前記のように構成すると、主筒体の高温部における繊維
量が多く、またマトリックス量が少なくなり、一方主筒
体の低温部における繊維量が少なく、またマトリックス
量が多くなる。これにより、マトリックスに起因した熱
膨脹量を主筒体の高温部と、低温部とで略等しくして、
両部におけるシリンダボアの内径変化を略均一にするこ
とができる。
(2) Action With the above-described structure, the amount of fibers in the high temperature portion of the main cylinder is large and the amount of matrix is small, while the amount of fibers in the low temperature portion of the main cylinder is small and the amount of matrix is large. Thereby, the amount of thermal expansion due to the matrix is made substantially equal in the high temperature portion and the low temperature portion of the main cylinder,
The change in the inner diameter of the cylinder bore in both parts can be made substantially uniform.

また、補強筒体に複合される強化繊維の繊維体積率が高
く、且つ熱膨脹係数が前記高温部のそれよりも低いの
で、補強筒体の熱変形が大幅に抑制され、これにより補
強筒体によって高温部を確実に補強してその剛性を向上
し、エンジン運転中におけるピストンとシリンダボアと
の間隙を略一定に保つことができる。
In addition, since the fiber volume ratio of the reinforcing fibers compounded in the reinforcing cylinder is high and the coefficient of thermal expansion is lower than that of the high temperature portion, thermal deformation of the reinforcing cylinder is significantly suppressed, whereby the reinforcing cylinder can The high temperature portion can be reliably reinforced to improve its rigidity, and the gap between the piston and the cylinder bore can be kept substantially constant during engine operation.

(3)実施例 第1〜第3図は、圧力鋳造法により得られた繊維強化ア
ルミニウム合金製サイアミーズ型シリンダブロックSを
示し、そのシリンダブロックSは、直列に並ぶ複数、図
示例は4個のシリンダバレル11〜14相互を結合してなる
サイアミーズシリンダバレル1と、そのサイアミーズシ
リンダバレル1を囲繞するシリンダブロック外壁2と、
サイアミーズシリンダバレル1およびシリンダブロック
外壁2の下縁に連設されたクランクケース3とより構成
される。
(3) Example FIGS. 1 to 3 show a fiber-reinforced aluminum alloy-made Siamese type cylinder block S obtained by a pressure casting method. The cylinder block S is a plurality of cylinder blocks S arranged in series, and four cylinder blocks in the illustrated example. a Siamese cylinder barrel 1 composed by combining the cylinder barrel 1 1 to 1 4 mutually, and the cylinder block outer wall 2 surrounding the Siamese cylinder barrel 1,
It is composed of a Siamese cylinder barrel 1 and a crankcase 3 which is continuously provided on the lower edge of the cylinder block outer wall 2.

サイアミーズシリンダバレル1とシリンダブロック外壁
2間に、サイアミーズシリンダバレル1の外周が臨む水
ジャケット4が形成される。その水ジャケット4におけ
るシリンダヘッド接合面a側の端部において、サイアミ
ーズシリンダバレル1とシリンダブロック外壁2間は複
数の補強デッキ部5により部分的に連結され、相隣る補
強デッキ部5間はシリンダヘッド側への連通口6として
機能する。これによりシリンダブロックSはクローズド
デッキ型に構成される。
A water jacket 4 facing the outer periphery of the Siamese cylinder barrel 1 is formed between the Siamese cylinder barrel 1 and the cylinder block outer wall 2. At the end of the water jacket 4 on the cylinder head joint surface a side, the Siamese cylinder barrel 1 and the cylinder block outer wall 2 are partially connected by a plurality of reinforcing deck parts 5, and adjacent reinforcing deck parts 5 are connected to each other by a cylinder. It functions as a communication port 6 to the head side. As a result, the cylinder block S is constructed as a closed deck type.

各シリンダバレル11〜14におけるシリンダボア7は、強
化繊維より成形された円筒状繊維成形体F(第4,第5
図)と、軽合金マトリックスとしてのアルミニウム合金
とよりなる繊維強化複合筒体Cにより画成される。
Cylinder bores 7 in each cylinder barrel 1 1 to 1 4, a cylindrical fiber molded molded from reinforced fibrous body F (fourth, fifth
(Figure) and an aluminum alloy as a light alloy matrix.

第4,第5図に示すように、円筒状繊維成形体Fは、円筒
状主成形体F1と円筒状補強成形体F2とより構成される。
主成形体F1は、強化繊維としての炭素繊維とアルミナ繊
維との混合繊維をシリカゾル等の無機バインダにより結
合したもので、小外径部Faと、大外径部Fbと、両部Fa,F
bを連結する連結部Fcとよりなる。連結部Fcは、その外
径が小外径部Fa側より大外径部Fbに向けて漸増するよう
に成形される。繊維成形体Fの内径は全長に亘って等し
い。
As shown in FIGS. 4 and 5, the cylindrical fiber molded body F is composed of a cylindrical main molded body F 1 and a cylindrical reinforcing molded body F 2 .
The main molded body F 1 is obtained by binding a mixed fiber of carbon fiber and alumina fiber as a reinforcing fiber with an inorganic binder such as silica sol, a small outer diameter part Fa, a large outer diameter part Fb, and both parts Fa, F
It is composed of a connecting portion Fc that connects b. The connecting portion Fc is formed so that its outer diameter gradually increases from the small outer diameter portion Fa side toward the large outer diameter portion Fb. The inner diameter of the fiber molded body F is equal over the entire length.

小外径部Faの繊維体積率(Vf)は、例えば20〜50%と高
く設定され、また大外径部Fbの繊維体積率は、例えば5
〜30%と低く設定される。連結部Fcの繊維体積率は小外
径部Fa側から大外径部Fbに向けて漸減するようになって
いる。
The fiber volume ratio (Vf) of the small outer diameter portion Fa is set to a high value, for example, 20 to 50%, and the fiber volume ratio of the large outer diameter portion Fb is, for example, 5%.
It is set as low as ~ 30%. The fiber volume ratio of the connecting portion Fc gradually decreases from the small outer diameter portion Fa side toward the large outer diameter portion Fb.

補強成形体F2は主成形体F1よりも熱膨脹係数の低い強化
繊維、例えばシリカ−アルミナ繊維(または炭素繊維
等)をシリカゾル等の無機バインダにより結合したもの
で、その繊維体積率は小外径部Faと同様に20〜50%と高
く設定される。補強成形体F2は小外径部Faの外周面に嵌
着される。
The reinforced molded body F 2 is a reinforcing fiber having a thermal expansion coefficient lower than that of the main molded body F 1 , for example, silica-alumina fibers (or carbon fibers, etc.) bonded by an inorganic binder such as silica sol, and the fiber volume ratio thereof is small or small. It is set as high as 20 to 50% like the diameter Fa. The reinforcing molded body F 2 is fitted on the outer peripheral surface of the small outer diameter part Fa.

このような繊維成形体Fを製作する場合には、大外径部
Fbと同様の内外径および繊維体積率を有する円筒状主成
形体素材と、その素材と同様の繊維体積率を持つ円筒状
補強成形体素材とを成形し、次いで補強成形体素材を主
成形体素材の小外径部Faに対応する部位の外周面に嵌合
し、その後補強成形体素材外周面をラバーを介しプレス
してその外径を大外径部Fbの外径に合致させるものであ
る。
When manufacturing such a fiber molded body F, a large outer diameter portion
A cylindrical main molding material having the same inner and outer diameters and fiber volume ratio as Fb, and a cylindrical reinforcing molding material having the same fiber volume ratio as the material are molded, and then the reinforcing molding material is used as a main molding. It fits the outer peripheral surface of the part corresponding to the small outer diameter part Fa of the material, and then presses the outer peripheral surface of the reinforcing molded body material with rubber so that its outer diameter matches the outer diameter of the large outer diameter part Fb. is there.

第2図に明示するように繊維成形体Fは、その小外径部
Faおよび補強成形体F2端面がシリンダヘッド接合面aに
略合致するように複合化されている。
As clearly shown in FIG. 2, the fiber molded body F has a small outer diameter portion.
Fa and the reinforced molded body F 2 are compounded so that the end surfaces thereof substantially coincide with the cylinder head joint surface a.

これにより主成形体F1とアルミニウム合金とよりシリン
ダボア7を画成する、繊維強化複合筒体Cの主筒体C1
構成される。また主成形体F1の高繊維体積率の小外径部
Faが、シリンダボア7の、シリンダヘッド接合面a側端
部と略ピストン下死点に対応する部位との間に配設さ
れ、その小外径部Faとアルミニウム合金により主筒体C1
の、エンジン運転中高温となる高温部Caが構成される。
またクランクケース3側には低繊維体積率の大外径部Fb
とアルミニウム合金により主筒体C1の、エンジン運転中
低温に保たれる低温部Cbが構成される。
As a result, the main cylinder C 1 of the fiber-reinforced composite cylinder C, which defines the cylinder bore 7 from the main compact F 1 and the aluminum alloy, is formed. In addition, the small outer diameter part of the main molding F 1 with a high fiber volume ratio
Fa is arranged between the end portion of the cylinder bore 7 on the cylinder head joint surface a side and a portion substantially corresponding to the piston bottom dead center, and the small outer diameter portion Fa and the aluminum alloy form a main cylinder C 1.
The high temperature portion Ca that becomes high during engine operation is configured.
Also, on the crankcase 3 side, a large outer diameter portion Fb with a low fiber volume ratio
And the aluminum alloy form a low temperature portion Cb of the main cylinder C 1 which is kept at a low temperature during engine operation.

さらに補強成形体F2とアルミニウム合金により、高温部
Ca外周面に嵌着された補強筒体C2とが構成される。
Furthermore, due to the reinforced molded body F 2 and aluminum alloy,
A reinforcing cylinder C 2 fitted to the outer peripheral surface of Ca is configured.

このように構成すると、主筒体C1の、エンジン運転中高
温となる高温部Caでは繊維量が多く、またマトリックス
量が少なくなり、一方、低温部Cbでは繊維量が少なく、
またマトリックス量が多くなる。
With this configuration, the main tubular body C 1 has a large amount of fibers in the high temperature portion Ca that becomes a high temperature during engine operation, and has a small amount of matrix, while the low temperature portion Cb has a small amount of fibers,
Also, the amount of matrix increases.

これにより、マトリックスに起因した熱膨脹量を高温部
Caと低温部Cbとで略等しくして、両部Ca,Cbにおけるシ
リンダボア7の内径変化を略均一にすることができる。
As a result, the amount of thermal expansion due to the matrix is
By making Ca and the low temperature portion Cb substantially equal to each other, the change in the inner diameter of the cylinder bore 7 in both portions Ca and Cb can be made substantially uniform.

第6,第7図は上記効果を裏付けるテスト結果を示し、第
6図において線Wは、繊維強化複合筒体Coのクランクケ
ース側端面からシリンダヘッド接合面aまでの長さL
と、繊維成形体Fの繊維体積率との関係を、また線Xは
前記長さLと、エンジン運転中でのシリンダボア7の温
度との関係をそれぞれ示す。
6 and 7 show the test results that support the above effects. In FIG. 6, the line W indicates the length L from the crankcase side end surface of the fiber reinforced composite cylinder Co to the cylinder head joint surface a.
And the fiber volume ratio of the fiber molded body F, and the line X shows the relationship between the length L and the temperature of the cylinder bore 7 during engine operation.

図中、Topはシリンダヘッド接合面aに対応する。In the figure, Top corresponds to the cylinder head joint surface a.

使用された繊維成形体Fにおける小外径部Faの繊維体積
率は25%であり、また大外径部Fbの繊維体積率は5%で
ある。
In the used fiber molded body F, the small outer diameter portion Fa has a fiber volume ratio of 25%, and the large outer diameter portion Fb has a fiber volume ratio of 5%.

第7図は、繊維強化複合筒体の長さLと、エンジン運転
中でのシリンダボア内径増加量との関係を示し、線Y1
第6図線Wの繊維体積率配分を持つ繊維強化複合筒体Co
を備えた本発明に該当し、線Y2は前記長さLの全長に亘
って繊維体積率を5%に設定される繊維強化複合筒体を
備えた比較例に該当する。
FIG. 7 shows the relationship between the length L of the fiber-reinforced composite cylinder and the increase amount of the cylinder bore inner diameter during engine operation. Line Y 1 is the fiber-reinforced composite having the fiber volume ratio distribution shown in FIG. 6 line W. Cylindrical Co
The line Y 2 corresponds to a comparative example including a fiber-reinforced composite cylinder whose fiber volume ratio is set to 5% over the entire length of the length L.

第7図から明らかなように本発明Y1は比較例Y2に比べて
高温部におけるシリンダボア内径の増加量が少なく、そ
の結果シリンダボアの内径変化は全長Lに亘って略均一
となる。
As is apparent from FIG. 7, the present invention Y 1 has a smaller increase in the inner diameter of the cylinder bore in the high temperature portion as compared with the comparative example Y 2 , and as a result, the change in the inner diameter of the cylinder bore becomes substantially uniform over the entire length L.

また補強筒体C2に複合される強化繊維の繊維体積率が高
く、且つ熱膨脹係数が前記高温部Caのそれよりも低いの
で、補強筒体C2の熱変形が大幅に抑制され、これにより
補強筒体C2によって高温部Caを確実に補強してその剛性
を向上し、エンジン運転中におけるピストンとシリンダ
ボア7との間隙を略一定に保ち、ブローバイガスおよび
オイル消費量を低減することができる。
Further, since the fiber volume fraction of the reinforcing fibers compounded in the reinforcing cylinder C 2 is high and the coefficient of thermal expansion is lower than that of the high temperature portion Ca, the thermal deformation of the reinforcing cylinder C 2 is significantly suppressed, and thereby It is possible to reliably reinforce the high temperature portion Ca by the reinforcing cylinder C 2 to improve its rigidity, keep the gap between the piston and the cylinder bore 7 substantially constant during engine operation, and reduce the blow-by gas and oil consumption. .

第8図は上記効果を裏付けるテスト結果を示し、線Z1
本発明に、また線Z2は比較例にそれぞれ該当する。本発
明Z1は、第6図線Wの繊維体積率配分を持つ繊維強化複
合筒体Coと、その高温部Ca外周面に嵌着された、繊維体
積率25%の補強成形体F2を用いた補強筒体C2とを備えて
おり、比較例Z2は長さLの全長に亘って繊維積率を5%
に設定された繊維強化複合筒体を備えている。
FIG. 8 shows the test results that support the above effects. Line Z 1 corresponds to the present invention and line Z 2 corresponds to the comparative example. The present invention Z 1 comprises a fiber-reinforced composite cylinder Co having a fiber volume ratio distribution shown in FIG. 6 W and a reinforced compact F 2 having a fiber volume ratio of 25% fitted to the outer peripheral surface of the high temperature portion Ca thereof. The reinforcing cylinder C 2 used is provided, and the comparative example Z 2 has a fiber volume ratio of 5% over the entire length of the length L.
It is equipped with a fiber-reinforced composite cylinder set to.

本発明および比較例のシリンダブロックは鋳造後溶体化
処理および時効処理を施されている。
The cylinder blocks of the present invention and the comparative example are subjected to solution treatment and aging treatment after casting.

第8図から明らかなように、本発明Z1は比較例Z2に比べ
て引張強さが優れており、これは補強筒体C2の補強効果
に基づくものである。
As is clear from FIG. 8, the present invention Z 1 is superior in tensile strength to the comparative example Z 2 , which is based on the reinforcing effect of the reinforcing cylinder C 2 .

C.発明の効果 本発明によれば、繊維強化複合筒体の主筒体における強
化繊維の繊維体積率配分を前記のように行うので、主筒
体の高温部と低温部との熱膨脹量を略等しくして、両部
におけるシリンダボアの内径変化を略均一にすることが
できる。
C. Effect of the Invention According to the present invention, since the distribution of the fiber volume ratio of the reinforcing fibers in the main cylinder of the fiber-reinforced composite cylinder is performed as described above, the thermal expansion amount of the high temperature portion and the low temperature portion of the main cylinder can be controlled. By making them substantially equal, it is possible to make the changes in the inner diameter of the cylinder bores in both parts substantially uniform.

また補強筒体により主筒体の高温部を確実に補強してエ
ンジン運転中におけるピストンとシリンダボアとの間隙
を略一定に保つことができる。
Further, the high temperature portion of the main cylinder can be surely reinforced by the reinforcing cylinder, so that the gap between the piston and the cylinder bore can be kept substantially constant during engine operation.

これによりエンジン性能を向上させることのできる前記
シリンダブロックを提供し得るものである。
As a result, the cylinder block that can improve the engine performance can be provided.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の一実施例を示し、第1図はサイアミーズ
型シリンダブロックの斜視図、第2図は第1図II−II線
断面図、第3図は第2図III−III線断面図、第4図は繊
維成形体の斜視図、第5図は第4図V−V線断面図、第
6図は繊維強化複合筒体の長さと、繊維体積率およびエ
ンジン運転中のシリンダボア温度との関係を示すグラ
フ、第7図は繊維強化複合筒体の長さと、エンジン運転
中のシリンダボア内径増加量との関係を示すグラフ、第
8図は温度と引張強さとの関係を示すグラフである。 7……シリンダボア、C……繊維強化複合筒体、C1……
主筒体、C2……補強筒体、Ca……高温部、Cb……低温部
The drawings show one embodiment of the present invention. Fig. 1 is a perspective view of a Siamese type cylinder block, Fig. 2 is a sectional view taken along line II-II of Fig. 1, and Fig. 3 is a sectional view taken along line III-III of Fig. 2. FIG. 4 is a perspective view of the fiber molded body, FIG. 5 is a sectional view taken along line VV of FIG. 4, and FIG. 6 is a length of the fiber-reinforced composite cylinder, a fiber volume ratio, and a cylinder bore temperature during engine operation. 7 is a graph showing the relationship between the length of the fiber-reinforced composite cylinder and the increase amount of the inner diameter of the cylinder bore during engine operation, and FIG. 8 is a graph showing the relationship between temperature and tensile strength. . 7: Cylinder bore, C: Fiber reinforced composite cylinder, C 1
Main cylinder, C 2 …… Reinforcing cylinder, Ca …… High temperature part, Cb …… Low temperature part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−180750(JP,A) 特開 昭60−182338(JP,A) 実開 昭58−79042(JP,U) 実開 昭60−32535(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-58-180750 (JP, A) JP-A-60-182338 (JP, A) Actual opening Sho-58-79042 (JP, U) Actual opening Sho- 32535 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】強化繊維および軽合金マトリックスよりな
る繊維強化複合筒体によりシリンダボアを画成した繊維
強化シリンダブロックにおいて、前記繊維強化複合筒体
を、前記シリンダボアを画成する主筒体と該主筒体の、
エンジン運転中高温となる高温部外周面に嵌着される補
強筒体とより構成し、該補強筒体に複合される強化繊維
の熱膨脹係数を前記主筒体に複合される強化繊維の熱膨
脹係数よりも低く設定し、前記主筒体の前記高温部およ
び前記補強筒体に複合される両強化繊維の繊維体積率
を、前記主筒体の、エンジン運転中低温に保たれる低温
部に複合される強化繊維の繊維体積率よりも高く設定し
たことを特徴とする繊維強化シリンダブロック。
1. A fiber reinforced cylinder block in which a cylinder bore is defined by a fiber reinforced composite cylinder made of a reinforced fiber and a light alloy matrix, wherein the fiber reinforced composite cylinder is a main cylinder defining the cylinder bore and the main cylinder. Of the cylinder,
A thermal expansion coefficient of a reinforcing fiber that is composed of a reinforcing cylinder that is fitted to the outer peripheral surface of the high temperature part that becomes hot during engine operation, and the thermal expansion coefficient of the reinforcing fiber that is composited in the reinforcing cylinder is Lower than that of the main cylinder, and the fiber volume ratio of both reinforcing fibers to be combined with the high temperature part of the main cylinder and the reinforcing cylinder is combined with the low temperature part of the main cylinder that is kept at a low temperature during engine operation. A fiber reinforced cylinder block characterized by being set higher than the fiber volume ratio of the reinforced fibers to be used.
JP10447486A 1986-05-07 1986-05-07 Fiber reinforced cylinder block Expired - Fee Related JPH0776541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10447486A JPH0776541B2 (en) 1986-05-07 1986-05-07 Fiber reinforced cylinder block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10447486A JPH0776541B2 (en) 1986-05-07 1986-05-07 Fiber reinforced cylinder block

Publications (2)

Publication Number Publication Date
JPS62261649A JPS62261649A (en) 1987-11-13
JPH0776541B2 true JPH0776541B2 (en) 1995-08-16

Family

ID=14381572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10447486A Expired - Fee Related JPH0776541B2 (en) 1986-05-07 1986-05-07 Fiber reinforced cylinder block

Country Status (1)

Country Link
JP (1) JPH0776541B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986234A (en) * 1989-10-31 1991-01-22 Inco Limited Polymetallic piston-cylinder configuration for internal combustion engines
EP1474594B1 (en) * 2001-12-18 2012-08-15 Mechanical Innovation, Inc. Internal combustion engine using opposed pistons
US9534559B2 (en) * 2012-06-20 2017-01-03 General Electric Company Variable thickness coatings for cylinder liners

Also Published As

Publication number Publication date
JPS62261649A (en) 1987-11-13

Similar Documents

Publication Publication Date Title
US4856462A (en) Cylinder block made of fiber-reinforced light alloy for internal combustion engine
US4831918A (en) Light alloy pistons with reinforcing inserts for the piston pin bores
US4694735A (en) Piston for internal combustion engine
US4658706A (en) Cast light metal component for internal combustion engines
US5505171A (en) Reinforced insert for a metal piston
EP0145393A2 (en) The reinforcement of engine blocks
US4742759A (en) Ceramic insert cast piston
JPH0776541B2 (en) Fiber reinforced cylinder block
CA2299057C (en) Oil passage arrangement in a piston
JPS602530B2 (en) Conrod for internal combustion engine
DE102018122899A1 (en) Aluminum cylinder block assemblies and methods of making same
US5809946A (en) Structure of an open deck type cylinder block
JP2599586B2 (en) Fiber reinforced cylinder block
US4730548A (en) Light metal alloy piston
JP3191677B2 (en) Piston for internal combustion engine
US7066078B2 (en) Piston for internal combustion engine
US5174252A (en) Exhaust manifold expansion slot for internal combustion motor
US6886504B2 (en) Engine of reciprocating piston type
JPH053726Y2 (en)
JPH08177609A (en) Cylinder of internal combustion engine and its manufacture
US5933950A (en) Method of fastening intake manifold in internal combustion engine having two cylinder banks
JPS6315559Y2 (en)
JPS59229034A (en) Piston for internal-combustion engine
JPS62278308A (en) Cylinder block made of light alloy
JPH07259634A (en) Cylinder block of multiple cylinder engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees