JPS63238227A - Fiber reinforced light alloy member - Google Patents

Fiber reinforced light alloy member

Info

Publication number
JPS63238227A
JPS63238227A JP7088787A JP7088787A JPS63238227A JP S63238227 A JPS63238227 A JP S63238227A JP 7088787 A JP7088787 A JP 7088787A JP 7088787 A JP7088787 A JP 7088787A JP S63238227 A JPS63238227 A JP S63238227A
Authority
JP
Japan
Prior art keywords
fiber
fibers
molded body
aspect ratio
light alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7088787A
Other languages
Japanese (ja)
Inventor
Hideaki Ushio
牛尾 英明
Naoyoshi Hayashi
林 直義
Kazuo Shibata
一雄 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7088787A priority Critical patent/JPS63238227A/en
Publication of JPS63238227A publication Critical patent/JPS63238227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To provide a light alloy member having high strength which exhibits sufficient fiber reinforcing capacity by specifying the fibrous volume ratio of the fibrous molded body and the aspect ratio of the fiber for reinforcing. CONSTITUTION:The fibrous volume ratio of the fibrous molded body is set to 4-60% to ensure the fibrous volume required for the fiber reinforcing in the titled member. The average aspect ratio is furthermore set to 20-150 to improve the shape retaining capacity of the fibrous molded body and to improve the strength of the light alloy member. Alumina fiber having about <=10mum average diameter and about <=60% alphatizing ratio is preferably used as the fiber for reinforcing. The titled member having high strength can be obtd. by the use of said fibrous molded body.

Description

【発明の詳細な説明】 A0発明の目的 (1)産業上の利用分野 本発明は、強化用繊維よりなる繊維成形体により強化し
た繊維強化軽合金部材に関する。
DETAILED DESCRIPTION OF THE INVENTION A0 Object of the Invention (1) Industrial Application Field The present invention relates to a fiber-reinforced light alloy member reinforced with a fiber molded body made of reinforcing fibers.

(2)従来の技術 従来、この種部材において、繊維成形体の繊維体積率に
ついては厳密な検討がなされているが、その繊維成形体
を構成する繊維の平均アスペクト比についてはそれ程厳
密な検討がなされていない。
(2) Conventional technology In the past, for this type of component, rigorous studies have been made on the fiber volume percentage of the fiber molded body, but there has been no rigorous study on the average aspect ratio of the fibers that make up the fiber molded body. Not done.

こ\で、アスペクト比とは、繊維の長さをLlまた繊維
の直径をDとした場合にL/Dで表わされる値であり、
したがって、使用繊維の直径が略等しければ繊維の長さ
を表わす値となる。
Here, the aspect ratio is a value expressed as L/D, where Ll is the length of the fiber and D is the diameter of the fiber.
Therefore, if the diameters of the fibers used are approximately the same, the value will represent the length of the fiber.

(3)発明が解決しようとする問題点 −mに、部材を繊維強化する場合には、その繊維強化部
の形状に略合致する繊維成形体を成形し、その繊維成形
体にマトリックスである軽合金の溶湯を充填するといっ
た手法が用いられている。
(3) Problem-m to be solved by the invention: When reinforcing a member with fibers, a fiber molded body that approximately matches the shape of the fiber-reinforced portion is molded, and the fiber molded body is coated with a light material that is a matrix. Techniques such as filling with molten alloy are used.

前記繊維成形体の成形工程において、繊維体積率を高く
するときには成形圧力は比較的高く設定され、また繊維
体積率を低くするときには成形圧力は比較的低く設定さ
れる。この場合、繊維成形体の保形性は、繊維相互の絡
み合いによるものであるから、繊維体積率を高くすると
きに平均アスペクト比の大きな繊維を用いると、成形圧
力によりその繊維が切損して保形性が低下し、一方繊維
体積率を低くするときに平均アスペクト比の小さな繊維
を用いると、その成形圧力下では成形不能になるといっ
た事態を惹起する。
In the process of forming the fiber molded body, the molding pressure is set relatively high when the fiber volume fraction is increased, and the molding pressure is set relatively low when the fiber volume fraction is decreased. In this case, the shape retention of the fiber molded article is due to the intertwining of the fibers, so if fibers with a large average aspect ratio are used to increase the fiber volume fraction, the fibers will be damaged by the molding pressure and the fibers will not hold. On the other hand, if fibers with a small average aspect ratio are used when reducing the fiber volume fraction, molding becomes impossible under the molding pressure.

また繊維の平均アスペクト比は、同一繊維体積率の繊維
成形体を用いた前記部材において、その強度を左右する
因子にもなる。
Further, the average aspect ratio of the fibers is also a factor that influences the strength of the above-mentioned members using fiber molded bodies having the same fiber volume percentage.

したがって繊維成形体の保形性および前記部材の強度の
両点を考慮に入れて、繊維体積率に応じ繊維の平均アス
ペクト比を特定する必要がある。
Therefore, it is necessary to specify the average aspect ratio of the fibers according to the fiber volume fraction, taking into consideration both the shape retention of the fiber molded body and the strength of the member.

本発明は、このような要請に応じ繊維体積率と平均アス
ペクト比との相関を究明したもので、これにより繊維強
化能を十分に発揮し得る保形性の優れた繊維成形体を用
いた高強度な前記部材を提供することを目的とする。
In response to these demands, the present invention investigated the correlation between the fiber volume fraction and the average aspect ratio, and thereby developed a high-quality fiber molded article with excellent shape retention that can fully demonstrate its fiber reinforcing ability. It is an object of the present invention to provide a strong member.

B1発明の構成 (1)問題点を解決するための手段 本発明は、強化用繊維よりなる繊維成形体により強化し
た繊維強化軽合金部材において、前記繊維成形体の繊維
体積率を4〜60%に、また前記強化用繊維の平均アス
ペクト比を20〜150にそれぞれ設定したことを特徴
とする。
B1 Structure of the Invention (1) Means for Solving Problems The present invention provides a fiber-reinforced light alloy member reinforced with a fiber molded body made of reinforcing fibers, in which the fiber volume fraction of the fiber molded body is 4 to 60%. Furthermore, the reinforcing fibers have an average aspect ratio of 20 to 150.

(2)作 用 前記のように繊維成形体の繊維体積率を4〜60%に設
定すると、繊維強化に必要な繊維量を確保することがで
きる。
(2) Effect When the fiber volume fraction of the fiber molded body is set to 4 to 60% as described above, the amount of fibers necessary for fiber reinforcement can be secured.

たりし、繊維体積率が4%を下回ると、繊維量が不足し
て十分な繊維強化能を得ることができず、また繊維が切
欠き効果を発揮して部材の強度が低下し、一方、繊維体
積率が60%を上回ると、繊維量が過剰となってマトリ
ックスの充填性が悪化し、所定の強度を得ることができ
ない。
However, if the fiber volume fraction is less than 4%, the amount of fibers is insufficient and sufficient fiber reinforcing ability cannot be obtained, and the fibers exhibit a notch effect, reducing the strength of the member. When the fiber volume fraction exceeds 60%, the amount of fibers becomes excessive, the filling properties of the matrix deteriorate, and it is impossible to obtain a predetermined strength.

また平均アスペクト比を20〜150に設定すると、前
記繊維体積率の繊維成形体においてその保形性を良好に
し、また部材の強度を向上させることができる。
Moreover, when the average aspect ratio is set to 20 to 150, the shape retention of the fiber molded article having the above-mentioned fiber volume percentage can be improved, and the strength of the member can be improved.

たりし、平均アスペクト比が20を下回ると、繊維体積
率を4%に設定した場合に、その比較的低い成形圧力下
では成形不能となり、一方、平均アスペクト比が150
を上回ると、繊維体積率を60%に設定した場合に、そ
の比較的高い成形圧力によって、繊維が切損して保形性
が低下する。
However, if the average aspect ratio is less than 20, it becomes impossible to mold under that relatively low molding pressure when the fiber volume fraction is set to 4%;
If it exceeds this, even if the fiber volume fraction is set to 60%, the relatively high molding pressure will cause the fibers to break and reduce shape retention.

(3)実施例 第1〜第3図は、軽合金としてのアルミニウム合金より
鋳造された、繊維強化軽合金部材としてのサイアミーズ
型シリンダブロック1を示し、そのシリンダブロックl
はシリンダボア2aを有する複数のシリンダバレル2.
〜24を連結したサイアミーズシリンダバレル2と、そ
れを囲繞するシリンダブロック外壁3と、シリンダブロ
ック外壁3に連設されたクランクケース4とを備え、サ
イアミーズシリンダバレル2およびシリンダブロック外
壁3間にサイアミーズシリンダバレル2の外周が臨む水
ジャケット5が設けられる。水ジャケット5のシリンダ
ヘッド接合面a側端部において、サイアミーズシリンダ
バレル2とシリンダブロック外壁3とが複数の補強デツ
キ部6により部分的に連結され、相隣る補強デツキ部6
間は水ジャケット5の、シリンダヘッドへの連通ロアと
して機能する。これによりシリンダブロック1は、いわ
ゆるクローズドデツキ型に構成される。
(3) Embodiment Figures 1 to 3 show a Siamese-type cylinder block 1 as a fiber-reinforced light alloy member cast from an aluminum alloy as a light alloy.
includes a plurality of cylinder barrels 2. having cylinder bores 2a.
24, a cylinder block outer wall 3 surrounding the Siamese cylinder barrel 2, and a crankcase 4 connected to the cylinder block outer wall 3. A water jacket 5 facing the outer periphery of the barrel 2 is provided. At the end of the water jacket 5 on the side of the cylinder head joint surface a, the Siamese cylinder barrel 2 and the cylinder block outer wall 3 are partially connected by a plurality of reinforcing deck parts 6, and adjacent reinforcing deck parts 6
The space between the cylinders and the cylinder head functions as a lower part of the water jacket 5 that communicates with the cylinder head. As a result, the cylinder block 1 is constructed into a so-called closed deck type.

各シリンダバレル2I〜24は、シリンダボア2a回り
を繊維強化する円筒状繊維強化部Cと、その外周を囲繞
する円筒状アルミニウム合金単体部Mとよりなる。繊維
強化部Cは、第4図に示す強化用繊維としてのアルミナ
系繊維より成形された円筒状繊維成形体Fと、それに充
填されたアルミニウム合金マトリックスとより構成され
る。
Each of the cylinder barrels 2I to 24 includes a cylindrical fiber-reinforced portion C that fiber-reinforces the circumference of the cylinder bore 2a, and a cylindrical aluminum alloy unit portion M that surrounds the outer periphery of the cylindrical fiber-reinforced portion C. The fiber reinforced part C is composed of a cylindrical fiber molded body F formed from alumina fibers as reinforcing fibers shown in FIG. 4, and an aluminum alloy matrix filled therein.

引張り試験のために、前記構成を有する各種シリンダブ
ロック1を以下に述べる工程を経て製造する。
For the tensile test, various cylinder blocks 1 having the above configuration are manufactured through the steps described below.

先ず、円筒状繊維成形体Fの製造について説明すると、
平均直径3μmで、平均アスペクト比を20〜800の
範囲内で種々変更した多種類のアルミナ系繊維に、アル
ミナゾル、シリカゾル等の無機バインダを各別に添加し
て多種類の成形材料の水溶液を調製し、これら成形材料
の水溶液を用いて吸引成形法の適用下で各種円筒体を得
、次いでこの円筒体に、それをラバーを介し成形圧力約
20kg/cIllで押圧する、ラバープレス処理を施
して繊維体積率を決定し、さらに円筒体を加熱乾燥後焼
成することにより、繊維体積率(Vf)12%の各種円
筒状繊維成形体Fを得る。
First, the production of the cylindrical fiber molded body F will be explained.
Aqueous solutions of various molding materials were prepared by adding inorganic binders such as alumina sol and silica sol to various types of alumina fibers with an average diameter of 3 μm and an average aspect ratio of 20 to 800. Various cylindrical bodies are obtained using a suction molding method using aqueous solutions of these molding materials, and then the cylindrical bodies are subjected to a rubber press treatment in which the cylindrical bodies are pressed through rubber at a molding pressure of approximately 20 kg/cIll to form fibers. Various cylindrical fiber molded bodies F having a fiber volume fraction (Vf) of 12% are obtained by determining the volume fraction, and then heating and drying the cylindrical body and then firing it.

鋳造時には、金型を100〜120℃に、また円筒状繊
維成形体Fを約150〜450℃にそれぞれ予熱した後
、円筒状繊維成形体Fおよび水ジヤケツト用砂中子を金
型に設置する。そして、温度730〜740℃のアルミ
ニウム合金(、l−3i−Cu系)の溶湯を金型に注入
し、その溶湯を200〜1000kg/cJIの圧力下
で完全凝固させて各種シリンダブロック1を得る。これ
らシリンダブロック1には鋳造後T6処理等の熱処理が
施される。
During casting, after preheating the mold to 100 to 120°C and preheating the cylindrical fiber molded body F to approximately 150 to 450°C, the cylindrical fiber molded body F and the sand core for the water jacket are installed in the mold. . Then, molten aluminum alloy (l-3i-Cu type) at a temperature of 730 to 740°C is injected into the mold, and the molten metal is completely solidified under a pressure of 200 to 1000 kg/cJI to obtain various cylinder blocks 1. . These cylinder blocks 1 are subjected to heat treatment such as T6 treatment after casting.

各種シリンダブロックlの繊維強化部Cよりテストピー
スを切出し、各テストピースを用いて引張り試験を行っ
たところ、第5図線Xに示す結果を得た。
Test pieces were cut out from the fiber-reinforced portions C of various cylinder blocks 1, and a tensile test was conducted using each test piece, resulting in the results shown by the line X in Figure 5.

第5図中、線Y、Zは円筒状繊維成形体Fの繊維体積率
を60%、4%にそれぞれ設定しな場合に該当し、その
使用繊維は、前記同様に平均直径3μmのアルミナ系繊
維である。また繊維体積率60%の場合の成形圧力は1
000 kg/cJ、同4%の場合のそれは1kg/−
である。
In Fig. 5, lines Y and Z correspond to cases where the fiber volume fraction of the cylindrical fiber molded body F is not set to 60% and 4%, respectively, and the used fibers are alumina-based fibers with an average diameter of 3 μm as described above. It is a fiber. In addition, when the fiber volume fraction is 60%, the molding pressure is 1
000 kg/cJ, if the same is 4%, it is 1 kg/-
It is.

前記のようにアルミナ系繊維の繊維体積率を4〜60%
に設定すると、繊維強化に必要な繊維量を確保して高強
度な繊維強化部Cを得ることができる。
As mentioned above, the fiber volume percentage of alumina fiber is 4 to 60%.
When set to , it is possible to secure the amount of fibers necessary for fiber reinforcement and obtain a high-strength fiber-reinforced portion C.

たゾし、繊維体積率が4%を下回ると、前記のように繊
維量が不足してアルミナ系繊維による繊維強化能を得る
ことができない等の問題があり、一方、繊維体積率が6
0%を上回ると、前記のように繊維量が過剰となってマ
トリックスの充填性が悪化する等の問題がある。
On the other hand, if the fiber volume fraction is less than 4%, there will be problems such as the insufficient amount of fibers and the inability to obtain the fiber reinforcing ability of the alumina fibers.
If it exceeds 0%, there are problems such as the amount of fiber becomes excessive and the filling properties of the matrix deteriorate as described above.

また平均アスペクト比を20〜150に設定すると、前
記繊維体積率の円筒状繊維成形体Fにおいてその保形性
を良好にすると共に繊維強化部Cの強度を向上させるこ
とができる。
Further, when the average aspect ratio is set to 20 to 150, the shape retention of the cylindrical fiber molded article F having the above-mentioned fiber volume percentage can be improved, and the strength of the fiber reinforced portion C can be improved.

たソ゛シ、平均アスペクト比が20を下回ると、繊維体
積率を4%に設定した場合に、その比較的低い成形圧力
下では成形不能となり、一方、平均アスペクト比が15
0を上回ると、繊維体積率を60%に設定した場合に、
その比較的高い成形圧力によって、アルミナ系繊維が切
損して保形性が低下する。
However, when the average aspect ratio is less than 20, it becomes impossible to mold under that relatively low molding pressure when the fiber volume fraction is set to 4%; on the other hand, when the average aspect ratio is less than 15
When it exceeds 0, when the fiber volume fraction is set to 60%,
Due to the relatively high molding pressure, the alumina fibers are cut and their shape retention is reduced.

第5図より明らかなように、各繊維強化部Cにおいて、
その引張強さを最良値に保つためには各繊維体積率と平
均アスペクト比との間には密接な関連があり、繊維体積
率4%(線Z)、12%(線X)、60%(線Y)につ
いては、それぞれ平均アスペクト比が100〜130.
80〜100゜30〜70である。
As is clear from FIG. 5, in each fiber reinforced portion C,
In order to maintain the tensile strength at the best value, there is a close relationship between each fiber volume percentage and the average aspect ratio, and the fiber volume percentage is 4% (line Z), 12% (line (line Y), the average aspect ratio is 100 to 130.
80-100°30-70°.

第6図は、平均直径3μm、平均アスペクト比70のア
ルミナ系繊維よりなる、繊維体積率12%の円筒状繊維
成形体Fを用いた前記繊維強化部Cにおける、アルミナ
系繊維のα化率と引張強さとの関係を示し、α化率が6
0%以下であれば所定の引張強さが得られるが、α化率
が60%を上回ると、引張強さが急激に低下する。これ
はアルミナ系繊維の硬度が増すため、その繊維が成形圧
力により切損することに起因する。
Figure 6 shows the gelatinization rate of alumina fibers in the fiber reinforced section C using a cylindrical fiber molded body F with a fiber volume fraction of 12%, which is made of alumina fibers with an average diameter of 3 μm and an average aspect ratio of 70. It shows the relationship with tensile strength, and the gelatinization rate is 6.
If it is 0% or less, a predetermined tensile strength can be obtained, but if the gelatinization rate exceeds 60%, the tensile strength decreases rapidly. This is due to the increased hardness of the alumina fibers, which causes the fibers to break due to molding pressure.

アルミナ系繊維の平均直径は10μm以下であることが
望ましい。その理由は、平均直径が10μmを上回ると
、その繊維が、軸線を引張り荷重方向と交差するように
配列された場合、マトリックスを遮断して大きな切欠き
効果を発揮するからである゛。
It is desirable that the average diameter of the alumina fibers is 10 μm or less. The reason for this is that when the average diameter exceeds 10 μm, the fibers, when arranged so that their axes intersect with the direction of the tensile load, block the matrix and exhibit a large notch effect.

本発明に係る前記部材としては、前記シリンダブロック
の外に、バルブシートを繊維強化部としたシリンダヘッ
ド、トップランド部を繊維強化部としたピストン、主と
してボルト孔間に存するクランクジャーナル支承部を繊
維強化部としたクランクシャフト用ベアリングキャップ
(およびシリンダブロック)、主として枠部を繊維強化
部としたコンロンド、全体を繊維強化したロッカアーム
等各種内燃機関用部品、その他の構造部材が該当する。
In addition to the cylinder block, the member according to the present invention includes a cylinder head whose valve seat is a fiber-reinforced part, a piston whose top land part is a fiber-reinforced part, and a crank journal support part which mainly exists between the bolt holes is a fiber-reinforced part. This applies to various internal combustion engine parts, such as crankshaft bearing caps (and cylinder blocks) with reinforced parts, connecting rods with mainly fiber-reinforced frames, rocker arms whose entire parts are fiber-reinforced, and other structural members.

下表は、前記内燃機関用部品における最適な繊維体積率
(vr)’および平均アスペクト比(L/D)の関係を
示す。
The table below shows the relationship between the optimum fiber volume ratio (vr)' and average aspect ratio (L/D) in the internal combustion engine parts.

前記表においてfatは断熱性を向上させる場合にまた
(blはリング溝の耐摩耗性を向上させる場合にそれぞ
れ該当する。
In the above table, fat corresponds to the case where the heat insulation is improved, and bl corresponds to the case where the wear resistance of the ring groove is improved.

なお、部材に耐摩耗性、耐焼付き性等の摺動特性が要求
されるときには、アルミナ系繊維等に炭素繊維等の自己
潤滑能を有する繊維を混合することは有効であり、この
場合、主たる繊維と混合繊維の平均直径が異なっても、
それらの平均アスペクト比を前記範囲に特定することに
よって部材の強度を向上させることができる。
In addition, when sliding properties such as wear resistance and seizure resistance are required for the member, it is effective to mix fibers with self-lubricating ability such as carbon fibers with alumina fibers, etc. In this case, the main Even if the average diameters of the fibers and mixed fibers are different,
By specifying their average aspect ratio within the above range, the strength of the member can be improved.

C1発明の効果 本発明によれば、繊維成形体の繊維体積率および強化用
繊維の平均アスペクト比を前記のように特定することに
より、繊維強化能を十分に発揮し得る保形性の優れた繊
維成形体を用いた高強度な繊維強化軽合金部材を提供す
ることができる。
C1 Effects of the Invention According to the present invention, by specifying the fiber volume fraction of the fiber molded article and the average aspect ratio of the reinforcing fibers as described above, a fiber molded article with excellent shape retention that can fully exhibit its fiber reinforcing ability can be obtained. A high-strength fiber-reinforced light alloy member using a fiber molded body can be provided.

【図面の簡単な説明】 第1ないし第3図はシリンダブロックを示し、第1図は
平面図、第2図は第1図■−n線断面図、第3図は第2
図m−m線断面図、第4図は円筒状繊維成形体の斜視図
、第5図はアルミナ系繊維の平均アスペクト比と繊維強
化部の引張強さとの関係を示すグラフ、第6図はアルミ
ナ系繊維のα化率と繊維強化部の引張強さとの関係を示
すグラフである。
[Brief Description of the Drawings] Figures 1 to 3 show the cylinder block, Figure 1 is a plan view, Figure 2 is a sectional view taken along the line ■-n in Figure 1, and Figure 3 is a cylinder block.
Figure 4 is a perspective view of the cylindrical fiber molded body, Figure 5 is a graph showing the relationship between the average aspect ratio of alumina fibers and the tensile strength of the fiber reinforced part, and Figure 6 is a cross-sectional view taken along line m-m. It is a graph showing the relationship between the alpha conversion rate of alumina-based fibers and the tensile strength of the fiber-reinforced portion.

Claims (4)

【特許請求の範囲】[Claims] (1)強化用繊維よりなる繊維成形体により強化した繊
維強化軽合金部材において、前記繊維成形体の繊維体積
率を4〜60%に、また前記強化用繊維の平均アスペク
ト比を20〜150にそれぞれ設定したことを特徴とす
る繊維強化軽合金部材。
(1) In a fiber-reinforced light alloy member reinforced with a fiber molded body made of reinforcing fibers, the fiber volume fraction of the fiber molded body is set to 4 to 60%, and the average aspect ratio of the reinforcing fibers is set to 20 to 150. A fiber-reinforced light alloy member characterized by the following settings.
(2)前記平均アスペクト比を30〜130に設定した
、特許請求の範囲第(1)項記載の繊維強化軽合金部材
(2) The fiber-reinforced light alloy member according to claim (1), wherein the average aspect ratio is set to 30 to 130.
(3)前記強化用繊維の平均直径を10μm以下に設定
した、特許請求の範囲第(1)または第(2)項記載の
繊維強化軽合金部材。
(3) The fiber-reinforced light alloy member according to claim 1 or 2, wherein the average diameter of the reinforcing fibers is set to 10 μm or less.
(4)前記強化用繊維はアルミナ系繊維であり、該アル
ミナ系繊維のα化率を60%以下に設定した、特許請求
の範囲第(1)、第(2)または第(3)項記載の繊維
強化軽合金部材。
(4) The reinforcing fibers are alumina fibers, and the alumina fibers have a gelatinization rate of 60% or less, as described in claim 1, (2), or (3). Fiber-reinforced light alloy components.
JP7088787A 1987-03-25 1987-03-25 Fiber reinforced light alloy member Pending JPS63238227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7088787A JPS63238227A (en) 1987-03-25 1987-03-25 Fiber reinforced light alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7088787A JPS63238227A (en) 1987-03-25 1987-03-25 Fiber reinforced light alloy member

Publications (1)

Publication Number Publication Date
JPS63238227A true JPS63238227A (en) 1988-10-04

Family

ID=13444487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7088787A Pending JPS63238227A (en) 1987-03-25 1987-03-25 Fiber reinforced light alloy member

Country Status (1)

Country Link
JP (1) JPS63238227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421087A (en) * 1989-10-30 1995-06-06 Lanxide Technology Company, Lp Method of armoring a vehicle with an anti-ballistic material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195940A (en) * 1985-02-26 1986-08-30 Toshiba Corp Production of short fiber preform

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195940A (en) * 1985-02-26 1986-08-30 Toshiba Corp Production of short fiber preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421087A (en) * 1989-10-30 1995-06-06 Lanxide Technology Company, Lp Method of armoring a vehicle with an anti-ballistic material

Similar Documents

Publication Publication Date Title
DE19810464C1 (en) Crankcase for internal combustion engine
EP0145393B1 (en) The reinforcement of engine blocks
JPS5893948A (en) Engine piston
US4136648A (en) Low weight reciprocating engine
US4831918A (en) Light alloy pistons with reinforcing inserts for the piston pin bores
US4856462A (en) Cylinder block made of fiber-reinforced light alloy for internal combustion engine
DE112014005655T5 (en) Cylinder liner of an internal combustion engine
US4197899A (en) Method of casting a low weight reciprocating engine
JPS63238227A (en) Fiber reinforced light alloy member
US4212281A (en) Low weight reciprocating engine
DE102018122899A1 (en) Aluminum cylinder block assemblies and methods of making same
US4730548A (en) Light metal alloy piston
DE102022109109A1 (en) ENGINE CRANKSHAFT ASSEMBLIES WITH INTERNAL REINFORCEMENT STRUCTURES
WO2008059329A1 (en) Cylinder block and method for producing cylinder block
DE10221675B4 (en) cylinder housing
WO2009056244A1 (en) Method for producing a cylinder crankcase
JPS60182338A (en) Cylinder block for internal-combustion engine made of light metal
JPS59229033A (en) Piston for internal-combustion engine
EP2114590B1 (en) Method for the production of a cylinder crank housing having multiple cylinder sleeves and short cylinder sleeves with material strips fixed thereto
JPS59229034A (en) Piston for internal-combustion engine
JPS62261649A (en) Fiber-reinforced cylinder-block
JPS6323869B2 (en)
DE10221673A1 (en) Piston engine cylinder and liner production reinforces liner during squeeze- or chill-casting against deformation for later removal after casting.
US4669367A (en) Light metal alloy piston
JPH0313549Y2 (en)