JPS62261632A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPS62261632A
JPS62261632A JP10651586A JP10651586A JPS62261632A JP S62261632 A JPS62261632 A JP S62261632A JP 10651586 A JP10651586 A JP 10651586A JP 10651586 A JP10651586 A JP 10651586A JP S62261632 A JPS62261632 A JP S62261632A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
transient
fuel
crank angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10651586A
Other languages
Japanese (ja)
Other versions
JPH0751908B2 (en
Inventor
Nobushige Ooyama
宣茂 大山
Takeshi Atago
阿田子 武士
Yoshihisa Kawamura
川村 佳久
Kenji Ikeura
池浦 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd filed Critical Hitachi Ltd
Priority to JP61106515A priority Critical patent/JPH0751908B2/en
Publication of JPS62261632A publication Critical patent/JPS62261632A/en
Publication of JPH0751908B2 publication Critical patent/JPH0751908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To enable a highly accurate air-fuel ratio control without a response delay by comparing the crank angle, in which the actual value of the cylinder internal pressure of an engine at the time of transient operation attains a maximum, with a target value, and learning the correction quantity of air-fuel ratio at the time of transient in accordance with the deviation. CONSTITUTION:When the operation is discriminated to the in a transient operating condition by a transient condition discriminating means 3 on the basis of the number of revolutions N and intake air quantity Qa from an operating condition detecting means 1, a target value setting means 6 sets the target value theta pmo of the crank angle at which the cylinder internal pressure attains a maximum in accordance with the transient condition. The detected signal P from a cylinder internal pressure detecting means 2 caused by a piezoelectric sensor formed in the washer shape of an ignition plug is input into a means 5, from which the actual value theta pmax of the crank angle at which the cylinder internal pressure attains a maximum is input into a learning means 7. The learning means 7 learns the correction quantity of air-fuel ratio at the time of transient in accordance with the deviation between the target value theta pmp and the actual value theta pmax, and in response to this learning value the fuel injection quantity is corrected by a means 8.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は内燃機関の空燃比制御装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an air-fuel ratio control device for an internal combustion engine.

(従来の技術) 電子制御の空燃比制御装置では、運転状態に応じて1燃
焼サイクルに必要な燃料噴射量を演算し、この噴射量に
応じた駆動パルスを機関回転に同期して燃料噴射弁に出
力するのであるが、制御精度を高めるため、定常運転時
等には、排気系に設けた空燃比センサからの信号をフィ
ードパンクして所定の空燃比(ベース空虚比)が得られ
るようにしている。また、加速時には運転性を向上させ
るために過渡時空燃比を加えてベース′g!燃比よりも
;農い空燃比(過渡時空燃比)にすることが行なわれて
いる(特開昭54−106736号、同54−1307
34号公報参照。)。
(Prior art) An electronically controlled air-fuel ratio control device calculates the amount of fuel injection required for one combustion cycle according to the operating state, and sends a drive pulse corresponding to this injection amount to the fuel injection valve in synchronization with engine rotation. However, in order to improve control accuracy, during steady operation, etc., the signal from the air-fuel ratio sensor installed in the exhaust system is feed-punked to obtain a predetermined air-fuel ratio (base air ratio). ing. Also, in order to improve drivability during acceleration, a transient air-fuel ratio is added to the base'g! Rather than the fuel ratio, the air-fuel ratio (transient air-fuel ratio) is used (Japanese Patent Application Laid-open Nos. 54-106736 and 54-1307).
See Publication No. 34. ).

(発明が解決しようとする問題点) ところで、空燃比のフィードバック制御は目標値(目標
値を中心にして許容範囲が設けられることが多い。)か
らの偏差がなくなるように制御を行うのであるから、定
常時から過渡時への移行に伴う目標値自体の変化により
偏差が発生する場合、あるいは同じ目標値でありながら
経時的または燃料性状の変化等により新たに偏差が発生
した場合においても、制御量が許容範囲に収まる土での
時問(静達時間)の長短はあるにせよ、最終的には許容
、@囲に収めることができる。
(Problem to be Solved by the Invention) By the way, air-fuel ratio feedback control is performed so that there is no deviation from a target value (often a tolerance range is set around the target value). , when a deviation occurs due to a change in the target value itself due to the transition from a steady state to a transient state, or when a new deviation occurs at the same target value due to changes over time or fuel properties, etc. Although there are long and short periods of time on soil where the amount is within the allowable range, in the end it can be brought within the permissible range.

しかiながら、空燃比センサに基づくフィードバック制
御では、吸気系での噴射量(空燃比)の変化が排気系に
現れるまでに応答遅れを生じるので、過渡時の空燃比制
御精度を定常時と同様に高めることはなかなか困難であ
る。このため、過渡時空燃比の混合気よりも薄いと、運
転者の希望する加速性が得られず、逆に濃くなると燃費
を悪くしてしまうことになる。これは、フィードバック
制御にとって過渡時がネックになるからであり、いかに
過渡時の空燃比制御精度を高めることができるかにより
過渡時の運転性や燃費が左右されるのである。
However, with feedback control based on an air-fuel ratio sensor, there is a response delay before a change in the injection amount (air-fuel ratio) in the intake system appears in the exhaust system, so the air-fuel ratio control accuracy during transient periods cannot be maintained at the same level as during steady-state conditions. It is quite difficult to raise this level. For this reason, if the air-fuel mixture is thinner than the transient air-fuel ratio, the acceleration desired by the driver cannot be obtained, and on the other hand, if the air-fuel mixture is richer, fuel efficiency will deteriorate. This is because transient times are a bottleneck for feedback control, and drivability and fuel efficiency during transient times are influenced by how much the accuracy of air-fuel ratio control during transient times can be improved.

この発明はこうした従来例の問題点を改良すべくなされ
たもので、筒内圧の最大値を与えるクランク角(目標値
)が空燃比と相関を有しかつ運転条件の変化に拘わりな
くほぼ一定の値を取ることに着目し、このクランク角の
実際値9 pemaxをフィードバック制御信号として
使用すれば、過渡時においても応答遅れを招かない高精
度の空燃比制御が可能となる。すなわち、筒内圧が最大
となるクラレフ角の実際値9pmaxを検出し過渡時の
筒内圧が最大となるクランク角の目標値θpmoからの
偏差を無くすように学習補正するようにし゛た空燃比制
御装置を提供することを目的とする。
This invention was made to improve the problems of the conventional example, and the crank angle (target value) that provides the maximum value of the cylinder pressure has a correlation with the air-fuel ratio and is almost constant regardless of changes in operating conditions. By focusing on taking the value and using this actual crank angle value 9 pemax as a feedback control signal, it becomes possible to control the air-fuel ratio with high precision without causing a response delay even during transient times. In other words, the air-fuel ratio control device detects the actual value 9pmax of the Kuralev angle at which the cylinder pressure is at its maximum, and performs learning correction so as to eliminate the deviation from the target value θpmo of the crank angle at which the cylinder internal pressure at the time of transition is at its maximum. The purpose is to provide

(問題点を解決するための手段) この発明では、第1図に示すように、機関の運転状態を
検出する手段1と、機関の過渡状態を判別する手段3と
、運転状態に応じて目標空燃比となるように基本燃料噴
射ii T pを演算する手段4と、機関の筒内圧を検
出する手段2と、筒内圧が最大となるクランク角の実際
値θpmaxを検出する手段5と、過渡時の筒内圧が最
大となるクランク角の目標値9 p+*oを設定する手
段6と、これら実際値と目標値との偏差に応して求めた
過渡時の空燃比の補正量を学習する手段7と、この学習
値に応じて過渡時の燃料噴射量を補正する手段8とを備
えさせた。
(Means for Solving the Problems) In the present invention, as shown in FIG. 1, means 1 for detecting the operating state of the engine, means 3 for determining the transient state of the engine, means 4 for calculating the basic fuel injection ii T p so as to achieve the air-fuel ratio; means 2 for detecting the cylinder pressure of the engine; means 5 for detecting the actual value θpmax of the crank angle at which the cylinder pressure becomes maximum; The means 6 for setting the target value 9 p+*o of the crank angle at which the cylinder pressure is maximum at the time, and the correction amount of the air-fuel ratio during the transient period determined according to the deviation between these actual values and the target value are learned. A means 7 and a means 8 for correcting the fuel injection amount during a transient period according to the learned value are provided.

ここに、「演算」は数値計算の他、テーブル検索等の動
作をも含む概念として使用する・また・機関負荷として
の吸入空気RQ aと機関回転数Nとを運転状態の代表
値として示す。
Here, the term "calculation" is used as a concept that includes not only numerical calculations but also operations such as table searches.In addition, the intake air RQa as the engine load and the engine speed N are shown as representative values of the operating state.

(作用) このように構成すると、空燃比に相関する値θpmax
をフィードバック信号として目標値9 pmoからの偏
差が求められ、次の過渡制御時にはこの偏差が生じない
ように、過渡時の空燃比の補正量が学習される。
(Operation) With this configuration, the value θpmax correlated to the air-fuel ratio
The deviation from the target value 9pmo is determined using the feedback signal, and the correction amount of the air-fuel ratio during the transient period is learned so that this deviation will not occur during the next transient control.

たとえば、燃料性状の変化や8!1関の経時変化により
そのときの混合気が過渡時空燃比を与える混合気よりも
希薄になると燃焼が遅れることから、七のとbのe p
taaxの値は19 pmoよりも遅角側にずれるが、
この場合には、混合気が濃くなるように過渡時空燃比の
補正量が学習され、′次の過渡時には偏差が生じないよ
うに保持される。逆に、゛過渡時空燃比の混合気よりも
そのときの混合気が濃い場合には、e pa+axがθ
pmoよりも進角側にずれるので、この場合も偏差がな
くなるように過渡時空燃比の補7F号が学習さバーx− すなわち、9911JLXをフィードバック信号として
目標値との偏差が学習補正によりその都度解消されるの
で、過渡の制御開始時にはそのときの燃料性状や懺+*
a態に応じて過渡時空燃比が得られるように初期設定し
たと同じ状態が常に得られることになる。この結果、過
渡時にあっても、過渡時空燃比への高精度の制御が可能
となり、燃料性状や経時的なもの等後発的に空燃比に影
響する状態変化に左右されることなく、良好な運転性を
獲得することができる。
For example, if the current air-fuel mixture becomes leaner than the air-fuel mixture that provides the transient air-fuel ratio due to changes in fuel properties or changes over time in the 8!1 ratio, combustion will be delayed.
The value of taax shifts to the retarded side than 19 pmo,
In this case, the transient air-fuel ratio correction amount is learned so that the air-fuel mixture becomes richer, and is maintained so that no deviation occurs during the 'th transition. Conversely, if the air-fuel mixture at that time is richer than the air-fuel mixture at the transient air-fuel ratio, e pa+ax becomes θ
Since the angle deviates to the advance side compared to pmo, the supplementary No. 7F of the transient air-fuel ratio is learned so that there is no deviation in this case as well.In other words, the deviation from the target value is canceled each time by learning correction using 9911JLX as a feedback signal. Therefore, at the start of transient control, the fuel properties and
The same state that is initially set so that the transient air-fuel ratio is obtained according to state a is always obtained. As a result, it is possible to control the transient air-fuel ratio with high precision even during transient periods, ensuring good operation without being affected by subsequent changes in the air-fuel ratio, such as fuel properties or changes over time. can acquire sexuality.

以下実施例にてさらに説明する。This will be further explained in Examples below.

(実施例) 第2図は電子制御燃料噴射機関に適用されたこの発明の
第1実施例の機械的構成を表している。
(Embodiment) FIG. 2 shows the mechanical configuration of a first embodiment of the present invention applied to an electronically controlled fuel injection engine.

こうした機関では、各種め運転変数を検出するセンサ類
からの信号がコントロールユニット30に入力され、コ
ントロールユニ”/’)’30ではこれらの信号に基づ
いて機関に供給する燃料噴射!ITiが演算され、この
演算された噴射量Tiに基づく駆動パルスにて電磁燃料
噴射弁18が駆動制御される。こうした構成は公知であ
り、運松状態検出手段として機関負荷としての吸入空気
量Qaを検出する空気量センサ20、クランク角の1度
信号と基準位置信号を発生するクランク角センサ21、
冷却水温Twを検出する水温センサ22、空燃比を検出
する空燃比センサ(たとえばmi濃度センサ)24hJ
のセンサ類が設(すられている。なお、15はMAA管
、16は吸気ff’)弁、17は排気管、19は点火プ
ラグである。
In such an engine, signals from sensors that detect various operating variables are input to the control unit 30, and the control unit 30 calculates the fuel injection !ITi to be supplied to the engine based on these signals. , the electromagnetic fuel injection valve 18 is driven and controlled by a drive pulse based on the calculated injection amount Ti. Such a configuration is publicly known, and the air flow detecting the intake air amount Qa as the engine load is used as a driving state detection means. quantity sensor 20, a crank angle sensor 21 that generates a 1 degree crank angle signal and a reference position signal;
Water temperature sensor 22 that detects cooling water temperature Tw, air-fuel ratio sensor (for example, mi concentration sensor) 24hJ that detects air-fuel ratio
Sensors 15 are MAA pipes, 16 are intake ff' valves, 17 are exhaust pipes, and 19 are spark plugs.

次に、この発明の特徴部分は空燃比と相関を有するθp
IIlax(筒内圧が最大となるクランク角の実際値)
をフィードバック信号として、過渡時の筒内圧が最大と
なるクランク角の目標値θpmoからの偏差をな(す学
習補正にあり、epmaxやθpm。
Next, the characteristic part of this invention is that θp has a correlation with the air-fuel ratio.
IIlax (actual value of crank angle at which cylinder pressure is maximum)
is used as a feedback signal to calculate the deviation of the crank angle from the target value θpmo at which the in-cylinder pressure during the transient period is at its maximum.

の演算並びにこれらの偏差に基づく学習補正はコントロ
ールユニット30にて実行される。
The calculations and the learning correction based on these deviations are executed by the control unit 30.

まず、筒内圧を検出する手段自体は公知のものを採用す
る。たとえば、@3図に示すように、筒内圧センサ25
A〜25Dとチャージアンプ26八〜26Dとから筒内
圧検出手段を構成し、各筒内圧センサから出力される電
荷信号を電荷−電圧変換することにより、電圧信号31
1〜Su4として出力させる。ここに、筒内圧センサに
は点火プラグ1つの座金型に形成した圧電センサあるい
は筒内圧を直接検出する圧電センサが良く知られている
First, a known means for detecting the cylinder pressure is used. For example, as shown in Figure @3, the cylinder pressure sensor 25
A to 25D and charge amplifiers 268 to 26D constitute an in-cylinder pressure detection means, and the voltage signal 31 is obtained by converting the charge signal output from each in-cylinder pressure sensor from charge to voltage.
1 to Su4. Here, as the cylinder pressure sensor, a piezoelectric sensor formed in the shape of a washer of one spark plug or a piezoelectric sensor that directly detects the cylinder pressure is well known.

なお、13図に示す構成は4気筒機関の例であり、金気
筒のf9 pmaxを検出するには、1気筒につき燃焼
の行なわれる付近(所定クランク角範囲)の筒内圧信号
のみで十分なため、マルチプレクサ27にて点火順序に
合致する気筒の信号を順次選択して出力させている。さ
らに、マルチプレクサ27からの信号S2nは低周波振
動検出回路28を介して主制御回路31に入力される。
The configuration shown in Figure 13 is an example of a four-cylinder engine, and in order to detect the f9 pmax of the gold cylinder, only the in-cylinder pressure signal in the vicinity of combustion (in a predetermined crank angle range) per cylinder is sufficient. , a multiplexer 27 sequentially selects and outputs the signals of the cylinders that match the ignition order. Furthermore, the signal S2n from the multiplexer 27 is input to the main control circuit 31 via the low frequency vibration detection circuit 28.

これは、不要な周波数成分を除去して低周波成分である
筒内圧信号のみを有効に取り出すためである。
This is to remove unnecessary frequency components and effectively extract only the cylinder pressure signal, which is a low frequency component.

次に、こうして得られる筒内圧信号S9を用いて主制御
回路内で実行される動作内窒を第4図の流れ図を参照し
ながら説明する。同図に示す動作は各気筒毎に膨張行程
における所定のクランク角(50°ATDC付近)で割
り込み処理により実行される。これは、噴射量演算の前
提としてepmaxの値が必要となるので、この811
111(LXの演算の後に噴射量の演算を実行させるこ
とにしたためである。
Next, the internal operation executed in the main control circuit using the cylinder pressure signal S9 obtained in this way will be explained with reference to the flowchart of FIG. The operation shown in the figure is executed by interrupt processing at a predetermined crank angle (near 50° ATDC) in the expansion stroke for each cylinder. This is because the value of epmax is required as a prerequisite for calculating the injection amount, so this 811
111 (This is because it was decided to perform the calculation of the injection amount after the calculation of LX.

なお、主制御回路31は第1図に示す手段3〜8の機能
を有し、第3図に示すようにCPU32゜ROM33.
RAM34.不揮発性/モ17(NVM)35及びI1
0ボート36からなるマイクロコンピュータ31から構
成される。図中の番号は処理番号である。
The main control circuit 31 has the functions of means 3 to 8 shown in FIG. 1, and as shown in FIG.
RAM34. Nonvolatile/Mo17 (NVM)35 and I1
It is composed of a microcomputer 31 consisting of 0 ports 36. The numbers in the figure are processing numbers.

まず、燃料噴射量の基本制御から述べると、これは従来
と同様であり、次式(1)にて表される噴射ffl T
 iに応じた噴射パルス信号Siが噴射弁18に出力さ
れる(ステップ56)。
First, basic control of the fuel injection amount is the same as before, and the injection ffl T is expressed by the following equation (1).
An injection pulse signal Si corresponding to i is output to the injection valve 18 (step 56).

T i = T pX CoXa+Ts      −
(1)ここに、’l” p(= K−Q a/ N 、
 Kは定数である。
T i = T pX CoXa + Ts −
(1) Here, 'l'' p(= K-Q a/N,
K is a constant.

)は吸入空気量Qaと機関回転WLNで定まる基本的な
噴射量で、ベース空燃比を得るための基本的な噴射量と
なる(ステップ41〜43)。なお、このT−IJ、1
hTom411MlげIIす一++Mli(s1tM*
Ill;!+l++、1’7.7譚【レナ戸)−/I”
1で、Tpoとして一時記憶される(ステップ57)。
) is the basic injection amount determined by the intake air amount Qa and the engine rotation WLN, and is the basic injection amount for obtaining the base air-fuel ratio (steps 41 to 43). In addition, this T-IJ, 1
hTom411MlgeIIsuichi++Mli(s1tM*
Ill;! +l++, 1'7.7 Tan [Renado] -/I"
1, it is temporarily stored as Tpo (step 57).

また、Coは各種補正係数の総和で、定常時にあっては
次式(2)で与えられる(ステップ65)。
Further, Co is the sum of various correction coefficients, and in a steady state is given by the following equation (2) (step 65).

Co”KMR+K TW        ・・・(2)
ただし、K MR(= f(T p−N ))は混合比
補正係数、K T W (=f(Tw、N ))は水温
増量補正係数である。なお、これら係数は、それぞれT
p、NあるいはTw、Nをパラメータとしてテーブル検
索により求められる(ステップ44.45)。また、α
は空燃比センサ24の出力値に基づいて定まる空燃比フ
ィードバンク補正係数、Tsはバッテリ電圧値に基づく
補正量である。
Co”KMR+K TW...(2)
However, KMR (=f(Tp-N)) is a mixture ratio correction coefficient, and KTW (=f(Tw, N)) is a water temperature increase correction coefficient. Note that these coefficients are T
It is obtained by table search using p, N or Tw, N as parameters (steps 44 and 45). Also, α
is an air-fuel ratio feed bank correction coefficient determined based on the output value of the air-fuel ratio sensor 24, and Ts is a correction amount based on the battery voltage value.

一方、加速時(過渡時)には運転性を向上させるために
前記ベース空燃比の混合気よりも;農い混合気が得られ
るように加速時補正係数KACC(=f(Tp、N))
が重代(2)の補正係数に加えられる(ステップ47,
52.55)。
On the other hand, in order to improve drivability during acceleration (transient time), the acceleration correction coefficient KACC (=f(Tp, N)) is used to obtain a mixture with a lower air-fuel ratio than the base air-fuel ratio.
is added to the correction coefficient of the weight loss (2) (step 47,
52.55).

なお、基本噴射量の変化量ΔTp(=(Tp−Tpo)
XN、ただし、−1110は1制御周期萌のTpである
。)を加速判定基準値ao と比較することによリΔT
p≧aQであれば加速時であると判別している(ステッ
プ46.47)。これは、11図の手段3の機能に相当
する。
Note that the amount of change in the basic injection amount ΔTp (=(Tp−Tpo)
XN, where -1110 is Tp for one control period. ) by comparing it with the acceleration judgment reference value ao.
If p≧aQ, it is determined that the vehicle is accelerating (steps 46 and 47). This corresponds to the function of means 3 in FIG.

次に、この発明の特徴部分を説明すると、加速時補正係
数KACCが後発的に発生する燃料性状や経時的な変化
に伴い実状に合わなくなる分を学習補正することである
。ここに、KACCは加速時の補正係数を与える基本的
な値であり、燃料性状や経時的な変化がない場合には、
このKACCのみで、目標とする過渡時空燃比が得られ
るはずである。しかしながら、実際にはこれらの変化に
伴い過渡時空燃比からのずれが生じ、この場合に、過渡
時であるために、運転状態の変化に左右される空燃比セ
ンサからの信号を用いたのでは応答遅れを生じ、結局不
十分な精度しか得られない。
Next, the characteristic part of this invention will be described. It is that the acceleration correction coefficient KACC learns and corrects the amount that does not match the actual situation due to the fuel properties that occur later or changes over time. Here, KACC is a basic value that provides a correction coefficient during acceleration, and if there are no changes in fuel properties or over time,
The target transient air-fuel ratio should be obtained only with this KACC. However, in reality, these changes cause a deviation from the air-fuel ratio during the transient period, and in this case, since the air-fuel ratio is during a transient period, using the signal from the air-fuel ratio sensor, which is affected by changes in operating conditions, will not respond well. This results in delays and ultimately insufficient accuracy.

そこで、KACCを補正する値として補正係数DKAC
Cを採用し、運転状態の変化に左右されることのない空
燃比相関値(epmax)をフィードバック信号として
用いてその目標値θpmoからの偏差がなくなるように
DKACCを学習させるのである。すなわち、DKAC
Cは過渡時空燃比が得られるように増減され、これによ
り燃料性状や経時的な変化が吸収されるのである。
Therefore, the correction coefficient DKAC is used as a value to correct KACC.
DKACC is learned so that there is no deviation from the target value θpmo by using the air-fuel ratio correlation value (epmax), which is not affected by changes in operating conditions, as a feedback signal. That is, DKAC
C is increased or decreased to obtain a transient air-fuel ratio, thereby absorbing changes in fuel properties and over time.

したがって、このDKACCは過渡時において不揮発性
メモリ35に記憶されている学習テーブル(DKACC
テーブル)を検索することにより求められ、KACCに
加算される(ステップ53,55)。
Therefore, this DKACC is used as the learning table (DKACC
table) and added to KACC (steps 53, 55).

つぎに、e pmaxに基づ(学習制御はステップ40
.49〜51.58−63にて実行される。すなわち、
ステップ40が第1図の手段5の機能に、ステップ49
が同図の手段6の機能に、ステップ50.51.58〜
63が同図の手段7の機能にそれぞれ相当し、加速途中
に制御偏差Δep−(=θpIIio−θpmax)を
積算しておき、加速直後にこの積算値ΣΔepmに基づ
いて学習値DKACCの書き替えを什う。
Next, based on e pmax (learning control is performed in step 40
.. 49-51. Runs at 58-63. That is,
Step 40 corresponds to the function of means 5 in FIG.
is the function of means 6 in the same figure, steps 50.51.58~
63 corresponds to the function of means 7 in the figure, and the control deviation Δep-(=θpIIio-θpmax) is accumulated during acceleration, and the learning value DKACC is rewritten based on this accumulated value ΣΔepm immediately after acceleration. I will pay.

ここに、9pmoは空燃比が一定値であれば、運転状態
の変化に関係なくその運転Wi域の大部分で15〜20
″ATDC(一定値)となる。このため、9 pmax
は運転状態の変化に伴い応答遅れを伴う空燃比センサの
信号と相違して運転状態の変化に影響されることがなく
、したがって、加速時にあって信頼性の高い空燃比相当
量の信号となり得るのである。なお、θ13110(=
 f(T ptN ))を演算する手法であるが、たと
えばTpとNとをパラメータとしてテーブル検索により
求めるものでよい(ステップ49)。ただし、低負荷域
、高負荷域ではそれぞれ機関安定度、ノッキングレベル
との関係からいずれも遅角側、すなわち大きな値が採用
される。
Here, if the air-fuel ratio is a constant value, 9pmo is 15 to 20 in most of the operating Wi range regardless of changes in operating conditions.
"ATDC (constant value). Therefore, 9 pmax
Unlike the air-fuel ratio sensor signal, which has a response delay due to changes in driving conditions, it is not affected by changes in driving conditions, and therefore can be a highly reliable signal equivalent to the air-fuel ratio during acceleration. It is. Note that θ13110 (=
f(T ptN )), for example, it may be obtained by table search using Tp and N as parameters (step 49). However, in the low load range and high load range, a retarded side, that is, a large value, is adopted in both cases due to the relationship with engine stability and knocking level, respectively.

またs epmaxについては、燃焼が行なわれるクラ
ンク角を中心として所定のクランク角@囲を定め、この
範囲にわたって得られる筒内圧Pとそのときのクランク
角とを対応付けして記憶させ、これらデータ群の中から
Pが最大となるときのクランク角を採用すればよく(ス
テップ40)、その具体的手法は公知にされている。
Regarding s epmax, a predetermined crank angle is set around the crank angle at which combustion occurs, and the in-cylinder pressure P obtained over this range and the crank angle at that time are stored in association with each other, and a group of these data is stored. It is sufficient to adopt the crank angle at which P becomes the maximum from among the above (step 40), and the specific method thereof is known to the public.

そして、偏差Δepmは加速期間にわたって積算される
(ステップ51)、なお、ステップ51におけふB。け
紺[ri′IM箆時キでの珀汀イ古で訊り次に、積算値
B(=ΣΔθpm>に基づく学習補正の時期は加速直後
である(ステップ58〜63)。
The deviation Δepm is then integrated over the acceleration period (step 51). Next, the learning correction based on the integrated value B (=ΣΔθpm> is performed immediately after acceleration (steps 58 to 63).

なお、積算値Bに基づいて学習値DKACCを補正する
f(D D K A CCを演算することもできるが、
この場合には加速の程度に応じて異なった値となるので
、データ処理が大変となる。そこで、BをΔT、pの積
算値A(=ΣΔTp)で除した比β(=B/A)を採用
することにより規格化を行い、加速程度に依存しない値
としてデータ処理の簡素化。
Note that f(DDKACC can also be calculated) that corrects the learning value DKACC based on the integrated value B.
In this case, data processing becomes difficult because the values differ depending on the degree of acceleration. Therefore, standardization is performed by adopting the ratio β (=B/A) obtained by dividing B by the integrated value A (=ΣΔTp) of ΔT and p, and data processing is simplified as a value that does not depend on the degree of acceleration.

迅速化を図っている(ステップ48v59)−なお、積
算値A、Bは積算の都度書き替えられる(ステップ54
)。
In order to speed up the process (steps 48v59), the integrated values A and B are rewritten each time they are integrated (step 54).
).

こうして得られるβはθpmoからのずれを表すパラメ
ータとなる。たとえば、βが所定値β0よりも大きいと
、加速中e pmaxが9 p+aoよりも遅角側にず
れていたことを意味する。このことより、そのときのD
KACCの値では目標とする加速時空燃比よりも希薄な
混合気しが得られずに筒内圧の上昇が遅れ、これにより
遅角側にずれたためと解釈される。したがって、この場
合に加速時空燃比を実現するためには、DKACCを増
加補正して燃料増量を行なわなければならない。
β thus obtained becomes a parameter representing the deviation from θpmo. For example, if β is larger than the predetermined value β0, it means that e pmax has shifted to the retard side from 9 p+ao during acceleration. From this, at that time D
It is interpreted that this is because the KACC value does not provide a mixture leaner than the target air-fuel ratio during acceleration, and the rise in cylinder pressure is delayed, resulting in a shift to the retarded side. Therefore, in order to achieve the air-fuel ratio during acceleration in this case, it is necessary to increase the amount of fuel by correcting DKACC.

そこで、β≧β0であれば、このβに比例する補正量D
DKACC(=kl  ・β、ただしに1は定数である
6)を演算する(ステップ60.61)。
Therefore, if β≧β0, the correction amount D proportional to this β
DKACC (=kl·β, where 1 is a constant 6) is calculated (step 60.61).

そして、このDDKACCに基づき不揮発性メモリ35
のDKACCテーブルに記憶されているDKACeを書
き替える(ステップ63)、書き替えの手法は学習テー
ブルの格子点間の補間計算による。この場合、DKAC
Cの値が大きくなり過ぎないように、リミッタが設けら
れる。
Then, based on this DDKACC, the nonvolatile memory 35
The DKACe stored in the DKACC table of is rewritten (step 63). The rewriting method is based on interpolation calculation between grid points of the learning table. In this case, DKAC
A limiter is provided to prevent the value of C from becoming too large.

なお、βくβ0である場合は目標値θpmoにほぼ一致
しているので、古き替えを行う必要はないのであるが、
空燃比が濃くなりすぎないように、学習テーブルから小
さな値(一定値)k2だけ減じておく(ステップ60,
62.63)。
Note that when β is β0, it almost matches the target value θpmo, so there is no need to replace the old one.
To prevent the air-fuel ratio from becoming too rich, subtract a small value (constant value) k2 from the learning table (step 60,
62.63).

最後に、今回使用した値A、B、βを零にして次回加速
時の学習補正に備える(ステップ64)。
Finally, the values A, B, and β used this time are set to zero in preparation for learning correction during the next acceleration (step 64).

以上のようにv!成された場合の作用を説明すると、空
燃比に相関する値epmaxをフィードバック信号とし
てその目標値θ13 Iff Oからの制御偏差が求め
られ、次の加速時にはこの偏差が生じないように、加速
直後にDKACCテーブルが書き替えられる。
As mentioned above, v! To explain the effect when this is done, the control deviation from the target value θ13 IfO is determined using the value epmax correlated to the air-fuel ratio as a feedback signal, and in order to prevent this deviation from occurring during the next acceleration, the control deviation is determined immediately after acceleration. The DKACC table is rewritten.

たとえば、燃料性状や経時的な変化に伴いそのときの混
合気が加速時空燃比の混合気よりも希薄であると燃焼が
遅れるので、θpmaxの値はθpm。
For example, if the air-fuel mixture at that time is leaner than the air-fuel mixture at the time of acceleration due to changes in fuel properties or over time, combustion will be delayed, so the value of θpmax is θpm.

よりも遅角側にずれる。これに対して、混合気が濃くな
るように学習値DKACCがυき替えられ、次の加速時
には偏差が生じないように保持される。
Shifts to the retarded side. On the other hand, the learned value DKACC is changed so that the air-fuel mixture becomes richer, and is maintained so that no deviation occurs during the next acceleration.

逆1こ、加速時空燃比の混合気よりもそのときの混合気
が濃い場合には、θpmaxがθp Iff Oよりも
進角側にずれるので、この場合も偏差がな(なるように
学習値DKACCの書き替えが行なわれる。
Conversely, if the air-fuel mixture at that time is richer than the air-fuel ratio air-fuel mixture at the time of acceleration, θpmax will shift to the advanced side than θp If O, so there is no deviation in this case as well. will be rewritten.

すなわち、θpIIaxは運転状態の変化に影!されな
い値として、過渡時にだける空燃比検出信号として最適
であり、この信号をフィードバック制御信号として用い
れば、確実に加速lO空燃比への制御を行うことができ
、かつ制御偏差は学習補正によりその都度解?1¥され
るので、加速開始時にはそのときの燃料性状や機関状態
に応じて初期設定したと同じ状態が常に得られる。この
結果、過渡時空燃比への高精度の制御が可能となり、後
発的に発生する燃料性状や経時的な変化に影響されるこ
となく、過渡時においても良好な運転性を獲得すること
ができる。
In other words, θpIIax is affected by changes in driving conditions! As a value that is not detected, it is optimal as an air-fuel ratio detection signal that can be obtained during a transient period.If this signal is used as a feedback control signal, it is possible to reliably control the acceleration lO air-fuel ratio, and the control deviation can be reduced by learning correction. Solved each time? 1 yen, so at the start of acceleration, the same state as initially set according to the fuel properties and engine state at that time is always obtained. As a result, it becomes possible to control the air-fuel ratio with high precision during transient times, and it is possible to obtain good drivability even during transient times without being affected by later-occurring fuel properties or changes over time.

ところが、従来例では空燃比センサに基づくフィードバ
ック制御である限り過渡時における空燃比制御に限界が
あり、燃料性状等の変化があると、この影!を受け、過
渡時空燃比がらのずれを招くことがあるのである。
However, in the conventional example, as long as feedback control is based on an air-fuel ratio sensor, there is a limit to air-fuel ratio control during transient periods, and if there is a change in fuel properties, etc. This can lead to deviations in the air-fuel ratio during transients.

次に、第5図〜第8図はこの発明の第2実施例の流れ図
を示し、これは加速時の割り込み噴射量補正(吸気絞り
弁に急便な閉方向への変化があった場合に通常の噴射量
に加えて、1回だけ割り込み噴射を行う。)についても
、同様に学習補正することにしたものである。
Next, FIGS. 5 to 8 show a flowchart of a second embodiment of the present invention, which is used for interrupt injection amount correction during acceleration (usually when there is an urgent change in the intake throttle valve in the closing direction). In addition to the injection amount (in addition to the injection amount in which an interrupt injection is performed only once), we decided to perform learning correction in the same way.

ナなわら、割り込み噴射制御では、ΔTp≧a1(ただ
し、al >110 )である場合にm、唆な加速時で
(= f(’l’ p+N ))ヲソf) 学習テーブ
ル(KADDテーブル)を検索して求め、求めたKAD
Dにて基本割り込み噴射fl、 T addを補正した
値(K A D D X Tadd)を割り込み噴射す
る(ステップ70.72〜74)ので、このKADDテ
ーブルがパラメータβの値に応じて書き替えられる(ス
テップ80〜83)。ただし、割り込み噴射の学習の要
否をtll定するレベルβIはβ1≧β0である。
However, in interrupt injection control, when ΔTp≧a1 (however, al > 110), the learning table (KADD table) is Search, seek, and seek KAD
At step D, the basic interrupt injection fl, the corrected value of T add (K A D D (Steps 80-83). However, the level βI that determines whether or not learning of interrupt injection is necessary satisfies β1≧β0.

なお、割り込み噴射は1回で十分であるため、再度割り
込み噴射を行わせないため、7ラグFADDがFADD
=1(すでに、割り込み噴射されていることを示す。)
であるときには、実行されない(ステップ゛71)。
Note that one interrupt injection is sufficient, so in order to prevent another interrupt injection, the 7-lag FADD is
= 1 (indicates that interrupt injection has already been performed)
If so, it is not executed (step 71).

また、シーケンシャル噴射を想定すると、割り込み噴射
は1回で良いが、グループ噴射の場合、数回必要になる
ことがある。この場合にも本発明の応用ができることは
言うまでもない。
Further, assuming sequential injection, one interrupt injection is sufficient, but in the case of group injection, several times may be required. It goes without saying that the present invention can be applied to this case as well.

この例にても、第1実施例と同様の作用効果を奏する。This example also provides the same effects as the first example.

(発明の効果) 以上説明したように、この発明では運転条件の変化に左
右されない空燃比相当量として筒内圧が最大となるクラ
ンク角を採用し、その実際値epmaxをフィードバッ
ク制御信号としてその目標値epmoからの偏差が無く
なるように学習補正するようにしたので、確実に加速時
空燃比への制御を行うことができ、過渡1M始時にはそ
のときの燃料性状や機関状態に応じて初期設定したと同
じ状態が常に得られる。この結果、過渡時空燃比への高
精度の空燃比制御が可能となり、後発的に発生する燃料
性状や経時的な変化の影響を排除して過渡時における良
好な運転性を獲得することができる。
(Effects of the Invention) As explained above, in this invention, the crank angle at which the in-cylinder pressure is maximum is adopted as the air-fuel ratio equivalent amount that is not affected by changes in operating conditions, and the actual value epmax is used as a feedback control signal to set the target value. Since the learning correction is made to eliminate deviation from epmo, it is possible to reliably control the air-fuel ratio during acceleration, and at the beginning of the transient 1M, it is the same as the initial setting according to the fuel properties and engine status at that time. State is always available. As a result, it becomes possible to control the air-fuel ratio with high precision to the transient air-fuel ratio, and it is possible to obtain good drivability during the transient period by eliminating the effects of later-occurring fuel properties and changes over time.

【図面の簡単な説明】[Brief explanation of drawings]

tItI1図はこの発明の概念構成図である。第2図は
この発明の第1実施例の機械的な構成図、第3図は第2
図のフントロールユニットのブロック構成図、fJIJ
4図はこの実施例の主制御回路内で実行される動作内容
を説明する流れ図である。 第5図〜第8図はこの発明の第2実施例の主制御回路内
で実行される動作内容を説明する流れ図である。 1・・・運転状態検出手段、2・・・筒内圧検出手段、
3・・・過渡時判別手段、4・・・基本燃料噴射量演算
手段、5・・・筒内圧が最大となるクランク角の実際値
を検出する手段、6・・・過渡時の筒内圧が最大となる
クランク角の目標値を設定する手段、7・・・学習手段
、8・・・噴射量補正手段、18・・・燃料噴射弁、1
9・・・点火プラグ、20・・・空気量センサ、21・
・・クランク角センサ、22・・・水温センサ、24・
・・空燃比センサ、25.25A〜25D・・・筒内圧
センサ、26A〜26D・・・チャージアンプ、27・
・・マルチプレクサ、28・・・低周波振動検出回路、
30・・・コントロールユニット、31・・・主flr
lJ 14 回路。 特許出願人 株式会社 日立製作所 (外1名)
Figure tItI1 is a conceptual configuration diagram of this invention. FIG. 2 is a mechanical configuration diagram of the first embodiment of this invention, and FIG. 3 is a mechanical configuration diagram of the first embodiment of the invention.
Block configuration diagram of the Huntroll unit shown in the figure, fJIJ
FIG. 4 is a flowchart illustrating the contents of the operations executed within the main control circuit of this embodiment. FIGS. 5 to 8 are flowcharts illustrating the operations executed in the main control circuit of the second embodiment of the present invention. 1... Operating state detection means, 2... Cylinder pressure detection means,
3... Means for determining the transitional time, 4... Means for calculating the basic fuel injection amount, 5... Means for detecting the actual value of the crank angle at which the in-cylinder pressure becomes maximum, 6... Means for determining the in-cylinder pressure during the transient time. Means for setting a target value of the maximum crank angle, 7... Learning means, 8... Injection amount correction means, 18... Fuel injection valve, 1
9... Spark plug, 20... Air amount sensor, 21.
・・Crank angle sensor, 22・・Water temperature sensor, 24・
...Air-fuel ratio sensor, 25.25A-25D...Cylinder pressure sensor, 26A-26D...Charge amplifier, 27.
...Multiplexer, 28...Low frequency vibration detection circuit,
30...Control unit, 31...Main FLR
lJ 14 circuit. Patent applicant: Hitachi, Ltd. (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 機関の運転状態を検出する手段と、機関の過渡状態を判
別する手段と、運転状態に応じて目標空燃比となるよう
に基本燃料噴射量を演算する手段と、機関の筒内圧を検
出する手段と、筒内圧が最大となるクランク角の実際値
を検出する手段と、過渡時の筒内圧が最大となるクラン
ク角の目標値を設定する手段と、これら実際値と目標値
との偏差に応じて求めた過渡時の空燃比の補正量を学習
する手段と、この学習値に応じて過渡時の燃料噴射量を
補正する手段とを備えたことを特徴とする内燃機関の空
燃比制御装置。
Means for detecting the operating state of the engine, means for determining the transient state of the engine, means for calculating the basic fuel injection amount so as to achieve a target air-fuel ratio according to the operating state, and means for detecting the cylinder pressure of the engine. a means for detecting the actual value of the crank angle at which the cylinder pressure is maximum; a means for setting a target value for the crank angle at which the cylinder pressure is at its maximum during a transient period; 1. An air-fuel ratio control device for an internal combustion engine, comprising: means for learning the amount of correction of the air-fuel ratio during a transient period determined by the method; and means for correcting the amount of fuel injection during a transient period in accordance with the learned value.
JP61106515A 1986-05-09 1986-05-09 Air-fuel ratio controller for internal combustion engine Expired - Lifetime JPH0751908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106515A JPH0751908B2 (en) 1986-05-09 1986-05-09 Air-fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106515A JPH0751908B2 (en) 1986-05-09 1986-05-09 Air-fuel ratio controller for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62261632A true JPS62261632A (en) 1987-11-13
JPH0751908B2 JPH0751908B2 (en) 1995-06-05

Family

ID=14435551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106515A Expired - Lifetime JPH0751908B2 (en) 1986-05-09 1986-05-09 Air-fuel ratio controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0751908B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368734A (en) * 1986-09-09 1988-03-28 Nissan Motor Co Ltd Fuel feeding control device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654965A (en) * 1979-09-29 1981-05-15 Bosch Gmbh Robert Method of regulating composition of combustion gas mixture to be supplied into the internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654965A (en) * 1979-09-29 1981-05-15 Bosch Gmbh Robert Method of regulating composition of combustion gas mixture to be supplied into the internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368734A (en) * 1986-09-09 1988-03-28 Nissan Motor Co Ltd Fuel feeding control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0751908B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JPH0388945A (en) Knocking sensing method for engine
JP3978679B2 (en) Engine control device
KR100229760B1 (en) Engine rotation speed controller
JP3976322B2 (en) Engine control device
JP4306123B2 (en) Abnormality detection device for fuel supply system of internal combustion engine
JP2003286890A (en) Controller for engine
JPH07166951A (en) Device for detecting misfire of internal combustion engine
JPH0674078A (en) Engine control device
JPWO2003033896A1 (en) Engine control device
JP4421381B2 (en) Internal combustion engine control device
GB2366004A (en) A method for diagnosing cylinder bank dependant or cylinder bank independent faults in an internal combustion engine
JPS62261632A (en) Air-fuel ratio control device for internal combustion engine
JP4239578B2 (en) Operating state discrimination device for internal combustion engine
JP4115677B2 (en) Atmospheric pressure detection device for internal combustion engine
JPH0559994A (en) Control device for engine
US7140351B2 (en) Method and device for operating an internal combustion engine
JPH06185396A (en) Basic fuel injection method
JP2005180356A (en) Compensating gear and compensating method of crank angle sensor
JP2535895B2 (en) Air-fuel ratio control device for internal combustion engine
JP2586435B2 (en) Knocking control device for internal combustion engine
JP3248159B2 (en) Air-fuel ratio control device during transient operation of internal combustion engine
JP2811852B2 (en) Air-fuel ratio control device for internal combustion engine
JPH09177577A (en) Fuel supply controller of internal combustion engine
JPH0754744A (en) Correcting method for idle stabilizing ignition timing
JP2002276455A (en) Cylinder internal pressure detecting device for internal combustion engine