JP4115677B2 - Atmospheric pressure detection device for internal combustion engine - Google Patents

Atmospheric pressure detection device for internal combustion engine Download PDF

Info

Publication number
JP4115677B2
JP4115677B2 JP2001080486A JP2001080486A JP4115677B2 JP 4115677 B2 JP4115677 B2 JP 4115677B2 JP 2001080486 A JP2001080486 A JP 2001080486A JP 2001080486 A JP2001080486 A JP 2001080486A JP 4115677 B2 JP4115677 B2 JP 4115677B2
Authority
JP
Japan
Prior art keywords
cylinder
pressure
engine
atmospheric pressure
cylinder pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001080486A
Other languages
Japanese (ja)
Other versions
JP2002276451A (en
Inventor
肇 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001080486A priority Critical patent/JP4115677B2/en
Publication of JP2002276451A publication Critical patent/JP2002276451A/en
Application granted granted Critical
Publication of JP4115677B2 publication Critical patent/JP4115677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の大気圧検出装置に関し、特に機関の各気筒の筒内圧を検出する筒内圧検出手段により大気圧を検出する技術に関する。
【0002】
【従来の技術】
従来から、内燃機関のエンジン制御を精度よく行うため、各圧力センサの検出値に対して大気圧補正を施すことが行われている。
例えば、特開平11−193743号公報に記載されている内燃機関の筒内圧検出装置は、筒内圧が大気圧に近い圧力値をとると推定される所定のクランク角度範囲にて筒内圧センサによって検出された筒内圧を基準筒内圧とし、該基準筒内圧と前記所定のクランク角度範囲にて吸気圧センサによって検出された吸気管内の絶対圧との差圧を算出し、筒内圧をこの差圧分で補正することにより、検出した筒内圧の大気圧補正を行っている。
【0003】
【発明が解決しようとする課題】
しかし、上記従来のものは、大気圧を直接検出するものではないため、複雑な割には検出精度の保証が難しい。また、筒内圧のみの大気圧補正しか行うことができず、筒内圧センサ以外の圧力センサの検出値に対して大気圧補正を行う場合等においては、別途大気圧センサが設ける必要がある。
【0004】
本発明は、以上のような実情に鑑みなされたものであって、機関の各気筒の設けられた筒内圧センサを用いて容易かつ正確に大気圧を検出することを目的とする。
【0005】
【課題を解決するための手段】
そのため、請求項1に係る発明は、機関の運転停止時で、かつ、吸気弁及び排気弁の少なくとも一方が開弁している気筒の筒内圧を大気圧として検出する装置であって、図1に示すように、機関の各気筒に設けられ、各気筒の筒内圧を検出する筒内圧検出手段と、該筒内圧検出手段が機関始動前に検出した各気筒の筒内圧を記憶する筒内圧記憶手段と、前記機関始動前の筒内圧検出時における各気筒の吸気弁及び排気弁の開閉状態を事後的に判定する状態判定手段と、前記筒内圧記憶手段により記憶された筒内圧のうち、前記状態判定手段により、前記機関始動前の筒内圧検出時に吸気弁及び排気弁の少なくとも一方が開弁していたと判定された気筒の筒内圧を大気圧として検出する大気圧検出手段と、を含んで構成されたことを特徴とする。
【0006】
請求項に係る発明は、前記大気圧検出手段は、吸気弁及び排気弁少なくとも一方が開弁していたと判定された気筒が複数あるときは、前記筒内圧記憶手段により記憶された筒内圧のうち、該複数の気筒の筒内圧の平均値を大気圧として検出することを特徴とする。
【0007】
請求項に係る発明は、前記状態判定手段が、機関の始動開始から気筒判別完了までのクランク軸の回転角と気筒判別完了時における各気筒のクランク角位置とに基づいて、前記機関始動前の各気筒の吸気弁及び排気弁の開閉状態を判定することを特徴とする。
【0008】
【発明の効果】
請求項1に係る発明によれば、各気筒の筒内圧を検出する筒内圧検出手段によって機関始動前に検出された筒内圧を記憶し、該筒内圧検出時の各気筒の吸気弁及び排気弁の開閉状態を事後的に判定して、前記記憶した筒内圧にうち、吸気弁及び排気弁の少なくとも一方が開いていたと判定された気筒で検出された筒内圧を大気圧として検出することにより、確実に大気圧と等価な状態となっている気筒の筒内圧を大気圧として検出できる。これにより、筒内圧検出手段を用いて、容易かつ高精度に大気圧を検出できる。
【0010】
請求項に係る発明によれば、機関始動前の筒内圧検出時に、吸気弁及び排気弁の少なくとも一方が開弁していたと判定された気筒が複数あるときは、該複数の気筒で検出し、記憶した筒内圧の平均値を大気圧として検出することで、筒内圧検出手段間のばらつきを抑えつつ、大気圧を検出できる。
【0011】
請求項に係る発明によれば、気筒判別完了は、機関始動からのクランク軸の回転角及び各気筒の基準位置からのクランク角位置が既知となるので、気筒判別完了時の各気筒のクランク角位置に対して、機関始動から気筒判別完了までのクランク角(クランク軸の回転角度)分を逆算することにより、各気筒の機関始動前の筒内圧検出時におけるクランク角位置を算出でき、吸気弁及び排気弁の開閉状態を判定できる。
【0012】
そして、該クランク角位置の算出結果を、あらかじめ設定した吸気弁又は排気弁が開弁しているクランク角位置と比較することで、機関始動前の筒内圧検出時に吸気弁又は排気弁が開弁していた気筒を容易に判定できる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて説明する。
図2は、本発明の一実施形態を示す内燃機関のシステム図である。
図2において、エンジン(内燃機関)1の吸気通路2には、吸入空気流量Qaを検出するエアフローメータ3が設けられており、スロットル弁4により吸入空気量Qaを制御する。
【0014】
エンジン1の各気筒には、燃焼室5内に燃料を噴射する電磁式の燃料噴射弁6、燃焼室5内で火花点火を行う点火プラグ7が設けられており、吸気弁8を介して吸入された空気に対して、電子制御により前記燃料噴射弁6から燃料を噴射して所定の混合気を形成し、該混合気を前記燃焼室5内で圧縮し、点火プラグ7による火花点火によって着火する。
【0015】
ここで、前記各気筒別に設けられる燃料噴射弁6を個別に制御することで、各気筒別に異なる空燃比の混合気を形成させることが可能となっている。
エンジン1の排気は、排気弁9を介して燃焼室5から排気通路10に排出され、図示しない排気浄化触媒及びマフラーを介して大気中に放出される。
コントロールユニット(C/U)20は、マイクロコンピュータを含んで構成され、エアフローメータ3からの吸入空気量信号Q、スロットルセンサ11からのスロットル弁開度信号TVO、クランク角センサ12からのクランク角信号、カムセンサ14からの気筒判別信号、水温センサ14からの冷却水温度信号Tw、筒内圧センサ15からの燃焼圧信号P等が入力され、燃料噴射弁6による燃料噴射量,点火プラグ7の点火時期等を制御する。
【0016】
ここで、エアフローメータ3は、エンジン1の吸入空気量を質量流量として検出し、スロットルセンサ11は、スロットル弁4の開度TVOをポテンショメータによって検出する。
また、クランク角センサ12は、単位クランク角毎の単位角度信号と、基準クランク角位置毎の基準角度信号とをそれぞれ出力し、カムセンサ13は、気筒別に異なる気筒判別信号を出力する。水温センサ14は、エンジン1のウォータージャケット内の冷却水温度Twを検出する。
【0017】
なお、前記クランク角センサ12から出力される単位角度信号の所定時間内における発生数又は基準角度信号の発生周期を計測することでエンジン1の回転速度Neが算出でき、基準クランク角位置からの単位角度信号をカウントすることで単位クランク角毎のクランク角位置が検出される。
また、前記基準角度信号間に発生する気筒判別信号を検出することで気筒判別を行う。
【0018】
筒内圧センサ15(筒内圧検出手段)は、例えば、実開昭63−17432号公報に開示されるような点火プラグ7の座金として装着されるリング状の圧電素子からなるものであって、点火プラグ7の締付け荷重に対する相対圧として燃焼圧を検出するセンサであり、各気筒の点火プラグ7毎に装着して各気筒の筒内圧P(燃焼圧)を検出する。
【0019】
なお、前記筒内圧センサ15は、上記のように点火プラグ7の座金として装着されるタイプの他、センサ部を直接燃焼室内に臨ませて筒内圧を絶対圧として検出するタイプのものであっても良い。
ここで、前記燃料噴射弁6から噴射される噴射量の制御は、C/U20により、以下のようにして行なわれる。
【0020】
まず、エアフローメータ3で検出された吸入空気量Qと、クランク角センサ12からの検出信号から算出したエンジン回転速度Neとに基づいて目標空燃比に対応する基本燃料噴射量Tp(=K×Q/Ne;Kは定数)を算出する。
次に、該基本燃料噴射量Tpに、冷却水温度Tw等の運転条件に応じた補正や燃焼圧信号Pに基づいて演算する燃焼トルクの変動量(燃焼圧の変動率)が所定の目標値となるような補正を施して最終的な燃料噴射量Tiを求める。
【0021】
そして、前記燃料噴射量Tiに相当するパルス幅の駆動パルス信号を前記燃料噴射弁6に所定タイミングで出力する。
燃料噴射弁6には、図示しないプレッシャレギュレータで所定圧力に調整された燃料が供給されるようになっており、前記駆動パルス信号のパルス幅に比例する量の燃料を噴射供給して、所定空燃比の混合気を形成させる。
【0022】
また、前記C/U20は、前記筒内圧センサ15を用いて大気圧を検出するよう構成されている。すなわち、筒内圧が大気圧と等価になっている状態、本実施形態では、エンジン停止時であって、かつ、吸気弁及び排気弁の少なくとも一方が開弁している状態の気筒の筒内圧を検出し、これを大気圧とする。
具体的には、エンジン始動直前に各気筒の筒内圧を検出、記憶し、気筒判別完了後、事後的に前記記憶した筒内圧検出時における各気筒の吸気弁及び排気弁の開閉状態を判定する。そして、前記記憶した筒内圧のうち、吸気弁又は排気弁が開弁していたと判定された気筒の筒内圧を大気圧として検出する。
【0023】
かかる筒内圧センサによる大気圧の検出について、図3のタイミングチャートにより説明する。
まず、エンジン始動開始(S)直前の各気筒の筒内圧センサの出力を検出し、記憶する。次に、エンジン始動開始と同時に単位角度信号の検出によるクランク軸回転角の検出を開始する。気筒判別が完了したら、エンジン始動開始(S)から気筒判別完了(K)までのクランク軸回転角(n0)を記憶する。
【0024】
また、気筒判別完了時の各気筒の基準クランク角位置(本実施形態では、圧縮行程のTDC)に対するクランク角位置(n1、n2、n3、n4)を、基準角度信号からの単位角度信号をカウントすることにより算出する。
そして、算出した各気筒の基準クランク角位置に対するクランク角位置(n1、n2、n3、n4)から、前記記憶したエンジン始動開始(S)から気筒判別完了(K)までのクランク軸回転角(n0)を減算することで、エンジン始動前、すなわち、記憶した筒内圧検出時における各気筒の基準クランク角位置に対するクランク角位置(n1'=n1−n0、n2'=n2−n0、n3'=n3−n0、n4'=n4−n0)を算出する。
【0025】
該算出したエンジン始動前における各気筒の基準クランク角位置に対するクランク角(n1'、n2'、n3'、n4')が、吸気弁及び排気弁の少なくとも一方が開弁している期間としてあらかじめ設定した基準クランク角位置に対するクランク角度内(T1〜T2又はT1'〜T2')にあれば、その気筒はエンジン始動前に大気圧と等価な状態にあったと判定し、前記読込んだ筒内圧センサ出力のうち、該気筒の筒内圧センサ出力を大気圧として検出する。
【0026】
以上の筒内圧センサによる大気圧検出を図4のフローチャートに示す。
ステップ1(図ではS1と記す。以下同様)では、エンジンの始動前(エンジン始動開始位置S)の各気筒(#1、#2、#3、#4)の筒内圧センサ15の出力P1、P2、P3、P4を読込み、記憶する。
ステップ2では、エンジンの始動開始と同時に、エンジン始動開始位置(S)からのクランク軸回転角の検出を開始する。
【0027】
ステップ3では、気筒判別が完了したか否かを判断する。
気筒判別が完了していれば、ステップ4に進み、エンジン始動開始位置(S)から気筒判別完了位置(K)までのクランク軸回転角(n0)を記憶する。
ステップ5では、気筒判別結果より、気筒判別完了時(K)における各気筒の基準クランク角位置(圧縮行程のTDC)に対するクランク角位置(n1、n2、n3、n4)を算出する。
【0028】
ステップ6では、前記ステップ1において筒内圧センサの出力の読込みを行った時点における各気筒の吸気弁又は排気弁の開閉状態を判定する。
ここで、各気筒の吸気弁又は排気弁の開閉状態の判定は、上述したように、気筒判別完了時の各気筒のクランク角位置(n1、n2、n3、n4)から前記気筒判別完了までのクランク軸回転角(n0)分遡ることにより、エンジン始動開始前の各気筒のクランク各位置を算出することにより行う。
【0029】
ステップ7では、ステップ6で算出した筒内圧センサ出力の平均値を大気圧として記憶する。
以上のようにして、エンジン停止時で、かつ、吸気弁及び排気弁の少なくとも一方が開弁している気筒の筒内圧を検出することにより、筒内圧センサを用いて大気圧を容易に検出できる。
【図面の簡単な説明】
【図1】本発明に係る筒内圧検出装置を示すブロック図。
【図2】本発明に係る一実施形態のエンジンのシステム図。
【図3】本発明に係るエンジンの各気筒のタイミングチャート。
【図4】本発明に係る大気圧の検出を示すフローチャート。
【符号の説明】
1 エンジン
2 吸気通路
3 エアフローメータ
4 スロットル弁
6 燃料噴射弁
7 点火プラグ
9 排気弁
10 排気通路
11 スロットルセンサ
12 クランク角センサ
13 カムセンサ
14 水温センサ
15 筒内圧センサ
20 コントロールユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an atmospheric pressure detection device for an internal combustion engine, and more particularly to a technique for detecting atmospheric pressure by an in-cylinder pressure detecting means for detecting an in-cylinder pressure of each cylinder of the engine.
[0002]
[Prior art]
Conventionally, in order to perform engine control of an internal combustion engine with high accuracy, atmospheric pressure correction is performed on detection values of each pressure sensor.
For example, an in-cylinder pressure detection device for an internal combustion engine described in JP-A-11-193743 is detected by an in-cylinder pressure sensor in a predetermined crank angle range in which the in-cylinder pressure is estimated to take a pressure value close to atmospheric pressure. The calculated in-cylinder pressure is used as a reference in-cylinder pressure, and a differential pressure between the reference in-cylinder pressure and the absolute pressure in the intake pipe detected by the intake pressure sensor in the predetermined crank angle range is calculated. The atmospheric pressure correction of the detected in-cylinder pressure is performed by correcting with.
[0003]
[Problems to be solved by the invention]
However, since the above-mentioned conventional apparatus does not directly detect the atmospheric pressure, it is difficult to guarantee the detection accuracy even though it is complicated. Further, only the atmospheric pressure correction can be performed only with the in-cylinder pressure, and when the atmospheric pressure correction is performed on the detection value of the pressure sensor other than the in-cylinder pressure sensor, it is necessary to provide a separate atmospheric pressure sensor.
[0004]
The present invention has been made in view of the above circumstances, and an object thereof is to easily and accurately detect an atmospheric pressure using an in-cylinder pressure sensor provided for each cylinder of an engine.
[0005]
[Means for Solving the Problems]
Therefore, the invention according to claim 1 is an apparatus that detects the in-cylinder pressure of a cylinder in which at least one of an intake valve and an exhaust valve is open as an atmospheric pressure when the operation of the engine is stopped, and FIG. As shown in FIG. 2, in-cylinder pressure detecting means for detecting the in-cylinder pressure of each cylinder provided in each cylinder of the engine, and in-cylinder pressure memory for storing the in-cylinder pressure of each cylinder detected by the in-cylinder pressure detecting means before starting the engine. Among the in-cylinder pressure stored in the in-cylinder pressure storage means, the state determination means for determining the open / close state of the intake valve and the exhaust valve of each cylinder at the time of detecting the in-cylinder pressure before the engine start, Atmospheric pressure detecting means for detecting, as atmospheric pressure, the in-cylinder pressure of the cylinder determined by the state determination means that at least one of the intake valve and the exhaust valve was opened at the time of detecting the in-cylinder pressure before starting the engine. Characterized by being composed
[0006]
According to a second aspect of the present invention, when there is a plurality of cylinders in which at least one of the intake valve and the exhaust valve is determined to be open, the atmospheric pressure detecting means detects the in-cylinder pressure stored by the in-cylinder pressure storage means. Of these, the average value of the in-cylinder pressures of the plurality of cylinders is detected as atmospheric pressure.
[0007]
According to a third aspect of the present invention, the state determination means is configured to start the engine before starting the engine based on the rotation angle of the crankshaft from the start of engine start to cylinder discrimination completion and the crank angle position of each cylinder at the time of cylinder discrimination completion. you characterized to determine the opening and closing states of the intake and exhaust valves of each cylinder.
[0008]
【The invention's effect】
According to the first aspect of the present invention, the in-cylinder pressure detected by the in-cylinder pressure detecting means for detecting the in-cylinder pressure of each cylinder is stored, and the intake valve and the exhaust valve of each cylinder at the time of detecting the in-cylinder pressure are stored. And determining the open / close state of the cylinder, and detecting the in-cylinder pressure detected in the cylinder in which at least one of the intake valve and the exhaust valve is open among the stored in-cylinder pressure as an atmospheric pressure, The in-cylinder pressure of the cylinder that is reliably equivalent to the atmospheric pressure can be detected as the atmospheric pressure. Thereby, atmospheric pressure can be detected easily and with high accuracy using the in-cylinder pressure detecting means.
[0010]
According to the second aspect of the present invention, when there are a plurality of cylinders that are determined to have opened at least one of the intake valve and the exhaust valve when the in-cylinder pressure is detected before starting the engine, the plurality of cylinders are detected. By detecting the stored average value of the in-cylinder pressure as the atmospheric pressure, it is possible to detect the atmospheric pressure while suppressing variations between the in-cylinder pressure detecting means.
[0011]
According to the third aspect of the present invention, the completion of cylinder discrimination is because the crankshaft rotation angle from the start of the engine and the crank angle position from the reference position of each cylinder are known. By calculating backward the crank angle (crankshaft rotation angle) from the engine start to the completion of cylinder discrimination with respect to the angular position, it is possible to calculate the crank angle position at the time of detecting the in-cylinder pressure before starting the engine for each cylinder. The open / close state of the valve and the exhaust valve can be determined.
[0012]
Then, by comparing the calculation result of the crank angle position with a crank angle position where the intake valve or exhaust valve is opened in advance, the intake valve or exhaust valve is opened when the in-cylinder pressure is detected before the engine is started. The cylinder that has been used can be easily determined.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a system diagram of an internal combustion engine showing an embodiment of the present invention.
In FIG. 2, an air flow meter 3 that detects an intake air flow rate Qa is provided in an intake passage 2 of an engine (internal combustion engine) 1, and an intake air amount Qa is controlled by a throttle valve 4.
[0014]
Each cylinder of the engine 1 is provided with an electromagnetic fuel injection valve 6 that injects fuel into the combustion chamber 5, and an ignition plug 7 that performs spark ignition in the combustion chamber 5. The fuel is injected from the fuel injection valve 6 by electronic control to the generated air to form a predetermined air-fuel mixture, the air-fuel mixture is compressed in the combustion chamber 5 and ignited by spark ignition by the spark plug 7. To do.
[0015]
Here, by individually controlling the fuel injection valves 6 provided for the respective cylinders, it is possible to form air-fuel mixtures having different air-fuel ratios for the respective cylinders.
Exhaust gas from the engine 1 is discharged from the combustion chamber 5 to the exhaust passage 10 through the exhaust valve 9, and is released into the atmosphere through an exhaust purification catalyst and a muffler (not shown).
The control unit (C / U) 20 includes a microcomputer, and includes an intake air amount signal Q from the air flow meter 3, a throttle valve opening signal TVO from the throttle sensor 11, and a crank angle signal from the crank angle sensor 12. The cylinder discrimination signal from the cam sensor 14, the coolant temperature signal Tw from the water temperature sensor 14, the combustion pressure signal P from the in-cylinder pressure sensor 15 and the like are input, the fuel injection amount by the fuel injection valve 6, the ignition timing of the spark plug 7 Control etc.
[0016]
Here, the air flow meter 3 detects the intake air amount of the engine 1 as a mass flow rate, and the throttle sensor 11 detects the opening degree TVO of the throttle valve 4 with a potentiometer.
The crank angle sensor 12 outputs a unit angle signal for each unit crank angle and a reference angle signal for each reference crank angle position, and the cam sensor 13 outputs a cylinder discrimination signal that is different for each cylinder. The water temperature sensor 14 detects the cooling water temperature Tw in the water jacket of the engine 1.
[0017]
The rotational speed Ne of the engine 1 can be calculated by measuring the number of unit angle signals output from the crank angle sensor 12 within a predetermined time or the generation period of the reference angle signal, and the unit from the reference crank angle position can be calculated. The crank angle position for each unit crank angle is detected by counting the angle signal.
Further, cylinder discrimination is performed by detecting a cylinder discrimination signal generated between the reference angle signals.
[0018]
The in-cylinder pressure sensor 15 (in-cylinder pressure detecting means) is composed of a ring-shaped piezoelectric element mounted as a washer for the spark plug 7 as disclosed in, for example, Japanese Utility Model Laid-Open No. 63-17432, and It is a sensor that detects the combustion pressure as a relative pressure with respect to the tightening load of the plug 7 and is installed for each ignition plug 7 of each cylinder to detect the in-cylinder pressure P (combustion pressure) of each cylinder.
[0019]
The in-cylinder pressure sensor 15 is of a type that detects the in-cylinder pressure as an absolute pressure by directing the sensor portion directly into the combustion chamber in addition to the type that is mounted as a washer of the spark plug 7 as described above. Also good.
Here, the control of the injection amount injected from the fuel injection valve 6 is performed by the C / U 20 as follows.
[0020]
First, the basic fuel injection amount Tp (= K × Q) corresponding to the target air-fuel ratio based on the intake air amount Q detected by the air flow meter 3 and the engine speed Ne calculated from the detection signal from the crank angle sensor 12. / Ne; K is a constant).
Next, the basic fuel injection amount Tp includes a combustion torque fluctuation amount (combustion pressure fluctuation rate) calculated based on a correction according to operating conditions such as the coolant temperature Tw and the combustion pressure signal P, and a predetermined target value. The final fuel injection amount Ti is obtained by performing correction such that
[0021]
Then, a drive pulse signal having a pulse width corresponding to the fuel injection amount Ti is output to the fuel injection valve 6 at a predetermined timing.
Fuel that is adjusted to a predetermined pressure by a pressure regulator (not shown) is supplied to the fuel injection valve 6, and an amount of fuel that is proportional to the pulse width of the drive pulse signal is injected and supplied. An air-fuel mixture with a fuel ratio is formed.
[0022]
The C / U 20 is configured to detect atmospheric pressure using the in-cylinder pressure sensor 15. That is, in a state where the in-cylinder pressure is equivalent to the atmospheric pressure, in this embodiment, the in-cylinder pressure of the cylinder when the engine is stopped and at least one of the intake valve and the exhaust valve is opened. Detect and make this atmospheric pressure.
Specifically, the in-cylinder pressure of each cylinder is detected and stored immediately before starting the engine, and after the cylinder discrimination is completed, the open / close state of the intake valve and the exhaust valve of each cylinder when the stored in-cylinder pressure is detected is determined afterwards. . Of the stored in-cylinder pressure, the in-cylinder pressure of the cylinder determined to have been opened is detected as the atmospheric pressure.
[0023]
The detection of atmospheric pressure by the in-cylinder pressure sensor will be described with reference to the timing chart of FIG.
First, the output of the in-cylinder pressure sensor of each cylinder immediately before the start of engine start (S) is detected and stored. Next, the detection of the crankshaft rotation angle by the detection of the unit angle signal is started simultaneously with the start of the engine start. When the cylinder discrimination is completed, the crankshaft rotation angle (n0) from the engine start start (S) to the cylinder discrimination completion (K) is stored.
[0024]
Also, the crank angle position (n1, n2, n3, n4) with respect to the reference crank angle position (in this embodiment, the TDC of the compression stroke) of each cylinder at the time of completion of cylinder discrimination is counted as a unit angle signal from the reference angle signal. To calculate.
Then, from the calculated crank angle position (n1, n2, n3, n4) to the reference crank angle position of each cylinder, the stored crankshaft rotation angle (n0) from the start of engine start (S) to the completion of cylinder discrimination (K). ) Is subtracted, the crank angle position (n1 '= n1-n0, n2' = n2-n0, n3 '= n3) with respect to the reference crank angle position of each cylinder before the engine is started, that is, when the stored in-cylinder pressure is detected. -N0, n4 '= n4-n0).
[0025]
The crank angle (n1 ', n2', n3 ', n4') with respect to the reference crank angle position of each cylinder before starting the engine is set in advance as a period during which at least one of the intake valve and the exhaust valve is open. If it is within the crank angle with respect to the reference crank angle position (T1 to T2 or T1 'to T2'), it is determined that the cylinder is in an equivalent state to the atmospheric pressure before the engine is started, and the read cylinder pressure sensor Among the outputs, the cylinder pressure sensor output of the cylinder is detected as atmospheric pressure.
[0026]
The atmospheric pressure detection by the above in-cylinder pressure sensor is shown in the flowchart of FIG.
In step 1 (denoted as S1 in the figure, the same applies hereinafter), the output P1 of the in-cylinder pressure sensor 15 of each cylinder (# 1, # 2, # 3, # 4) before engine start (engine start start position S), Read and store P2, P3, and P4.
In step 2, the detection of the crankshaft rotation angle from the engine start start position (S) is started simultaneously with the start of the engine.
[0027]
In step 3, it is determined whether or not cylinder discrimination is completed.
If the cylinder discrimination is completed, the process proceeds to step 4 and the crankshaft rotation angle (n0) from the engine start start position (S) to the cylinder discrimination completion position (K) is stored.
In step 5, the crank angle position (n1, n2, n3, n4) with respect to the reference crank angle position (compression stroke TDC) of each cylinder at the completion of cylinder discrimination (K) is calculated from the cylinder discrimination result.
[0028]
In step 6, the open / close state of the intake valve or exhaust valve of each cylinder at the time when the output of the in-cylinder pressure sensor is read in step 1 is determined.
Here, as described above, the determination of the open / closed state of the intake valve or the exhaust valve of each cylinder is performed from the crank angle position (n1, n2, n3, n4) of each cylinder at the completion of cylinder discrimination to the completion of cylinder discrimination. By going back by the crankshaft rotation angle (n0), each crank position of each cylinder before the start of engine start is calculated.
[0029]
In step 7, the average value of the in-cylinder pressure sensor output calculated in step 6 is stored as the atmospheric pressure.
As described above, it is possible to easily detect the atmospheric pressure using the in-cylinder pressure sensor by detecting the in-cylinder pressure of the cylinder when the engine is stopped and at least one of the intake valve and the exhaust valve is opened. .
[Brief description of the drawings]
FIG. 1 is a block diagram showing an in-cylinder pressure detecting device according to the present invention.
FIG. 2 is a system diagram of an engine according to an embodiment of the present invention.
FIG. 3 is a timing chart of each cylinder of the engine according to the present invention.
FIG. 4 is a flowchart showing detection of atmospheric pressure according to the present invention.
[Explanation of symbols]
1 Engine 2 Intake passage 3 Air flow meter 4 Throttle valve 6 Fuel injection valve 7 Spark plug 9 Exhaust valve 10 Exhaust passage 11 Throttle sensor 12 Crank angle sensor 13 Cam sensor 14 Water temperature sensor 15 In-cylinder pressure sensor 20 Control unit

Claims (3)

機関の運転停止時で、かつ、吸気弁及び排気弁の少なくとも一方が開弁している気筒の筒内圧を大気圧として検出する内燃機関の大気圧検出装置であって、
機関の各気筒に設けられ、各気筒の筒内圧を検出する筒内圧検出手段と、
該筒内圧検出手段が機関始動前に検出した各気筒の筒内圧を記憶する筒内圧記憶手段と、
前記機関始動前の筒内圧検出時における各気筒の吸気弁及び排気弁の開閉状態を事後的に判定する状態判定手段と、
前記筒内圧記憶手段により記憶された筒内圧のうち、前記状態判定手段により、前記機関始動前の筒内圧検出時に吸気弁及び排気弁の少なくとも一方が開弁していたと判定された気筒の筒内圧を大気圧として検出する大気圧検出手段と、
を含んで構成されたことを特徴とする内燃機関の大気圧検出装置。
An atmospheric pressure detection device for an internal combustion engine that detects an in-cylinder pressure of a cylinder in which at least one of an intake valve and an exhaust valve is open as an atmospheric pressure when the operation of the engine is stopped ,
In-cylinder pressure detecting means provided in each cylinder of the engine for detecting the in-cylinder pressure of each cylinder;
In-cylinder pressure storage means for storing the in-cylinder pressure of each cylinder detected by the in-cylinder pressure detection means before the engine is started,
State determination means for determining the open / close state of the intake valve and the exhaust valve of each cylinder after detection of the in-cylinder pressure before starting the engine;
Of the in-cylinder pressure stored by the in-cylinder pressure storage means, the in-cylinder pressure of the cylinder determined by the state determination means that at least one of the intake valve and the exhaust valve has been opened when the in-cylinder pressure is detected before the engine is started. Atmospheric pressure detecting means for detecting the atmospheric pressure as atmospheric pressure;
An atmospheric pressure detecting device for an internal combustion engine, comprising:
前記大気圧検出手段は、吸気弁及び排気弁少なくとも一方が開弁していたと判定された気筒が複数あるときは、前記筒内圧記憶手段により記憶された筒内圧のうち、該複数の気筒の筒内圧の平均値を大気圧として検出することを特徴とする請求項に記載の内燃機関の大気圧検出装置。When there are a plurality of cylinders determined that at least one of the intake valve and the exhaust valve is open, the atmospheric pressure detecting means has a plurality of cylinders out of the cylinder pressures stored in the cylinder pressure storage means. 2. The atmospheric pressure detection device for an internal combustion engine according to claim 1 , wherein an average value of the internal pressure is detected as atmospheric pressure. 前記状態判定手段は、機関の始動開始から気筒判別完了までのクランク軸回転角と気筒判別完了時における各気筒のクランク角位置とに基づいて、前記機関始動前の各気筒の吸気弁及び排気弁の開閉状態を判定することを特徴とする請求項又は請求項に記載に内燃機関の大気圧検出装置。The state determination means is configured to determine an intake valve and an exhaust valve of each cylinder before starting the engine based on a crankshaft rotation angle from the start of engine startup to cylinder discrimination completion and a crank angle position of each cylinder at the time of cylinder discrimination completion. atmospheric pressure detecting device for an internal combustion engine according to claim 1 or claim 2, wherein determining the open or closed state of the.
JP2001080486A 2001-03-21 2001-03-21 Atmospheric pressure detection device for internal combustion engine Expired - Fee Related JP4115677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001080486A JP4115677B2 (en) 2001-03-21 2001-03-21 Atmospheric pressure detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001080486A JP4115677B2 (en) 2001-03-21 2001-03-21 Atmospheric pressure detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002276451A JP2002276451A (en) 2002-09-25
JP4115677B2 true JP4115677B2 (en) 2008-07-09

Family

ID=18936764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001080486A Expired - Fee Related JP4115677B2 (en) 2001-03-21 2001-03-21 Atmospheric pressure detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4115677B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9616166B2 (en) 2004-11-16 2017-04-11 Bayer Healthcare Llc Systems and methods of determining injection protocols for diagnostic imaging procedures
US9949704B2 (en) 2012-05-14 2018-04-24 Bayer Healthcare Llc Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage
US9950107B2 (en) 2004-11-24 2018-04-24 Bayer Healthcare Llc Systems and methods for managing workflow for injection procedures
US9959389B2 (en) 2010-06-24 2018-05-01 Bayer Healthcare Llc Modeling of pharmaceutical propagation and parameter generation for injection protocols

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9616166B2 (en) 2004-11-16 2017-04-11 Bayer Healthcare Llc Systems and methods of determining injection protocols for diagnostic imaging procedures
US9950107B2 (en) 2004-11-24 2018-04-24 Bayer Healthcare Llc Systems and methods for managing workflow for injection procedures
US10166326B2 (en) 2004-11-24 2019-01-01 Bayer Healthcare Llc Devices, systems and methods for determining parameters of one or more phases of an injection procedure
US9959389B2 (en) 2010-06-24 2018-05-01 Bayer Healthcare Llc Modeling of pharmaceutical propagation and parameter generation for injection protocols
US9949704B2 (en) 2012-05-14 2018-04-24 Bayer Healthcare Llc Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage

Also Published As

Publication number Publication date
JP2002276451A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
US6990405B2 (en) Engine control device
JP2000170557A (en) Monitoring method of functionality of variable valve control mechanism for internal combustion engine
US7448360B2 (en) Controller of internal combustion engine
JP2007120392A (en) Air fuel ratio control device for internal combustion engine
US6332352B1 (en) Engine torque-detecting method and an apparatus therefor
US7178494B2 (en) Variable valve timing controller for internal combustion engine
JP3976322B2 (en) Engine control device
JPH045448A (en) Fuel control device for engine
JP4475207B2 (en) Control device for internal combustion engine
JPH07119530A (en) Combusting condition detection device for internal combustion engine
JP4115677B2 (en) Atmospheric pressure detection device for internal combustion engine
US20040193360A1 (en) Control system for correcting a torque variation of an engine
JP2002147269A (en) Engine control device
JP5263185B2 (en) Air-fuel ratio estimation system
JP3536596B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JP4340577B2 (en) In-cylinder pressure sensor temperature detection device, in-cylinder pressure detection device using the same, and control device for internal combustion engine
JP4415506B2 (en) Atmospheric pressure learning device for internal combustion engine
JP3401131B2 (en) Fuel property detection device for internal combustion engine
JPH09195844A (en) Apparatus for detecting inner pressure of cylinder of internal combustion engine
JP4244851B2 (en) Engine internal EGR amount estimation device
WO1990008252A1 (en) Fuel control method at the time of acceleration of electronic control fuel injection engine
JP2535895B2 (en) Air-fuel ratio control device for internal combustion engine
JP2002276455A (en) Cylinder internal pressure detecting device for internal combustion engine
JPH07229442A (en) Intake air flow detecting device for engine
JP3606066B2 (en) Ignition timing control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees