JPS62260766A - Alumina sintered body - Google Patents

Alumina sintered body

Info

Publication number
JPS62260766A
JPS62260766A JP61105398A JP10539886A JPS62260766A JP S62260766 A JPS62260766 A JP S62260766A JP 61105398 A JP61105398 A JP 61105398A JP 10539886 A JP10539886 A JP 10539886A JP S62260766 A JPS62260766 A JP S62260766A
Authority
JP
Japan
Prior art keywords
sintered body
pores
carbon
alumina
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61105398A
Other languages
Japanese (ja)
Inventor
新庄 清和
孝樹 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61105398A priority Critical patent/JPS62260766A/en
Publication of JPS62260766A publication Critical patent/JPS62260766A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、アルミナ焼結体に関する。[Detailed description of the invention] Industrial applications The present invention relates to an alumina sintered body.

従来の技術 アルミナ焼結体は、透光性を有し、また電気絶縁性や誘
電率等の電気的特性にも殴れていることから、いろいろ
な分野で広く使用されている。しかして、これらの特性
は、高密度化することによってざらに向上する。
BACKGROUND OF THE INVENTION Alumina sintered bodies are widely used in various fields because they are transparent and have excellent electrical properties such as electrical insulation and dielectric constant. However, these characteristics are roughly improved by increasing the density.

高密度アルミナ焼結体は、たとえば、雑誌[ケミカル・
エンジニアリング」、第30巻、第4号、第37〜43
頁(1985年)や着[誌[セラミックス」、第12巻
、第1号、第12〜23M(1977年)に記載されて
いるように、ホットプレス法にJ:つて製造するのが告
通である。この方法は、アルミナ粉末を黒鉛ダイスに入
れ、窓素雰囲気などの還元性雰囲気下で数百気圧の圧力
を加えて加熱し、焼結するものである。ところが、この
方法によると、焼結中に、原料中に賭化物の形で含まれ
ている不純物が還元されたり、ダイスから炭素等が侵入
したりして焼結体が黒ずみ、透光性が低下する。また、
炭素等が会まれていると、高温で使用したとぎにそれが
炭酸ガスになって蒸発し、空孔かできるために、強度A
bワイブル係数か低下する。ざらに、炭素等の存在は、
電気的特性をも低下させろ。
For example, high-density alumina sintered bodies are
Engineering”, Volume 30, No. 4, No. 37-43
(1985) and [Magazine [Ceramics], Vol. 12, No. 1, No. 12-23M (1977), the hot press method is used for manufacturing. It is. In this method, alumina powder is placed in a graphite die, heated and sintered under a reducing atmosphere such as a window element atmosphere under a pressure of several hundred atmospheres. However, according to this method, during sintering, impurities contained in the raw materials in the form of compounds are reduced, and carbon etc. enter from the die, causing the sintered body to darken and lose its transparency. descend. Also,
If carbon, etc. are present, when used at high temperatures, it will turn into carbon dioxide gas and evaporate, creating pores, resulting in a decrease in strength A.
bThe Weibull coefficient decreases. In general, the presence of carbon etc.
Also lower the electrical characteristics.

一方、常圧焼結法と呼ばれる方法ち必ろ。これは、静水
圧成形ヤ金型成形による成形体を奥仝下または水素雰囲
気下で1600〜1150’Cで加熱し、焼結する方法
である。この方法は、:強情を常圧下で行うため、密度
を上げるべく高いり2活況度をとっているのであるか、
それゆえに精品゛(′立子の成長が大ぎく、別械的強度
やワイブル係数が低くなるという問題がある。
On the other hand, there is a method called pressureless sintering method. This is a method in which a molded product formed by isostatic pressing or molding is heated at 1600 to 1150'C in a deep chamber or in a hydrogen atmosphere to sinter it. This method is as follows: Since the obstinacy is carried out under normal pressure, the degree of activity is set high to increase the density.
Therefore, there is a problem that the growth of the standing seed is large and the mechanical strength and Weibull coefficient are low.

発明が解決しようとする問題点 この発明の目的は、従来のアルミナ焼結体の上記欠点を
解決し、大変高密度で、光学的、電気的特性が(至)れ
ているばかりか、それらの特性のばらつきが少なく、ま
た高温で使用しても強度低下がほとんどないアルミナ焼
結体を提供するにおる。
Problems to be Solved by the Invention The purpose of the present invention is to solve the above-mentioned drawbacks of conventional alumina sintered bodies, and to achieve not only a very high density and excellent optical and electrical properties, but also to improve their optical and electrical properties. An object of the present invention is to provide an alumina sintered body with little variation in properties and almost no decrease in strength even when used at high temperatures.

問題点を解決するための手段 上記目的を連成するために、この発明においては、炭素
を実質的に含まず、気孔率が0.6%以下であり、気孔
の大きざが0.1μm以下であって、かつ気孔が精品粒
界の3重点に主として存在していることを特徴とするア
ルミナ焼結体が提供される。
Means for Solving the Problems In order to achieve the above objects, the present invention provides a material that contains substantially no carbon, has a porosity of 0.6% or less, and has a pore size of 0.1 μm or less. Provided is an alumina sintered body characterized in that pores are mainly present at triple points of refined grain boundaries.

以下、この発明のアルミナ焼結体をその好ましい製造方
法とともにざらに詳細に説明する。
Hereinafter, the alumina sintered body of the present invention will be explained in detail along with its preferred manufacturing method.

この発明においては、まず、純度が99.9%以上でお
る塩化アルミニウムと、焼結助剤たる塩化マグネシウム
との水溶液を作る。塩化マグネシウムは、後述する原料
粉末中にa′3けるマグネシアとしての足が0.5重足
%以下、好ましくは0゜1〜0.25重量%になるよう
にする。塩化アルミニウムに代えて硝酸アルミニウムを
使用することもできるし、塩化マグネシウムに代えてフ
ッ化マグネシウムを使用することもできる。
In this invention, first, an aqueous solution of aluminum chloride with a purity of 99.9% or more and magnesium chloride as a sintering aid is prepared. The amount of magnesium chloride as magnesia in a'3 in the raw material powder to be described later is 0.5% by weight or less, preferably 0.1 to 0.25% by weight. Aluminum nitrate can be used instead of aluminum chloride, and magnesium fluoride can be used instead of magnesium chloride.

次に、上記水溶液から、周9.0の共沈法、加水分解法
、熱分解法、金属アルコキシド法、ゾル−ゲル法、気相
法等を用いて、平均粒径が0.3μm以下である、゛ア
ルミナにマグネシアが固溶した原料粉末を得る。この工
程において、仮焼は800〜1000’Cで行う。昇温
速度は100〜300°C/時である。仮焼粉末の扮砕
は、ゴムやウレタン樹脂筒を内張すしたボールミルを使
用し、粉末と同質のボールを使用して行うのが好ましい
Next, from the above aqueous solution, using a coprecipitation method with a circumference of 9.0, a hydrolysis method, a thermal decomposition method, a metal alkoxide method, a sol-gel method, a gas phase method, etc., the average particle size is 0.3 μm or less. A raw material powder in which magnesia is dissolved in alumina is obtained. In this step, calcination is performed at 800 to 1000'C. The temperature increase rate is 100-300°C/hour. The calcined powder is preferably crushed using a ball mill lined with a rubber or urethane resin cylinder, using balls of the same quality as the powder.

次に、上記原オ61扮末を、ラバープレス法、射出成形
法、金型成形法、押出成形法などの周711の成形法を
用いて所望の形状に成形し、成形体を1ワる。
Next, the raw material 61 powder is molded into a desired shape using a molding method such as a rubber press method, an injection molding method, a mold molding method, an extrusion molding method, etc., and the molded product is heated once. .

次に、上記成形体を加熱炉に入れ、約900′Cまでは
50〜100’C/時の速度で、それ以上は30〜50
°C/時の速度で1500〜1800’Cまで胃温し、
その時間に数時間保持した後冷却し、かぎ密度が理論密
度の95%以上である、好ましくは97.5%以上でお
る予備焼結体を得る。かかる71′、温、冷入口の過程
で、アルミナはα−アルミナの多情品溝造をとるように
なる。予備焼結体の結晶粒径や密度は、原料粉末の活性
度ヤ)焼結温度等によって決まる。
Next, the above molded body is placed in a heating furnace at a rate of 50-100'C/hour up to about 900'C, and at a rate of 30-50'C/hour above that.
Warm the stomach to 1500-1800'C at a rate of °C/hour,
After being held at that time for several hours, it is cooled to obtain a pre-sintered body having a key density of 95% or more of the theoretical density, preferably 97.5% or more. In the process of 71', hot and cold inlets, the alumina takes on the shape of α-alumina. The crystal grain size and density of the pre-sintered body are determined by the activity of the raw material powder, the sintering temperature, etc.

次に、上記予備焼結体を、いわゆる本焼結するわけてお
るが、これには酸化性雰囲気下における熱間静水圧加圧
辺浬法(HIP法)を使う。すなわち、上記予係′1焼
結体を制御された酸素雰囲気、つまり酸化性雰囲気の下
で、1000〜2000KCJ/Cm−の圧力下に14
00〜1700’Cで数!111間加熱し、その後20
0〜500’C/時の速度で冷却し、焼結体を得る。H
IP法にあける酸素濃度は、10ooopmから25体
積%で必ろ。
Next, the preliminary sintered body is subjected to so-called main sintering using a hot isostatic pressing method (HIP method) in an oxidizing atmosphere. That is, the preheated sintered body '1 was heated under a pressure of 1000 to 2000 KCJ/Cm for 14 hours in a controlled oxygen atmosphere, that is, an oxidizing atmosphere.
Number from 00 to 1700'C! Heat for 111 minutes, then 20
A sintered body is obtained by cooling at a rate of 0 to 500'C/hour. H
The oxygen concentration used in the IP method must be between 10oopm and 25% by volume.

11000pp木):51で”は、酸素濃度か低すぎ、
炉の(M成(A利などから放出されるカスに」:って焼
結1本か還元されてしまい、焼結体に炭素等が残存する
ようになる。また、25体積%を越えるような高濃度酸
素雰囲気では、処理炉を構成している部材の発火点が大
きく低下し、炉の寿命が習しく短くなるので実用的でな
い。
11000pp wood): 51" means the oxygen concentration is too low,
One sintered piece is reduced to the residue released from the furnace, and carbon etc. remain in the sintered body.Also, if the amount exceeds 25% by volume In such a high-concentration oxygen atmosphere, the ignition point of the members constituting the processing furnace will be significantly lowered, and the life of the furnace will be shortened, making it impractical.

ところで、HIP法による処理には2つの方法が必ろ。By the way, there are two methods for processing using the HIP method.

ひとつは、原料粉末や成形体をガラスや金属の容器(カ
プセル)に入れて処理に供する方法であり、他のひとつ
は、上述した、かぎ密度が理論密度の95%以上でおる
予備焼結体を1qた俊それを処理に供する方法である。
One method is to place the raw material powder or compact into a glass or metal container (capsule) and subject it to treatment, and the other method is to prepare a pre-sintered body with a key density of 95% or more of the theoretical density, as described above. This is a method for processing 1q of yen.

前者は、比較的低温でも緻密な焼結体が得られるという
利点がある。しかしながら、容器を使用する関係上、複
?1[な形状を有する焼結体の製造には適さない。後者
は、そのような形状の制約はないものの、ガスによる加
圧を行う関係上、予備焼結体の気孔が開気孔でなく、閉
気孔でおることを必要とする。この点、かぎ密度か理論
密度の95%以上であるような子何11焼拮体の気孔は
ほとんどが閉気孔でおり、問題(、j、ない。このよう
なl−I I P法によれば、結晶粒子間の結合が強固
にイ^す、しかも低温でも緻密な焼結体が得られる。
The former has the advantage that a dense sintered body can be obtained even at a relatively low temperature. However, due to the container used, it may be complicated. It is not suitable for manufacturing a sintered body having a shape of 1. Although the latter does not have such shape restrictions, it is necessary that the pores of the preliminary sintered body be closed pores rather than open pores because of pressurization with gas. In this respect, most of the pores in the antagonists whose key density is 95% or more of the theoretical density are closed pores, and there is no problem. For example, the bonds between crystal grains are strengthened, and a dense sintered body can be obtained even at low temperatures.

HIP法は、上述したように酸化性雰囲気下で行なう必
要がおる。というのは、ト+IP法はカーボンなどのヒ
ータを使用し、アルゴン雰囲気などの不活性雰囲気下で
行なうのが円通であるが、そうすると微量の炭素や一酸
化炭素が焼結体中に残存するようになる。しかるに、焼
結体に炭素等が残存していると黒ずみ、透光性や電気的
持重が低下するようになる。また、600 ’C以上の
高温で使用したときに、残存していた炭素や一酸化炭素
が炭酸ガスになって然発し、焼結体中に空孔ができるた
めに強度やワイブル係数が大きく低下してしまう。
As mentioned above, the HIP method needs to be performed in an oxidizing atmosphere. This is because the TO+IP method uses a heater made of carbon or the like and is generally carried out in an inert atmosphere such as an argon atmosphere, but in this case a small amount of carbon or carbon monoxide remains in the sintered body. It becomes like this. However, if carbon or the like remains in the sintered body, it will darken and the translucency and electrical load will decrease. In addition, when used at high temperatures of 600'C or higher, residual carbon and carbon monoxide spontaneously turn into carbon dioxide gas, creating pores in the sintered body, resulting in a significant decrease in strength and Weibull coefficient. Resulting in.

この発明の)ノルミナ焼結体は、上述したように、60
0°C以上にあける強度低下の原因になる炭素を実71
的に含んでいない。ここにおいて、炭素を実質的に含ん
でいない焼結体とは、以下のように定義されるものであ
る。
As mentioned above, the normina sintered body of this invention is
Carbon, which causes a decrease in strength when exposed to temperatures above 0°C, is 71%
Not included. Here, the sintered body that does not substantially contain carbon is defined as follows.

すなわち、焼結体中の炭素量の分析には、燃焼赤外法、
SIMSと呼ばれる2次イオン質量分析法、レーザーラ
マン分光分析法など、いろいろな方法が使用されるか、
この発明にa′3いては、レーザーラマン分光分析法を
使用し、アルゴンレーザーを用いて焼結体を波長488
0メ5,13よび4579久の光で励起した場合に、ア
−しルファスカーボンとして検出される炭素の存在が仝
くル2ぬられないとき、炭素が実質的に会まれ′(いな
いものと定義する。
In other words, to analyze the amount of carbon in the sintered body, combustion infrared method,
Various methods are used, such as secondary ion mass spectrometry called SIMS and laser Raman spectroscopy.
In a'3 of this invention, laser Raman spectroscopy is used to measure the sintered body using an argon laser at a wavelength of 488.
The presence of carbon, which is detected as alpha carbon when excited with light of 0.5, 13, and 4579 degrees, is considered to be essentially absent when the presence of carbon is not fully absorbed. Define.

この発明にa′3いては、焼結体の気孔率か0.6%以
下であり、しかも気孔の大きざが0.1μm以下でおる
ことを必須とする。ここにおいて、気孔IP(%)は、
式、 P=[1−(かざ密度/理論密度)]X100で定義さ
れるものでおる。すなわら、焼結体の強、頃やそのばら
つきは気孔率に大きく左右されるが、同時に気孔の大き
さにも左右される。気孔が必ると、その部分に応力集中
をjCりからである。強度や透光性、電気的特性の低下
やぼらつき【;上、気孔率が低く、かつ気孔が小さい場
合にはそれほどでもないが、気孔率が0.6%を越え、
かつ気孔の大きさが0.1μmを越えると急激に大きく
なる。
In this invention, a'3 requires that the porosity of the sintered body be 0.6% or less, and that the pore size be 0.1 μm or less. Here, pore IP (%) is
It is defined by the formula, P=[1-(kazadensity/theoretical density)]X100. In other words, the strength, strength, and variation of the sintered body are largely influenced by the porosity, but also by the size of the pores. If pores are present, stress will be concentrated in those areas. Deterioration or unevenness in strength, translucency, and electrical properties [;Although it is not so bad if the porosity is low and the pores are small, if the porosity exceeds 0.6%,
Moreover, when the size of the pores exceeds 0.1 μm, the size of the pores increases rapidly.

それゆえ、この発明においては、そのような不甜合が起
こらないよう、気孔率を0.6%以下とし、合わUて気
孔の大きさを0.1μm以下にtJl限している。好ま
しい気孔率は0.3%以下である。
Therefore, in the present invention, in order to prevent such problems from occurring, the porosity is set to 0.6% or less, and the total pore size is limited to 0.1 μm or less. The preferred porosity is 0.3% or less.

なあ、ワイブル係数は強度のばらつきを統計的に表わす
指標である。このワイブル係数か大ぎいほどばらつきが
少なく、信頼・[生が高いということになる。また、ワ
イブル係数が大きいということtJl、均質で空孔や異
物が少ないということで必り、光学的、電気的17I性
も均一でばらつきが少ないということになる。
Note that the Weibull coefficient is an index that statistically represents the variation in strength. The larger the Weibull coefficient, the less variation there is, and the higher the reliability and quality. Furthermore, a large Weibull coefficient tJl means that the material is homogeneous and has few pores and foreign matter, which necessarily means that the optical and electrical properties are also uniform and have little variation.

この発明の焼結体にIJ3いては、気孔かアルミナの結
晶粒界の主として3重点に存在している。すなわち、一
般に、気孔はアルミナの精品粒内や1カ界に現われ、ま
た粒界に現われる場合、2つの結晶粒か接する部分、つ
まり3更点に現われたりする。しかるに、粒内ヤ2つの
結晶粒の1や界の気孔は、結晶粒の成長や、焼、粘体の
緻密化が十分てない場合に現われ、焼結体の強度を人さ
く低下さぜる原因になる。3臣点に坦われる気孔もまた
、強度低下の原因に(はなるが、その低下の程度は、結
晶粒同士の結合をそれほど低くしないことから、゛粒内
ヤ)2つの結晶粒の粒界に現われるものほど11茗でI
J、ないのである。
In the sintered body of the present invention, IJ3 exists mainly at triple points of pores or grain boundaries of alumina. That is, in general, pores appear within refined grains of alumina or at one boundary, and when they appear at a grain boundary, they appear at a portion where two crystal grains touch, that is, at a three-sided point. However, pores in the inner grains and boundaries between two crystal grains appear when the growth of crystal grains, sintering, and densification of the viscous material are not sufficient, and are the cause of a noticeable decrease in the strength of the sintered body. become. The pores filled in the three points also cause a decrease in strength (although they do, the extent of the decrease does not significantly reduce the bond between grains, so the pores between the two grains (intragrain) The one that appears in 11 I
J.No.

上述したようなこの発明の焼結体は、比較的低湿で焼拮
できるため、粒界(目が実質的になく、気孔の径か極め
て小さく、3千点のみに存在するため、1mm厚のもの
の光透過率か95%以上と(4jめて畠い。ここて光透
過率と(:1.、次のようにして:止定する。
The sintered body of the present invention as described above can be sintered at relatively low humidity, so grain boundaries (there are virtually no holes, the diameter of the pores is extremely small, and the pores are present only at 3,000 points). The light transmittance of the object is 95% or more (4j). Here, the light transmittance (:1.) is fixed as follows.

すなわら、分光器と積分球(直径60cm)を使用し、
直接光と、1rl’1m厚の焼結体(砥石)を通過した
光量の比から、400〜700nmの波長について:耽
結(本の分光透過率下λ(%)を求め、次式によって等
用する。
In other words, using a spectrometer and an integrating sphere (60 cm in diameter),
From the ratio of the amount of direct light and the amount of light that has passed through a sintered body (grindstone) with a thickness of 1rl'1m, for wavelengths of 400 to 700nm: Determine the spectral transmittance of the book (λ (%)), and calculate it using the following formula. use

Tm=1/300./’、、、TλdλTm:平均光透
過・キ1%) 上記に43いて、試i!′20は、1.05 m m 
厚//) I)’、: l’、l’i体の両面を、まザ
#400のエメリーペーパ〜で研磨し、ざらにR200
0のグイヤEンドペーストで鏡面になるように、かつ厚
みが1mmになるように仕上げる。なお、後述する、着
色剤の添加によって焼結体がる色している場合には、透
過率の分光分布ができるので、色に応じた波長域で透過
率を比較する必要がおる。
Tm=1/300. /',,,TλdλTm: Average light transmission・ki 1%) 43 above, try i! '20 is 1.05 mm
Thickness//) I)',: l', l'i Polish both sides of the body with Maza #400 emery paper and roughen R200.
Finish with Gouya Endo paste to give it a mirror finish and a thickness of 1mm. In addition, when the sintered body has a color due to the addition of a coloring agent, which will be described later, a spectral distribution of transmittance is formed, so it is necessary to compare the transmittance in a wavelength range corresponding to the color.

焼結体が、0.001〜2重足%の、着色剤としての各
種酸化物を含んでいると、色調が向上する。たとえば、
酸化ニッケル、酸化クロム、酸化銅、酸化チタンなどを
含む焼結体は、かっ色または緑色を呈する。また、ピン
ク色には酸化エルビウムか、黄色には酸化バナジウム、
酸化セリウム、酸化コバルトが、紫色には酸化ネオジウ
ム、酸化コバルトが、オレンジ色には酸化鉄が、青色に
は酸化コバルト、酸化ニッケルが、それぞれ有効である
。2種以上を併用することもできる。これらの着色剤は
、原料粉末の:A製工稈で塩酸塩または硝酸塩の形で加
えてもよいし、原料粉末に酸化物の形で7JLJえても
よい。
If the sintered body contains 0.001 to 2% of various oxides as colorants, the color tone will be improved. for example,
A sintered body containing nickel oxide, chromium oxide, copper oxide, titanium oxide, etc. has a brown or green color. Also, pink color is erbium oxide, yellow color is vanadium oxide,
Cerium oxide and cobalt oxide are effective for purple, neodymium oxide and cobalt oxide are effective for orange, iron oxide is effective for orange, and cobalt oxide and nickel oxide are effective for blue. Two or more types can also be used in combination. These colorants may be added to the raw material powder in the form of hydrochloride or nitrate in the culm, or may be added to the raw material powder in the form of oxide.

実施例 i中度が99.95%の塩化アルミニウムと純度が99
.5%の塩化マグネシウムとを焼結体中にお【ノるマグ
ネシアとしての利がO+ 21 星%になるように混合
し、水溶液を作った。
Example i Aluminum chloride with 99.95% purity and 99% purity
.. An aqueous solution was prepared by mixing 5% magnesium chloride in a sintered body so that the concentration as magnesia was O+ 21%.

次に、加水分解法によって原料粉末を調製した。Next, a raw material powder was prepared by a hydrolysis method.

すなわち、上記水溶液を約100’Cまで徐々に加熱し
、その温度に約150時間保持して水をとばし、さらに
約100’C/時の速度で約aoo’cまで胃温し、そ
の温度に約3時間保持して仮焼し、ざらにその仮焼粉末
をウレタンを内張すしたボールミルに入れ、アルミナポ
ールを使用して粉砕し、平均粒径が約0.05μmでお
る原′lt粉末を得た。
That is, the above aqueous solution is gradually heated to about 100'C, held at that temperature for about 150 hours to evaporate the water, and further heated to about aoo'C at a rate of about 100'C/hour. The calcined powder was held for about 3 hours and then put into a ball mill lined with urethane and ground using an alumina pole to obtain raw powder with an average particle size of about 0.05 μm. I got it.

次に、上記原料粉末をラバープレス法を用いて成形し、
成形体を得た。成形時の加圧力は約2000 K C1
/ Cm 2 トL t:。
Next, the raw material powder is molded using a rubber press method,
A molded body was obtained. Pressure force during molding is approximately 2000 K C1
/ Cm 2 t:.

次に、上記成形体を加熱炉に入れ、約900 ’Cまで
は約50’C/時の速度で、それ以上は約40’C/時
の速度で約1700’Cまで昇温した1多、その温度に
約2時間保持し、かさ密度が理論密度の約98%である
予備焼結体を10だ。
Next, the above molded body was placed in a heating furnace, and the temperature was increased to about 1700'C at a rate of about 50'C/hour up to about 900'C, and at a rate of about 40'C/hour thereafter. , the pre-sintered body is held at that temperature for about 2 hours and the bulk density is about 98% of the theoretical density.

次に、HIP法を用い、上記予備焼結体を本焼結した。Next, the preliminary sintered body was main sintered using the HIP method.

すなわち、白金ヒータを用い、予備焼結体を、酸素が約
3%で、残余がアルゴンガスである酸化↑1雰囲気下で
約40’C/時の速度で約1600 ’Cまで界温し、
同時に圧力が2000KCI/Cm2になるように背圧
し、約1.5時間保持した俊、約400’C/時の速度
で冷却し、焼結体を得た。
That is, using a platinum heater, the pre-sintered body is brought to a temperature of about 1600'C at a rate of about 40'C/hour in an oxidizing ↑1 atmosphere containing about 3% oxygen and the balance being argon gas,
At the same time, a back pressure was applied so that the pressure became 2000 KCI/Cm2, and this was maintained for about 1.5 hours, and then cooled at a rate of about 400'C/hour to obtain a sintered body.

上記焼結体について、気孔率と、気孔の大きさと、気孔
の位差と、炭素の¥′i無と、曲げ強1宴と、ワイブル
係数と、空気中にて1000’C′C″100時間保持
した後の曲げ強度(以下、品温強度という)と、光透過
率とを測定した。なお、気孔の大きざと位差の測定は電
子穎微鎖によった。また曲げ強度の測定はJIS−R1
601によった。ワイブル係数【510数を20として
求めた。測定結果を以下に示す。
Regarding the above sintered body, the porosity, the size of the pores, the position difference of the pores, the absence of carbon, the bending strength, the Weibull coefficient, and the 1000'C'C''100 in air. The bending strength (hereinafter referred to as "temperature strength") and light transmittance after holding for a time were measured.The pore size and phase difference were measured using electron microchains.The bending strength was also measured. JIS-R1
According to 601. Weibull coefficient [calculated with 510 number as 20]. The measurement results are shown below.

気孔率   :0.4% 気孔の大きさ:0.04μm 気孔の(I置 :主として3手点 炭素    :検出ぜず 曲げ強度  ニア50MPa ワイブル係数:14 高温強度  ニア40MPa 光透過率  :97% 発明の効果 この発明のアルミナ焼結体は、気孔率か0.6%以下で
あり、かつ気孔の大ぎさが0.1μm以下であり、かつ
気孔が結晶粒界の3甲点に主として存在しているから、
電気的、別域的特性が優れている。また、実質的に炭素
を含んでいないので、光透過率が畠いばかつか、高温で
使用しても強度低下が(ξ【と/しどない。そのため、
いろいろな用途に使用することができる。以下にその一
例を示す。
Porosity: 0.4% Pore size: 0.04 μm Pore (I placement: Mainly 3-point carbon: Detectionless bending strength Near 50 MPa Weibull coefficient: 14 High temperature strength Near 40 MPa Light transmittance: 97% Invention Effects The alumina sintered body of this invention has a porosity of 0.6% or less, a pore size of 0.1 μm or less, and pores mainly exist at the 3A points of the grain boundaries. from,
Excellent electrical and special characteristics. In addition, since it does not substantially contain carbon, the light transmittance is high and the strength does not decrease even when used at high temperatures.
It can be used for various purposes. An example is shown below.

A、 回路基板等の電気的用途。A. Electrical applications such as circuit boards.

B、 ランプ外管等の光学的用途。B. Optical applications such as lamp outer tubes.

C1断熱材、耐熱基板等の耐熱用途。Heat-resistant applications such as C1 insulation materials and heat-resistant substrates.

D、 減速材等の原子炉関連用途。D. Nuclear reactor-related applications such as moderators.

巳、 人工歯骨、触媒担体等の生化学的用途。Biochemical uses such as snakes, artificial teeth, catalyst carriers, etc.

「、 人工宝石、印鑑、ネクタイピン、カウスボタン、
特訓用部品等の装飾、宋石代用用途。
``, artificial jewelry, seals, tie pins, cowl buttons,
For decoration of special training parts, etc., and as a substitute for Song stone.

G、 碁石、i−〕糸万力イト丑のスポー゛ン、レジレ
用途。
G, Go stone, i-] Sponge of thread vise, used for regille.

1−1.  スプーン、フォー夕、In等の食器具用途
1-1. For use in tableware such as spoons, spoons, and spoons.

1、 ボールペン用ボール、ペン先等の筆記具用途。1. For writing instruments such as ballpoint pen balls and pen nibs.

J、 扮砕畏用ボール、各種メカニカルシール、各種バ
ルブ、各種軸受、各種[l−ル、各種ポンプ、インペラ
ー、スクリュー、各種スリーブ、オリフィス、タイル、
糸通ガイド等の産2は械用部品用途。
J. Balls for crushing, various mechanical seals, various valves, various bearings, various l-rues, various pumps, impellers, screws, various sleeves, orifices, tiles,
Product 2, such as threading guides, is used as machine parts.

Claims (1)

【特許請求の範囲】[Claims]  炭素を実質的に含まず、気孔率が0.6%以下であり
、気孔の大きさが0.1μm以下であつて、かつ気孔が
結晶粒界の3重点に主として存在していることを特徴と
するアルミナ焼結体。
It is characterized by substantially not containing carbon, having a porosity of 0.6% or less, a pore size of 0.1 μm or less, and pores mainly existing at triple points of grain boundaries. Alumina sintered body.
JP61105398A 1986-05-08 1986-05-08 Alumina sintered body Pending JPS62260766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61105398A JPS62260766A (en) 1986-05-08 1986-05-08 Alumina sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61105398A JPS62260766A (en) 1986-05-08 1986-05-08 Alumina sintered body

Publications (1)

Publication Number Publication Date
JPS62260766A true JPS62260766A (en) 1987-11-13

Family

ID=14406526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61105398A Pending JPS62260766A (en) 1986-05-08 1986-05-08 Alumina sintered body

Country Status (1)

Country Link
JP (1) JPS62260766A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243560A (en) * 1989-03-16 1990-09-27 Ngk Spark Plug Co Ltd Polycrystal alumina ceramics for living body
JP2000247729A (en) * 1999-02-23 2000-09-12 Ngk Spark Plug Co Ltd Alumina base sintered compact
US6265816B1 (en) * 1998-04-30 2001-07-24 Ngk Spark Plug Co., Ltd. Spark plug, insulator for spark plug and process for fabricating the insulator
JP2006315878A (en) * 2005-05-10 2006-11-24 Sumitomo Electric Ind Ltd Translucent ceramic and method for producing the same
JP2008195581A (en) * 2007-02-14 2008-08-28 Tosoh Corp Translucent alumina sintered compact and its manufacturing method
JP2010524833A (en) * 2007-04-27 2010-07-22 セラムテック アクチエンゲゼルシャフト Ceramic material
JP2010524832A (en) * 2007-04-27 2010-07-22 セラムテック アクチエンゲゼルシャフト Ceramic material
WO2015129699A1 (en) * 2014-02-26 2015-09-03 日本碍子株式会社 Insulating substrate having through-hole
WO2017014038A1 (en) * 2015-07-17 2017-01-26 株式会社デンソー Spark plug insulator production method
WO2023127562A1 (en) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 Dental-use alumina pre-sintered body that becomes highly translucent alumina sintered body

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243560A (en) * 1989-03-16 1990-09-27 Ngk Spark Plug Co Ltd Polycrystal alumina ceramics for living body
US6265816B1 (en) * 1998-04-30 2001-07-24 Ngk Spark Plug Co., Ltd. Spark plug, insulator for spark plug and process for fabricating the insulator
JP2000247729A (en) * 1999-02-23 2000-09-12 Ngk Spark Plug Co Ltd Alumina base sintered compact
JP2006315878A (en) * 2005-05-10 2006-11-24 Sumitomo Electric Ind Ltd Translucent ceramic and method for producing the same
JP2008195581A (en) * 2007-02-14 2008-08-28 Tosoh Corp Translucent alumina sintered compact and its manufacturing method
JP2010524832A (en) * 2007-04-27 2010-07-22 セラムテック アクチエンゲゼルシャフト Ceramic material
JP2010524833A (en) * 2007-04-27 2010-07-22 セラムテック アクチエンゲゼルシャフト Ceramic material
WO2015129699A1 (en) * 2014-02-26 2015-09-03 日本碍子株式会社 Insulating substrate having through-hole
CN105191511A (en) * 2014-02-26 2015-12-23 日本碍子株式会社 Insulating substrate having through-holes
JP5877933B1 (en) * 2014-02-26 2016-03-08 日本碍子株式会社 Insulating substrate having a through hole
US9894763B2 (en) 2014-02-26 2018-02-13 Ngk Insulators, Ltd. Insulating substrates including through holes
WO2017014038A1 (en) * 2015-07-17 2017-01-26 株式会社デンソー Spark plug insulator production method
CN107851972A (en) * 2015-07-17 2018-03-27 株式会社电装 The manufacture method of spark plug insulator
CN107851972B (en) * 2015-07-17 2020-04-28 株式会社电装 Method for manufacturing insulator for spark plug
WO2023127562A1 (en) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 Dental-use alumina pre-sintered body that becomes highly translucent alumina sintered body

Similar Documents

Publication Publication Date Title
US8785008B2 (en) Zirconia sintered bodies with high total light transmission and high strength, uses of the same, and process for producing the same
JP5708050B2 (en) Red translucent zirconia sintered body and method for producing the same
JP5325518B2 (en) Transparent ceramic, manufacturing method thereof, and optical element using the transparent ceramic
JP6331840B2 (en) Red zirconia sintered body and manufacturing method thereof
JPS62260766A (en) Alumina sintered body
CN108640672A (en) A kind of preparation method of light-weight magnesite-alumina spinel refractories
JPS6259571A (en) Colored zirconia sintered body and its producton
JPS63201061A (en) Light transmission yttrium oxide
EP2366675B1 (en) Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor
JP3000685B2 (en) Translucent yttria sintered body and method for producing the same
JPS62153163A (en) Zirconia sintered body
JP6672833B2 (en) Colored zirconia sintered body and method for producing the same
JP5685831B2 (en) Red translucent alumina sintered body and method for producing the same
JP4458409B2 (en) Method for producing translucent ceramics and translucent ceramics
JP3323922B2 (en) Orange colored zirconia powder, sintered body, and method for producing the same
JP2566737B2 (en) Method for producing translucent aluminum magnesium oxynitride sintered body
JPS61289287A (en) Hot hydrostatic pressing treater and treatment method thereof
KR102390133B1 (en) Method for producing colored zirconia with mechanical properties
JPH05194030A (en) Multiple ceramic sintered compact and its production
JP2952978B2 (en) Transparent yttria sintered body and method for producing the same
CN117242045A (en) Method for producing sintered body
JPH04124062A (en) Colored transparent spinel-type sintered material and its production
JP2000239065A (en) Light-transmissible corrosionproof material and its production
JPS6217070A (en) Zirconia sintered body
JPH03252355A (en) Colored light-transmitting sintered yag compact and production thereof