JP5325518B2 - Transparent ceramic, manufacturing method thereof, and optical element using the transparent ceramic - Google Patents

Transparent ceramic, manufacturing method thereof, and optical element using the transparent ceramic Download PDF

Info

Publication number
JP5325518B2
JP5325518B2 JP2008257306A JP2008257306A JP5325518B2 JP 5325518 B2 JP5325518 B2 JP 5325518B2 JP 2008257306 A JP2008257306 A JP 2008257306A JP 2008257306 A JP2008257306 A JP 2008257306A JP 5325518 B2 JP5325518 B2 JP 5325518B2
Authority
JP
Japan
Prior art keywords
ceramic
zirconia
hafnia
transparent ceramic
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008257306A
Other languages
Japanese (ja)
Other versions
JP2010047460A (en
Inventor
明生 池末
知水 岡野
ウルリッヒ ポイヒャート
イボンヌ メンケ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Priority to JP2008257306A priority Critical patent/JP5325518B2/en
Priority to DE102009030951.9A priority patent/DE102009030951B4/en
Publication of JP2010047460A publication Critical patent/JP2010047460A/en
Application granted granted Critical
Publication of JP5325518B2 publication Critical patent/JP5325518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、透明セラミック及びその製造方法ならびにその透明セラミックスを用いた光学素子に関する。より具体的には、多結晶透明ジルコニア系又はハフニア系セラミック及びその製造方法ならびに透明セラミックスを用いた光学素子に関する。   The present invention relates to a transparent ceramic, a manufacturing method thereof, and an optical element using the transparent ceramic. More specifically, the present invention relates to a polycrystalline transparent zirconia-based or hafnia-based ceramic, a manufacturing method thereof, and an optical element using the transparent ceramic.

ジルコニア及びハフニアは優れた耐熱性と耐食性を有することから、高温部材、ガラス溶融炉や鉄鋼精錬における取鍋用の耐火物、研磨剤等に活用されている。一方では、その優れた光学特性を利用して装飾品や可視〜赤外線領域での窓材等に活用されているが、その殆どは単結晶という形態で用いられている。   Since zirconia and hafnia have excellent heat resistance and corrosion resistance, they are utilized as high temperature members, refractories for ladles in glass melting furnaces and steel refining, abrasives, and the like. On the other hand, it is used for decorative articles and window materials in the visible to infrared region by utilizing its excellent optical characteristics, but most of them are used in the form of single crystals.

単結晶材料は、多結晶体(以下「セラミック」と記す。)に比べて散乱も少なく透過特性にも優れていることから、光学材料としてのセラミックが活用されることほとんどない。特に、透光性ハフニアに関しては、その合成方法の困難さから報告例が非常に少なく、報告された文献を見ても光学特性は非常に乏しい。また、透光性ジルコニアに関しては、これまでに多くの報告がなされているが、報告されたジルコニアセラミックの試料厚さが非常に薄く、光学定数を明確に記載したものは殆ど見当たらない。   Single crystal materials are less scattered and have better transmission characteristics than polycrystals (hereinafter referred to as “ceramics”), and ceramics as optical materials are rarely used. In particular, for translucent hafnia, there are very few reported examples due to the difficulty of the synthesis method, and even when the reported literature is viewed, the optical characteristics are very poor. Further, many reports have been made on translucent zirconia so far, but the sample thickness of the reported zirconia ceramic is very thin, and almost no optical constant is clearly described.

これに対し、ジルコニアにTiOを添加した透光性セラミック(特許文献1、非特許文献1、非特許文献2、非特許文献3)が報告されているが、それらの光学特性は良好とは言えず、特に直線透過性に関しては、僅か1mm厚さのサンプルでも摺りガラス状であり、サンプルを通して周辺をクリアに見ることができないほどのレベルである。また最近では、TiOを添加しない透光性ジルコニアが報告されているが、試料厚さを薄くしたときの透過特性が示されているが、TiO添加セラミックと同様に、光学特性はやはり十分ではない。また、透光性ハフニア系セラミックスについては、比重の極めて高い材料であり、極めて合成が困難であることから、それについての報告はほとんど見当たらない。
特開平1−94843号公報 特開昭62−91467号公報 特開平1−172264号公報 特開2007−246384号公報 K. Tsukuma, I. Yamashita, T. Kusunose, “Transparent 8mol% Y2O3−ZrO2 (8Y) Ceramics”, J. Am. Ceram. Soc., 91 [6] 813-18 (2008). K. Tsukuma, “Transparent Titania-Yttria-Zirconia Ceramics”, J.Mat. Sci., Lett., 5 [11] 1143-44(1986). FW. Vahldiek, “Translucent ZrO2 Prepared at High Pressures”, J. LessCommon Materials, 13 [5] 530-40 (1969).
In contrast, translucent ceramics (Patent Document 1, Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3) in which TiO 2 is added to zirconia have been reported, but their optical properties are good. In particular, with regard to linear permeability, even a sample having a thickness of only 1 mm is ground glass, and the level is such that the periphery cannot be clearly seen through the sample. Recently, translucent zirconia to which TiO 2 is not added has been reported, but the transmission characteristics when the sample thickness is reduced have been shown. However, like the TiO 2 -added ceramic, the optical characteristics are still sufficient. is not. In addition, translucent hafnia-based ceramics is a material with a very high specific gravity and is extremely difficult to synthesize.
JP-A-1-94843 JP-A-62-91467 JP-A-1-172264 JP 2007-246384 A K. Tsukuma, I. Yamashita, T. Kusunose, “Transparent 8mol% Y2O3-ZrO2 (8Y) Ceramics”, J. Am. Ceram. Soc., 91 [6] 813-18 (2008). K. Tsukuma, “Transparent Titania-Yttria-Zirconia Ceramics”, J.Mat. Sci., Lett., 5 [11] 1143-44 (1986). FW. Vahldiek, “Translucent ZrO2 Prepared at High Pressures”, J. LessCommon Materials, 13 [5] 530-40 (1969).

従来の透光性ジルコニア及びハフニアセラミックは、非常に光散乱が大きく、単結晶ジルコニア及びハフニアと比べると光学特性は劣悪である。そして、光散乱の度合いは透過波長に依存していること(すなわち、長波長では光散乱の度合いが緩和されること)から、従来の透光性ジルコニア及びハフニアセラミックは工業的用途がなく、より光学特性の優れたジルコニア及びハフニアセラミックの開発が切望されている。   Conventional translucent zirconia and hafnia ceramics have very large light scattering, and their optical properties are inferior compared to single crystal zirconia and hafnia. And since the degree of light scattering depends on the transmission wavelength (that is, the degree of light scattering is reduced at a long wavelength), conventional translucent zirconia and hafnia ceramic have no industrial use, and more Development of zirconia and hafnia ceramics with excellent optical properties is eagerly desired.

一方、単結晶ジルコニア及びハフニアは、一般的にスカルメルト法、アーク溶解法等で製造することができ、可視〜赤外線領域での透過率は非常に高い。ところが、このような方法で作製された単結晶材料は、偏光板を通して観察すると材料中に大量の複屈折が観察でき、また干渉計の透過波面は多数のフリンジ(即ち屈折率変動)が観察され、光学特性は必ずしも十分なものとは言えないので、宝飾関連の用途に限定されており、光学素子として利用で来る状況には至っていない。   On the other hand, single crystal zirconia and hafnia can be generally produced by a skull melt method, an arc melting method or the like, and have a very high transmittance in the visible to infrared region. However, when a single crystal material produced by such a method is observed through a polarizing plate, a large amount of birefringence can be observed in the material, and a large number of fringes (ie, refractive index fluctuations) are observed in the transmitted wavefront of the interferometer. Since the optical characteristics are not necessarily sufficient, it is limited to jewelry-related applications, and has not reached the situation where it is used as an optical element.

従って、本発明の主な目的は、従来の透明セラミックよりも光学特性に優れ、かつ、単結晶には達成困難な造形や構造を提供できる透明ジルコニア又はハフニア系セラミックを提供することにある。   Accordingly, a main object of the present invention is to provide a transparent zirconia or hafnia-based ceramic that is superior in optical properties than conventional transparent ceramics and can provide a shaping and structure that is difficult to achieve with a single crystal.

多結晶体には結晶粒界が多数存在し、単結晶より光の損失が大きいため、一般的な光学材料やさらに厳しい要求のあるレーザー発振媒体、そして光学機器に用いるプリズム、レンズ等の光学材料に応用することが極めて困難である。   Polycrystals have many crystal grain boundaries, and light loss is larger than single crystals. Therefore, optical materials such as general optical materials and more demanding laser oscillation media, and prisms and lenses used in optical equipment. It is extremely difficult to apply to.

これに対し、本発明者らが鋭意研究を行った結果、(1)焼結性に優れた特定粒度の出発原料を用い、(2)フッ素元素を含有させること、(3)必要に応じて一定量TiOを添加すること、(4)最適温度で真空焼結又は酸素を含まない雰囲気で焼結させること、(5)HIP(又はHP)すること、(6)前記(5)で得られた焼結体を酸素を含む雰囲気中で熱処理することにより、散乱源となる残量気孔を激減させ、クリーンな粒界を形成でき、組成変動の少ない均一な材料を形成できる結果、従来のジルコニア及びハフニアセラミックに比して優れた光学材料を提供できることを見出した。 On the other hand, as a result of intensive studies by the present inventors, (1) using a starting material having a specific particle size excellent in sinterability, (2) containing fluorine element, (3) as required Adding a certain amount of TiO 2 , (4) vacuum sintering or sintering in an oxygen-free atmosphere at an optimum temperature, (5) HIP (or HP), (6) obtained in (5) above By heat-treating the obtained sintered body in an atmosphere containing oxygen, the remaining pores that become scattering sources can be drastically reduced, clean grain boundaries can be formed, and uniform materials with little composition variation can be formed. It was found that an optical material superior to zirconia and hafnia ceramics can be provided.

すなわち、本発明は、下記の透明セラミック及びその製造方法ならびにその透明セラミックを用いた光学素子に係る。
1. Y、Sc、MgO、CaO及びランタニド希土類酸化物の少なくとも1種の安定化材により安定化されたジルコニア系又はハフニア系セラミックであって、
(1)前記ジルコニア系又はハフニア系セラミックの結晶構造が立方晶であり、
(2)平均結晶粒子径が5〜300μmの範囲にあり、
(3)フッ素元素をCaF 換算で0.05〜3重量%含有する、
ことを特徴とする透明セラミック。
2. チタン元素をさらにTiO 換算で0.1〜10重量%含む、前記項1に記載の透明セラミック。
3. 厚さ5mmの試料の厚み方向において、1)波長500nmでの光透過のベースラインにおける直線透過率が50%以上であり、2)波長700nmでの光透過のベースラインにおける直線透過率が60%以上である、前記項1に記載の透明セラミック。
4. 波長1000nmの光線における内部損失が15%/cm以内である、前記項1に記載の透明セラミック。
5. 干渉計を使った厚さ5mm試料の光学的均一性の評価に関して、測定面の90%以上の面積で透過波面測定でのフリンジがλ以内(λは、測定したHe−Neレーザーの波長で633nmを示す。)である、前記項1に記載の透明セラミック。
6. 最小厚みが10mm以上の焼結体である、前記項1に記載の透明セラミック。
7. 前記項1〜6のいずれかに記載の透明セラミックを用いた光学素子。
8. 透明セラミックを製造する方法であって、
(1)a)ジルコニア又はハフニア、b)Y、Sc、MgO、CaO及びランタニド希土類酸化物の少なくとも1種を安定化材及びc)フッ化物を0.05〜3重量%含有し、かつ、平均一次粒径が20〜500nmである原料粉末を成形することにより成形体を得る第1工程、
(2)前記成形体を500〜900℃で仮焼することにより仮焼体を得る第2工程、
(3)前記仮焼体を1400〜1800℃で焼成することにより焼成体を得る第3工程、
(4)前記焼成体を1400〜2000℃で加圧焼成することにより加圧焼成体を得る第4工程
を含むことを特徴とする透明セラミックの製造方法。
9. 前記原料粉末がさらにTiO0.1〜10重量%含む、前記項8に記載の製造方法。
10. 前記加圧焼成体を酸素を含む雰囲気下600〜1600℃でアニールする工程をさらに含む、前記項8に記載の製造方法。
That is, the present invention relates to the following transparent ceramic, a manufacturing method thereof, and an optical element using the transparent ceramic.
1. A zirconia-based or hafnia-based ceramic stabilized by at least one stabilizing material of Y 2 O 3 , Sc 2 O 3 , MgO, CaO and a lanthanide rare earth oxide,
(1) The crystal structure of the zirconia or hafnia ceramic is cubic.
(2) The average crystal particle diameter is in the range of 5 to 300 μm,
(3) containing 0.05 to 3% by weight of fluorine element in terms of CaF 2 ;
A transparent ceramic characterized by that.
2. Containing 0.1 to 10 wt% in yet terms of TiO 2 of the titanium element, the transparent ceramic according to the claim 1.
3. In the thickness direction of a sample having a thickness of 5 mm, 1) the linear transmittance at a light transmission baseline at a wavelength of 500 nm is 50% or more, and 2) the linear transmittance at a light transmission baseline at a wavelength of 700 nm is 60%. The transparent ceramic according to Item 1, which is the above.
4). Item 2. The transparent ceramic according to Item 1, wherein the internal loss in light having a wavelength of 1000 nm is within 15% / cm.
5. Regarding the evaluation of the optical uniformity of a sample having a thickness of 5 mm using an interferometer, the fringe in transmission wavefront measurement is within λ in an area of 90% or more of the measurement surface (λ is the wavelength of the measured He—Ne laser at 633 nm). is shown.), transparent ceramics according to the claim 1.
6). Item 2. The transparent ceramic according to Item 1, wherein the transparent ceramic is a sintered body having a minimum thickness of 10 mm or more.
7). An optical element using the transparent ceramic according to any one of Items 1 to 6.
8). A method for producing a transparent ceramic comprising:
(1) a) zirconia or hafnia, b) at least one of Y 2 O 3 , Sc 2 O 3 , MgO, CaO and a lanthanide rare earth oxide is stabilized, and c) 0.05 to 3% by weight of fluoride A first step of obtaining a molded body by molding a raw material powder containing and having an average primary particle size of 20 to 500 nm,
(2) a second step of obtaining a calcined body by calcining the molded body at 500 to 900 ° C;
(3) A third step of obtaining a fired body by firing the calcined body at 1400-1800 ° C.,
(4) A method for producing a transparent ceramic, comprising a fourth step of obtaining a pressure fired body by pressure firing of the fired body at 1400 to 2000 ° C.
9. Item 9. The method according to Item 8, wherein the raw material powder further contains 0.1 to 10% by weight of TiO 2 .
10. Item 9. The method according to Item 8, further comprising a step of annealing the pressure-fired body at 600 to 1600 ° C in an atmosphere containing oxygen.

本発明に係る透明セラミックは、これまで報告されている同組成セラミックのように光学品質が低いものでなく、可視〜赤外線領域では単結晶ジルコニア及び単結晶ハフニアと同等以上である。また、本発明の透明セラミックは、単結晶にはないさらに優れた光学特性を有している。従来のセラミックと単結晶ジルコニアではそれらの用途にかなり多くの制限があったが、本発明の透明セラミックは光学特性が飛躍的に高められているので、既存の単結晶材料と同等又はそれ以上の性能をもつ光学素子を提供できる。   The transparent ceramic according to the present invention is not as low in optical quality as the same composition ceramics reported so far, and is equivalent to or higher than single crystal zirconia and single crystal hafnia in the visible to infrared region. In addition, the transparent ceramic of the present invention has more excellent optical properties not found in single crystals. Conventional ceramics and single crystal zirconia have considerably limited applications, but the transparent ceramic of the present invention has dramatically improved optical properties, so that it is equivalent to or better than existing single crystal materials. An optical element having performance can be provided.

また、光学ロス及び光学的均一性の高さについても既存技術を凌駕しているので、光学素子として優れた性能を発揮できる(例えば、屈折率変動や複屈折成分が非常に少ない)。このため、素子を通じた光情報を正確に伝送できる等の特徴ある技術を提供できる。例えば、約300nm以上の紫外線〜可視〜5μm以下の赤外線領域でのパッシブ及びアクティブな分野での機能素子を提供し、これまで実現不能と考えられてきた性能を発揮し得る。   Further, since the optical loss and the optical uniformity are superior to those of the existing technology, excellent performance as an optical element can be exhibited (for example, the refractive index fluctuation and the birefringence component are very small). Therefore, it is possible to provide a characteristic technique such as that optical information can be accurately transmitted through the element. For example, a functional element in a passive and active field in an ultraviolet region of about 300 nm or more to an infrared region of visible to 5 μm or less can be provided, and performance that has been considered to be impossible until now can be exhibited.

本発明の製造方法によれば、単結晶製造のような融点(約2400℃)以上の高温で長時間結晶成長をさせる必要がないため、エネルギーコストの大幅削減、製造時間と大量生産を実現することができる。また、ドーム、レンズ、プリズム等をニアネット造形できるので、材料作製後の加工コストを飛躍的に低減でき、また複数の組成を有する複雑構造のコンポジット材料の提供が可能となる。これまでジルコニア及びハフニアセラミックやジルコニア及びハフニア単結晶では実現できなかった高度な光学機能(少ない散乱ロス、光学品質の均一性(Δn:(屈折率変動)と歪が極小)、蛍光物質)を付与できる。   According to the manufacturing method of the present invention, it is not necessary to perform crystal growth for a long time at a temperature higher than the melting point (about 2400 ° C.) as in the case of single crystal manufacturing, so that energy costs can be greatly reduced, manufacturing time and mass production can be realized. be able to. In addition, since a dome, a lens, a prism, and the like can be formed near-net, the processing cost after the material is manufactured can be drastically reduced, and a complex composite material having a plurality of compositions can be provided. Provides advanced optical functions (small scattering loss, uniformity of optical quality (Δn: (refractive index fluctuation) and minimal distortion), fluorescent material) that could not be realized with zirconia and hafnia ceramics and zirconia and hafnia single crystals. it can.

また、本発明の製造方法で得られた透明セラミックは焼結技術で製造されるため、必要とされる素子形状にニアネット成型できる。このため、加工困難な光学素子形成も可能である。加工に伴う材料歩留まり低減や加工コストの低減、加工による材料内部への光学歪の低減(光学品質低下)等の様々な技術課題の克服と経済的効果が発生し、従来のセラミック材料、そして単結晶材料の課題を一掃できる。   In addition, since the transparent ceramic obtained by the production method of the present invention is produced by a sintering technique, it can be formed in a near net shape into a required element shape. Therefore, it is possible to form an optical element that is difficult to process. Overcoming various technical issues such as reduction of material yield and processing cost due to processing, reduction of optical distortion inside the material due to processing (deterioration of optical quality), and economic effects occur. The problem of crystal materials can be eliminated.

透明セラミック
本発明の透明セラミック(本発明セラミック)は、Y、Sc、MgO、CaO及びランタニド希土類酸化物の少なくとも1種の安定化材により安定化されたジルコニア系又はハフニア系セラミックであって、
(1)前記ジルコニア系又はハフニア系セラミックの結晶構造が立方晶であり、
(2)平均結晶粒子径が5〜300μmの範囲にあり、
(3)フッ素元素を含有する、
ことを特徴とする。
Transparent ceramic The transparent ceramic of the present invention (ceramic of the present invention) is a zirconia-based or hafnia-based stabilized by at least one stabilizing material of Y 2 O 3 , Sc 2 O 3 , MgO, CaO and a lanthanide rare earth oxide. Ceramic,
(1) The crystal structure of the zirconia or hafnia ceramic is cubic.
(2) The average crystal particle diameter is in the range of 5 to 300 μm,
(3) containing a fluorine element,
It is characterized by that.

本発明セラミックは、ジルコニア(ZrO)系又はハフニア(HfO)系セラミックであり、Y、Sc、MgO、CaO及びランタニド希土類酸化物の少なくとも1種の安定化材により安定化されている。 The ceramic of the present invention is a zirconia (ZrO 2 ) -based or hafnia (HfO 2 ) -based ceramic, and is stabilized by at least one stabilizing material of Y 2 O 3 , Sc 2 O 3 , MgO, CaO, and a lanthanide rare earth oxide. It has become.

上記安定化材は、Y、Sc、MgO、CaO及びランタニド希土類酸化物の少なくとも1種を用いる。ランタニド希土類酸化物としては、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの少なくとも1種を含む酸化物が挙げられる。本発明では、これらの安定化材の中でも、例えばY、Sc、Yb、Gd、Lu、MgO及びCaOの少なくとも1種を好適に用いることができる。 The stabilizing material uses at least one of Y 2 O 3 , Sc 2 O 3 , MgO, CaO, and a lanthanide rare earth oxide. Examples of the lanthanide rare earth oxide include oxides containing at least one of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. In the present invention, among these stabilizing materials, for example, at least one of Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 , Gd 2 O 3 , Lu 2 O 3 , MgO and CaO is preferably used. Can do.

本発明セラミック中における安定化材の含有量は、安定化ジルコニア(結晶構造が立方晶)を形成するのに十分な量とすれば良く、用いる安定化材の種類等に応じて適宜設定することができる。例えば、安定化材としてYを用いる場合は、ジルコニア又はハフニアに対して8〜30モル%程度とすれば良い。 The content of the stabilizing material in the ceramic of the present invention may be an amount sufficient to form stabilized zirconia (crystal structure is cubic), and should be appropriately set according to the type of the stabilizing material used. Can do. For example, when Y 2 O 3 is used as the stabilizing material, it may be about 8 to 30 mol% with respect to zirconia or hafnia.

本発明セラミックは、フッ素元素を含有している。フッ素元素を含有させることにより、高い焼結性を得ると同時に優れた光学特性を得ることが可能となる。フッ素元素の含有量は、製造工程において原料中にフッ化物として0.05〜3重量%、好ましくは0.1〜1.5重量%を添加した結果としての含有量であれば良い。上記フッ化物の種類は、上記作用を有する限りは特に限定されないが、CaF、MgF、ScF、YF、ZrF及びランタニド希土類元素のフッ化物から選択された少なくとも1種を好適に用いることができる。ランタニド希土類元素としては、前記と同様のものを採用することができる。本発明では、この中でも例えばCaFを好適に用いることができる。この点において、本発明セラミック中のフッ素元素の含有量は、CaF換算で0.05〜3重量%、特に0.1〜1.5重量%含まれていることが望ましい。 The ceramic of the present invention contains elemental fluorine. By containing a fluorine element, it is possible to obtain high optical properties while obtaining high sinterability. The content of elemental fluorine may be a content as a result of adding 0.05 to 3% by weight, preferably 0.1 to 1.5% by weight, as a fluoride in the raw material in the production process. The type of the fluoride is not particularly limited as long as it has the above action, but at least one selected from fluorides of CaF 2 , MgF 2 , ScF 3 , YF 3 , ZrF 4 and lanthanide rare earth elements is preferably used. be able to. As the lanthanide rare earth element, the same ones as described above can be adopted. In the present invention, among these, for example, CaF 2 can be preferably used. In this respect, the content of the fluorine element in the ceramic of the present invention is preferably 0.05 to 3% by weight, particularly 0.1 to 1.5% by weight in terms of CaF 2 .

なお、本発明セラミック中におけるフッ素元素の含有量は、例えばJIS
R 9301-3-11:1999記載の熱加水分解分離によりセラミックス中のフッ素を分離抽出した後イオンクロマトグラフ分析法により分析する方法を用いることができる。
The content of elemental fluorine in the ceramic of the present invention is, for example, JIS
A method of separating and extracting fluorine in ceramics by thermal hydrolysis separation described in R 9301-3-11: 1999 and then analyzing by ion chromatography analysis can be used.

本発明セラミックでは、チタン元素を含むことが好ましい。チタン元素は、本発明セラミック中に固溶していることが望ましい。チタン元素をフッ素元素とともに併存させることにより、より高い透過性等を得ることができる。チタン元素の含有量は、酸化チタン(TiO)換算で10重量%以下、特に5重量%とすることが好ましい。チタン元素を含む場合の下限値は限定的ではないが、酸化チタン(TiO)換算で通常0.1重量%程度とすれば良い。 The ceramic of the present invention preferably contains a titanium element. The titanium element is desirably dissolved in the ceramic of the present invention. By allowing the titanium element to coexist with the fluorine element, higher permeability and the like can be obtained. The content of titanium element is preferably 10% by weight or less, particularly 5% by weight in terms of titanium oxide (TiO 2 ). The lower limit in the case of containing titanium element is not limited, but it may be usually about 0.1% by weight in terms of titanium oxide (TiO 2 ).

また、本発明セラミックは、多結晶体である。そして、その結晶構造中における結晶粒子の平均結晶粒子径は、通常5〜300μmの範囲にあり、好ましくは10〜150μmであり、より好ましくは30〜150μmである。平均結晶粒子径が5μm未満では、粒界数の増大により光散乱が大きくなる。平均結晶粒子径が300μmを超える場合は、粒界部に不純物成分が析出し易く、粒子内部や粒界部に気孔が残留し易く光散乱の原因になるばかりでなく、熱機械特性に劣る等の欠点がある。なお、本発明では、平均結晶粒子径は、走査型電子顕微鏡又は光学顕微鏡による観察により任意に選んだ視野における100個の結晶粒子の長径の算術平均値とする。   The ceramic of the present invention is a polycrystalline body. And the average crystal particle diameter of the crystal grain in the crystal structure is in the range of 5-300 micrometers normally, Preferably it is 10-150 micrometers, More preferably, it is 30-150 micrometers. When the average crystal particle size is less than 5 μm, light scattering increases due to an increase in the number of grain boundaries. When the average crystal particle diameter exceeds 300 μm, impurity components are likely to precipitate in the grain boundary part, and pores are likely to remain inside the grain boundary part or the grain boundary part, causing light scattering as well as inferior thermomechanical characteristics, etc. There are disadvantages. In the present invention, the average crystal particle diameter is the arithmetic average value of the major diameters of 100 crystal particles in a field of view arbitrarily selected by observation with a scanning electron microscope or optical microscope.

本発明セラミックは、厚さ5mmの試料の厚み方向において、1)波長500nmでの光透過のベースラインにおける直線透過率が50%以上(好ましくは55%以上、より好ましくは60%以上)であり、2)波長 700nmでの光透過のベースラインにおける直線透過率が60%以上(好ましくは65%以上、より好ましくは70%以上)である。前記1)の直線透過率が50%未満の場合又は前記2)の直線透過率が60%未満の場合、光散乱が非常に大きく、本発明の用途等に用いることは困難である。なお、本発明において、「ベースライン」は、波長−透過率の透過スペクトルにおいて、ドーパントによる吸収が発現しない場合はそのままの透過スペクトルを示し、ドーパントによる吸収が発現する場合はその吸収がないものとして外挿(仮想)した透過スペクトルを示す。なお、本発明では、上記の直線透過率は、分光分析装置「スペクトロメーター、商品名U3500」(日立製作所(株)製)を用い、表面粗度Rmsを0.5nm以下に研磨したφ15mm(直径は任意サイズ)で厚さ10mmの試料を用い、分光器のスリット幅を0.2から5nm, スキャンスピードを60〜600nm/minの範囲で測定した値である。 The ceramic of the present invention has a linear transmittance of 50% or more (preferably 55% or more, more preferably 60% or more) in the light transmission baseline at a wavelength of 500 nm in the thickness direction of a 5 mm thick sample. 2) The linear transmittance at the baseline of light transmission at a wavelength of 700 nm is 60% or more (preferably 65% or more, more preferably 70% or more). When the linear transmittance of 1) is less than 50% or when the linear transmittance of 2) is less than 60%, the light scattering is very large and it is difficult to use for the application of the present invention. In the present invention, “baseline” indicates a transmission spectrum of the wavelength-transmittance when the absorption by the dopant does not occur, and shows the transmission spectrum as it is when the absorption by the dopant appears. The extrapolated (virtual) transmission spectrum is shown. In the present invention, the linear transmittance is 15 mm (diameter) when the surface roughness Rms is polished to 0.5 nm or less using a spectroscopic analyzer “Spectrometer, trade name U3500” (manufactured by Hitachi, Ltd.). Is a value measured with a spectroscopic slit width of 0.2 to 5 nm and a scanning speed of 60 to 600 nm / min.

本発明セラミックは、波長1000nmの光線における内部損失が15%/cm以内であることが好ましい。なお、本発明では、上記の内部損失は、分光分析装置「スペクトロメーター、商品名U3500」(日立製作所(株)製)を用いて測定したものである。具体的には試料表面の研磨精度が同一で、厚さ異なる試料を準備する。例えば厚さ1mm及び11mmの試料を準備しておき、双方のサンプルの透過率の差(試料厚さの差異が1cmであるので、双方の透過率の差異は試料厚さ1cm当たりの透過率差、すなわちこれが上記記載の内部損失となる。試料厚さは1mm、11mmに限定されるものでなく、厚さの異なる試料における透過率を測定し、試料の単位厚さ当たりの透過率差に換算することで内部損失を求めることができる。   The ceramic of the present invention preferably has an internal loss of 15% / cm or less in a light beam having a wavelength of 1000 nm. In the present invention, the internal loss is measured using a spectroscopic analyzer “Spectrometer, trade name U3500” (manufactured by Hitachi, Ltd.). Specifically, samples having the same polishing accuracy on the sample surface and different thicknesses are prepared. For example, samples having a thickness of 1 mm and 11 mm are prepared, and the difference in transmittance between the two samples (the difference in sample thickness is 1 cm. Therefore, the difference in both transmittances is the difference in transmittance per 1 cm of sample thickness. In other words, this is the internal loss described above.The sample thickness is not limited to 1 mm and 11 mm, but the transmittance of samples with different thicknesses is measured and converted to the difference in transmittance per unit thickness of the sample. By doing so, the internal loss can be obtained.

本発明セラミックは、干渉計を使った屈折率変動Δnが厚さ5mmの試料で測定面の90%以上の領域で透過波面測定でのフリンジがλ以内であることが好ましい。また、本発明セラミックは、歪検査装置による複屈折の単位長さ当たりの光路差の分布が50nm/cm以内、好ましくは30nm/cm以内であることが好ましい。このような特性をもつことにより光学的揺らぎが少なく、透過光の品質を高めることができ、一般的な光学用途に対して好適なものとなる。   In the ceramic of the present invention, it is preferable that the fringe in the transmission wavefront measurement is within λ in a region where the refractive index variation Δn using an interferometer is 5 mm in thickness and is 90% or more of the measurement surface. In the ceramic of the present invention, the distribution of the optical path difference per unit length of birefringence by the strain inspection apparatus is preferably within 50 nm / cm, preferably within 30 nm / cm. By having such characteristics, optical fluctuation is small, the quality of transmitted light can be improved, and it is suitable for general optical applications.

本発明セラミックは、通常は所定の形状を有する焼結体として用いられるが、前記の通り高い透過率を有することから、特に最小厚みが10mm以上の焼結体であっても光学材料として好適に用いることができる。ここでいう最小厚みとは、その焼結体の中で直線距離が最も小さくなる部分の厚み(幅)を意味する。例えば、各辺が10mm以上の立方体又は直方体、直径10mm以上で高さ10mm以上の円柱体等を挙げることができる。   The ceramic of the present invention is usually used as a sintered body having a predetermined shape. However, since it has a high transmittance as described above, it is particularly suitable as an optical material even for a sintered body having a minimum thickness of 10 mm or more. Can be used. The minimum thickness here means the thickness (width) of the portion where the linear distance is the smallest in the sintered body. For example, a cube or a rectangular parallelepiped having a side of 10 mm or more, a cylinder having a diameter of 10 mm or more and a height of 10 mm or more can be used.

透明セラミックの製造方法
本発明セラミックは、特に下記の方法により製造することが望ましい。すなわち、(1)a)ジルコニア又はハフニア、b)Y、Sc、MgO、CaO及びランタニド希土類酸化物の少なくとも1種を安定化材及びc)フッ化物を含有し、かつ、平均一次粒径が20〜500nmである原料粉末を成形することにより成形体を得る第1工程、(2)前記成形体を500〜900℃で仮焼することにより仮焼体を得る第2工程、(3)前記仮焼体を1400〜1800℃で焼成することにより焼成体を得る第3工程、(4)前記焼成体を1400〜2000℃で加圧焼成することにより加圧焼成体を得る第4工程を含むことを特徴とする透明セラミックの製造方法により、本発明セラミックを好適に製造することができる。
Production method of transparent ceramic The ceramic of the present invention is desirably produced by the following method. That is, (1) a) zirconia or hafnia, b) at least one of Y 2 O 3 , Sc 2 O 3 , MgO, CaO and a lanthanide rare earth oxide contains a stabilizer and c) a fluoride, and A first step of obtaining a molded body by molding a raw material powder having an average primary particle size of 20 to 500 nm, (2) a second step of obtaining a calcined body by calcining the molded body at 500 to 900 ° C. (3) A third step of obtaining a fired body by firing the calcined body at 1400 to 1800 ° C., and (4) obtaining a pressure fired body by subjecting the fired body to pressure firing at 1400 to 2000 ° C. The ceramic of the present invention can be suitably produced by the method for producing a transparent ceramic comprising the fourth step.

第1工程
第1工程では、a)ジルコニア又はハフニア、b)Y、Sc、MgO、CaO及びランタニド希土類酸化物の少なくとも1種を安定化材及びc)フッ化物を含有し、かつ、平均一次粒径が20〜500nmである原料粉末を成形することにより成形体を得る。
First Step In the first step, a) zirconia or hafnia, b) at least one of Y 2 O 3 , Sc 2 O 3 , MgO, CaO and a lanthanide rare earth oxide is included as a stabilizer and c) a fluoride. And a molded object is obtained by shape | molding the raw material powder whose average primary particle diameter is 20-500 nm.

ジルコニア又はハフニアは、公知の製造方法で調製されたもの又は市販品を使用することができる。ジルコニア純度(ジルコニア成分+不可避不純物としてのハフニア成分)は、99重量%以上であることが望ましい。最終製品としてプリズム、レンズ等のオプティクス用途を目的とする場合は、99.9重量%以上であることが好ましい。同様に、ハフニア純度(ハフニア成分+不可避不純物としてのジルコニア成分)は、99重量%以上であることが望ましい。最終製品としてプリズム、レンズ等のオプティクス用途を目的とする場合は、99.9重量%以上であることが好ましい。なお、本発明セラミック中には、不可避不純物として含まれるハフニア又はジルコニアにより、両者を含む酸化物又は固溶体が含まれていても良い。   As zirconia or hafnia, those prepared by known production methods or commercially available products can be used. The zirconia purity (zirconia component + hafnia component as an inevitable impurity) is desirably 99% by weight or more. When the final product is used for optics such as prisms and lenses, it is preferably 99.9% by weight or more. Similarly, the hafnia purity (hafnia component + zirconia component as an unavoidable impurity) is desirably 99% by weight or more. When the final product is used for optics such as prisms and lenses, it is preferably 99.9% by weight or more. The ceramic of the present invention may contain an oxide or a solid solution containing both of them due to hafnia or zirconia contained as an inevitable impurity.

安定化材としては、Y、Sc、MgO、CaO及びランタニド希土類酸化物の少なくとも1種を配合する。安定化材の配合量は、安定化ジルコニアを形成するのに十分な量とすれば良く、用いる安定化材の種類等に応じて適宜設定することができる。例えば、安定化材としてYを用いる場合は、ジルコニア又はハフニアに対して8〜30モル%程度とすれば良い。 As a stabilizing material, at least one of Y 2 O 3 , Sc 2 O 3 , MgO, CaO, and a lanthanide rare earth oxide is blended. The blending amount of the stabilizing material may be an amount sufficient to form the stabilized zirconia, and can be appropriately set according to the type of the stabilizing material used. For example, when Y 2 O 3 is used as the stabilizing material, it may be about 8 to 30 mol% with respect to zirconia or hafnia.

フッ化物を原料粉末に配合することにより、より優れた焼結性とともに高い光学特性を得ることができる。フッ化物としては、特に限定されないが、CaF、MgF、ScF、YF、ZrF及びランタニド希土類元素のフッ化物から選択される少なくとも1種を用いることが好ましい。これらのフッ化物は、公知又は市販のものを使用することができる。フッ化物の配合量は、用いるフッ化物の種類等によるが、通常0.05〜3重量%、好ましくは0.1〜1.5重量%とする。 By blending the fluoride into the raw material powder, it is possible to obtain high optical characteristics as well as better sinterability. The fluoride is not particularly limited, CaF 2, MgF 2, ScF 3, YF 3, it is preferable to use at least one selected from fluoride ZrF 4 and lanthanide rare earth elements. These fluorides can be known or commercially available. The blending amount of fluoride depends on the type of fluoride used, but is usually 0.05 to 3% by weight, preferably 0.1 to 1.5% by weight.

また、本発明では、原料粉末中に酸化チタンを含有させることもできる。これにより、得られるセラミックの透過性等をより高めることができる。特に、ルチル型TiOを含有させることにより、よりいっそう高い透過性等を得ることができる。酸化チタンの含有量は、本発明セラミックの組成等に応じて適宜設定することができるが、通常は10重量%以下、特に5重量%とすることが好ましい。酸化チタンを添加する場合の下限値は限定的ではないが、通常0.1重量%程度とすれば良い。 Moreover, in this invention, titanium oxide can also be contained in raw material powder. Thereby, the permeability | transmittance etc. of the ceramic obtained can be improved more. In particular, by including rutile TiO 2 , even higher permeability can be obtained. The content of titanium oxide can be appropriately set according to the composition of the ceramic of the present invention, but is usually 10% by weight or less, particularly preferably 5% by weight. The lower limit in the case of adding titanium oxide is not limited, but is usually about 0.1% by weight.

第1工程で使用する原料粉末の一次粒子径は20〜500nmとし、特に20〜100nmとすることが望ましい。上記一次粒子径が20nm未満の場合はハンドリングが困難、例えば1)成型が難しい、2)圧粉体の密度が低く、焼結時の収縮率が大きくなる等の欠点がある。また、上記一次粒子径が500nmを超える場合は原料の焼結性が乏しく、高密度の焼結体(換言すれば、透明な焼結体)が得られ難い。   The primary particle diameter of the raw material powder used in the first step is preferably 20 to 500 nm, and particularly preferably 20 to 100 nm. When the primary particle diameter is less than 20 nm, handling is difficult, for example, 1) difficult to mold, 2) the density of the green compact is low, and the shrinkage ratio during sintering is high. Moreover, when the said primary particle diameter exceeds 500 nm, the sinterability of a raw material is scarce, and it is difficult to obtain a high-density sintered compact (in other words, a transparent sintered compact).

また、本発明セラミックを着色する場合は、原料粉末に着色材としてランタニド希土類元素又はそれらの酸化物を加えることができる。着色材の配合量は通常0.1〜10重量%の範囲内で適宜設定することができる。   Moreover, when coloring this invention ceramic, a lanthanide rare earth element or those oxides can be added to a raw material powder as a coloring material. The blending amount of the colorant can be appropriately set within a range of usually 0.1 to 10% by weight.

これらの各成分を混合する場合は、ポットミル等の一般的な混合・粉砕媒体(粉砕媒体は部分安定化ジルコニアボールであることが望ましい)を使用することにより実施することができる。このポットミル中に原料粉末及び安定化材のほか、必要に応じて焼結助剤、分散材、バインダー等の少なくともいずれかを加え、さらに溶媒として純水又はアルコールを使って、数〜10数時間混合を行なえば良い。   The mixing of these components can be carried out by using a general mixing / grinding medium such as a pot mill (preferably the grinding medium is partially stabilized zirconia balls). In addition to the raw material powder and the stabilizing material, if necessary, at least one of a sintering aid, a dispersing agent, a binder, etc. is added to the pot mill, and pure water or alcohol is used as a solvent for several to several tens of hours. What is necessary is just to mix.

得られたスラリーは、そのまま成形に供しても良いし、固液分離した後に固形分を回収してから成形しても良い。成形方法は、特に制限されず、図1に示すように、例えば鋳込み成形、押出し成形、射出成形等を採用することができる。   The obtained slurry may be subjected to molding as it is, or may be molded after solid-liquid separation and solid content is recovered. The molding method is not particularly limited, and for example, cast molding, extrusion molding, injection molding, or the like can be employed as shown in FIG.

本発明では、スプレードライ装置により、溶媒除去と造粒を行なうことで数十μmの顆粒を形成した後、作製した顆粒は所定の金型で一次成型、CIP(Cold Isostatic Press)による二次成型を行うことにより、好適に成形体を作製することができる。   In the present invention, after removal of solvent and granulation by spray drying apparatus to form granules of several tens of μm, the produced granules are primary molded with a predetermined mold, and then secondary molded with CIP (Cold Isostatic Press). By performing this, a molded body can be suitably produced.

第2工程
第2工程では、前記成形体を500〜900℃で仮焼することにより仮焼体を得る。第2工程では、添加した有機成分(分散材とバインダー)を除去する目的で実施する。仮焼雰囲気は、通常は大気中又は酸化性雰囲気中とすれば良い。仮焼時間は、仮焼温度等にもよるが、通常は60〜180分程度すれば良い。
2nd process In a 2nd process, a calcined body is obtained by calcining the said molded object at 500-900 degreeC. The second step is carried out for the purpose of removing the added organic components (dispersant and binder). The calcining atmosphere is usually in the air or in an oxidizing atmosphere. Although the calcining time depends on the calcining temperature and the like, the calcining time is usually about 60 to 180 minutes.

第3工程
第3工程では、前記仮焼体を1400〜1800℃(好ましくは1400〜1650℃)で焼成することにより焼成体を得る。焼成雰囲気は添加したフッ素化合物が酸化されない雰囲気であれば特に限定されず、例えば真空中、還元性雰囲気中、不活性ガス雰囲気中等のいずれであっても良い。なお、真空中で実施する場合は、減圧〜10−5Paの条件下とすることができる。焼成時間は限定されないが、特に30〜300分程度とすれば良い。特に、第3工程では、焼成体の相対密度を90%以上となるように実施されることが望ましい。
Third Step In the third step, the calcined body is fired at 1400-1800 ° C. (preferably 1400-1650 ° C.) to obtain a fired body. The firing atmosphere is not particularly limited as long as the added fluorine compound is not oxidized. For example, the firing atmosphere may be any of vacuum, reducing atmosphere, inert gas atmosphere, and the like. In addition, when implementing in a vacuum, it can be set as the conditions of pressure reduction- 10-5 Pa. The firing time is not limited, but it may be about 30 to 300 minutes. In particular, in the third step, it is preferable that the relative density of the fired body is 90% or more.

第4工程
第4工程では、前記焼成体を1400〜2000℃(好ましくは1700〜1850℃)で加圧焼成することにより加圧焼成体を得る。加圧焼成する方法は限定的ではなく、例えばHP(Hot Press)法、HIP(Hot Isostatic Press)法等のいずれであっても良い。特に、本発明では、HIP法を好適に用いることができる。例えば、圧力媒体としてArガスを用い、圧力9.8〜198MPaの範囲内で1時間以上HIPで1400〜2000℃にて加圧焼成することにより透明なセラミック(遷移金属の酸化物を添加した場合は、着色透明セラミック)を得ることができる。
Fourth Step In the fourth step, the fired body is subjected to pressure firing at 1400 to 2000 ° C. (preferably 1700 to 1850 ° C.) to obtain a pressure fired body. The method for pressurizing and firing is not limited, and may be, for example, an HP (Hot Press) method, an HIP (Hot Isostatic Press) method, or the like. In particular, in the present invention, the HIP method can be suitably used. For example, when Ar gas is used as a pressure medium and transparent firing is performed by pressure firing at 1400 to 2000 ° C. with HIP for 1 hour or more within a pressure range of 9.8 to 198 MPa (when transition metal oxide is added) Can obtain a colored transparent ceramic).

第5工程
本発明では、必要に応じて第5工程をさらに実施することが望ましい。すなわち、前記で得られた加圧焼成体を酸素を含む雰囲気下600〜1600℃でアニールする(以下「アニール工程」ともいう。)。
Fifth Step In the present invention, it is desirable to further carry out the fifth step as necessary. That is, the pressure fired body obtained above is annealed at 600 to 1600 ° C. in an atmosphere containing oxygen (hereinafter also referred to as “annealing step”).

第4工程を経た段階において、例えばTiOを含まないセラミックでは薄黄色〜茶色の呈色、TiOを含むセラミックでは灰色〜黒色となる場合がある。これは、メインホストであるジルコニア及びハフニアの酸素欠陥、TiOの還元等に伴うものである。そこで、本発明では、さらに第5工程を実施することによって、酸素欠陥の修復、TiOの還元の修復を行うことによって、より高い光学特性を有する焼結体を得ることができる。このため、酸素を含む雰囲気下600〜1600℃の範囲内でアニール工程を実施する。アニール温度が600℃未満の場合は十分な酸化が起こらず、試料がグレー〜黒色を呈し、アニール温度が1600℃を超える場合は酸化反応は促進されるものの、透過率の低下又は失透を起こす。アニール工程の時間は、アニール温度、TiO含有量、試料サイズ等に応じて適宜決定すれば良い。 In a stage after the fourth step, for example, a ceramic not containing TiO 2 may be light yellow to brown, and a ceramic containing TiO 2 may be gray to black. This is due to oxygen defects of zirconia and hafnia as main hosts, reduction of TiO 2 and the like. Therefore, in the present invention, a sintered body having higher optical characteristics can be obtained by further repairing oxygen defects and repairing reduction of TiO 2 by performing the fifth step. For this reason, the annealing step is performed in the range of 600 to 1600 ° C. in an atmosphere containing oxygen. When the annealing temperature is less than 600 ° C., sufficient oxidation does not occur, and the sample exhibits a gray to black color. When the annealing temperature exceeds 1600 ° C., the oxidation reaction is promoted, but the transmittance decreases or devitrification occurs. . The annealing process time may be appropriately determined according to the annealing temperature, TiO 2 content, sample size, and the like.

また、第5工程では、HIP処理後のセラミックに急激な酸化反応を生じさせないことが好ましい。急激な酸化反応が起こるとアニール工程後のセラミックに光学的な歪が発生したり、激しい場合にはクラックの発生又は粉化に至ることがある。酸化反応の制御は、昇温速度、酸素分圧等により適宜実施することができるが、特に昇温速度を制御することが重要である。この場合の昇温速度は、通常は5〜100℃/hrの範囲、特に5〜60℃/hrの範囲とすることが好ましい。TiO還元の修復を行う場合等は、500℃以上の温度域から5〜10℃/hrの範囲とすることが好ましい。 In the fifth step, it is preferable not to cause a rapid oxidation reaction in the ceramic after the HIP treatment. If an abrupt oxidation reaction occurs, optical distortion may occur in the ceramic after the annealing process, and if severe, cracks may be generated or pulverized. The control of the oxidation reaction can be carried out as appropriate depending on the heating rate, oxygen partial pressure, etc., but it is particularly important to control the heating rate. In this case, the temperature raising rate is usually in the range of 5 to 100 ° C./hr, particularly preferably in the range of 5 to 60 ° C./hr. When repairing TiO 2 reduction or the like, it is preferable to set the temperature range from 500 ° C. or higher to 5 to 10 ° C./hr.

このようにして得られた透明セラミックは機械加工して所定の光学素子を形成することができる。例えば、図2に示すようなニアネット成型技術を用いれば、複雑な構造あるいは局面のある光学素子を低コストで製造することができる。   The transparent ceramic thus obtained can be machined to form a predetermined optical element. For example, if a near net molding technique as shown in FIG. 2 is used, an optical element having a complicated structure or aspect can be manufactured at a low cost.

以下、本発明セラミックの好ましい実施の形態を、図面を参照しながら詳細に説明する。但し、本実施の形態に係るジルコニア又はハフニアセラミックは、例示するものであって、本発明はこれらの実施の形態に限定されるものではない。なお、各図において、共通する部分については同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the ceramic of the present invention will be described in detail with reference to the drawings. However, the zirconia or hafnia ceramic according to the present embodiment is illustrated, and the present invention is not limited to these embodiments. In addition, in each figure, the same code | symbol is attached | subjected about a common part and the overlapping description is abbreviate | omitted.

<実施の形態1>
図1は、無着色及び着色透明ジルコニア及びハフニアセラミック製造のフローシートを示した。純度99重量%以上、20〜500nmの一次粒子サイズをもつ出発原料を使用することが必須であり、この原料に緻密化及び透明化のための焼結助剤CaF、MgF、ランタニド希土類のフッ化物(必要に応じて焼結助剤の0.1〜5.0重量%のTiOを添加)、分散材とバインダーを添加してポットミル混合を行なう。安定化材はCaO、MgO、Y、Sc及びランタニド希土類酸化物の少なくとも1種以上を用いるが、焼結体の結晶構造が立方晶となるように安定化剤の添加量を適宜調整すれば良い。また、着色又はシンチレータとして利用する場合は、安定化剤である希土類酸化物(着色元素又は発光元素は希土類元素から選択)を必要量添加すれば良い。これらの原料及び副原料に溶媒(純水又はアルコール)とボール(部分安定化ジルコニア又は部分安定化ハフニアを粉砕媒体とする事が望ましい)を入れ、数時間〜数十時間混合・粉砕してスラリーを作製する。作製したスラリーはスプレードライにて噴霧乾燥して数十μmレベルの顆粒を作製する。成型方法は、プレス成型に限定されるものでなく、図2に示すように鋳込み、押出し、射出成型法等が適用できるので、ここで示した成型方法だけではない。プレス成型法の場合は、得られた顆粒は金型に入れ一次成型、この圧粉体を真空パックした後CIP装置に入れ、二次成型を行なう。作製された圧粉体はバインダー等の有機成分を除去する目的で500〜900℃にて仮焼し、仮焼後の圧粉体は1400〜1800℃の温度範囲(真空、H又はHeガス雰囲気、あるいは酸素を含まない雰囲気)で焼結して相対密度90%以上、好ましくは95%以上にして焼結体を作製する。この状態では通常はまだ透明でないので、1400〜2000℃(圧力媒体Ar、圧力範囲9.8〜196MPa)で1時間以上HIP処理することが必要である。HIPの代わりに材料形状が平板のような単純形状であればHPを利用しても良いが、温度範囲は同一で圧力範囲は9.8〜49MPaの範囲で行っても差し支えない。HIP処理後のサンプルは透明体となっているが、HIPの条件はジルコニア及びハフニアセラミックの光学特性に影響するので、目的に応じて条件設定することが必要である。HIP条件(特に高温で長時間処理したもの)あるいはTiO添加したセラミックスは強い還元を受け、材料自体が薄黄色〜黒色に変色している。このような場合は酸素を含む雰囲気中600〜1600℃の温度範囲で熱処理することにより、還元による呈色の変化を回復することができる。得られた透明ジルコニア又はハフニアセラミックは機械加工することにより所定の光学素子を形成できる。また、図2(a)〜(c)に示すようなニアネット成型技術を用いれば、複雑な構造あるいは局面のある光学素子を低コストで加工可能という特徴がある。
<Embodiment 1>
FIG. 1 shows a flow sheet for the production of uncolored and colored transparent zirconia and hafnia ceramics. It is essential to use a starting material having a purity of 99% by weight or more and a primary particle size of 20 to 500 nm. This material contains sintering aids CaF, MgF 2 and lanthanide rare earth fluoride for densification and transparency. Pot mill mixing is performed by adding a compound (if necessary, adding 0.1 to 5.0% by weight of TiO 2 as a sintering aid), a dispersing agent and a binder. The stabilizer uses at least one of CaO, MgO, Y 2 O 3 , Sc 2 O 3 and lanthanide rare earth oxides, but the amount of stabilizer added so that the crystal structure of the sintered body is cubic. May be adjusted as appropriate. In addition, when used as a coloring or scintillator, a necessary amount of a rare earth oxide (a coloring element or a light emitting element is selected from rare earth elements) as a stabilizer may be added. Add a solvent (pure water or alcohol) and balls (partially stabilized zirconia or partially stabilized hafnia is preferably used as a grinding medium) to these raw materials and auxiliary raw materials, and mix and pulverize them for several hours to several tens of hours. Is made. The produced slurry is spray-dried by spray drying to produce granules of several tens μm level. The molding method is not limited to press molding, and casting, extrusion, injection molding and the like can be applied as shown in FIG. In the case of the press molding method, the obtained granule is put into a mold and subjected to primary molding, and this green compact is vacuum packed and then put into a CIP apparatus to perform secondary molding. The produced green compact is calcined at 500 to 900 ° C. for the purpose of removing organic components such as a binder, and the green compact after calcining is in a temperature range of 1400 to 1800 ° C. (vacuum, H 2 or He gas). Sintered in an atmosphere or an atmosphere containing no oxygen) to produce a sintered body with a relative density of 90% or more, preferably 95% or more. In this state, since it is usually not yet transparent, it is necessary to perform HIP treatment at 1400 to 2000 ° C. (pressure medium Ar, pressure range 9.8 to 196 MPa) for 1 hour or more. If the material shape is a simple shape such as a flat plate instead of HIP, HP may be used, but the temperature range is the same and the pressure range may be 9.8 to 49 MPa. The sample after the HIP treatment is a transparent body, but the HIP conditions affect the optical properties of zirconia and hafnia ceramics, so it is necessary to set conditions according to the purpose. Ceramics added with HIP conditions (especially those treated for a long time at a high temperature) or TiO 2 have undergone strong reduction, and the material itself has turned from pale yellow to black. In such a case, the color change due to the reduction can be recovered by heat treatment in an oxygen-containing atmosphere at a temperature of 600 to 1600 ° C. The obtained transparent zirconia or hafnia ceramic can be machined to form a predetermined optical element. Further, if a near net molding technique as shown in FIGS. 2A to 2C is used, an optical element having a complicated structure or aspect can be processed at low cost.

<実施の形態2>
図2(a)〜(c)は、一例としてレンズ、プリズム、ドーム形状の光学素子の作製方法を示す。作製したスラリーをスリップキャスティング用モールドに流し込む、又は射出成型用モールドにインジェクションしてレンズ、プリズム、ドームの形状を有する圧粉体を形成する。その後の製造プロセスは図1に示した方法に依存するが、単結晶又はガラス材料であれば特にドーム又はレンズの場合は必要なサイズの径にボーリング・切断加工してディスクのワークを取り出し、両平面を曲面に加工する必要があるので加工による材料歩留まりの低下と高いコストが必要である。本発明のようなセラミック技術は、最終加工として表面研磨のみが残されているだけである。このため、生産性、コスト等の経済的価値があるのは無論であるが、加工による材料内部へのダメージ(歪発生)の抑制等も実現できる。
<Embodiment 2>
2A to 2C show a method for manufacturing a lens, a prism, and a dome-shaped optical element as an example. The prepared slurry is poured into a slip casting mold or injected into an injection molding mold to form a green compact having a lens, prism, or dome shape. The subsequent manufacturing process depends on the method shown in FIG. 1, but in the case of a single crystal or glass material, especially in the case of a dome or lens, the disk workpiece is taken out by boring and cutting to a required size diameter. Since it is necessary to process a flat surface into a curved surface, a reduction in material yield due to processing and a high cost are required. Ceramic technology such as the present invention only leaves surface polishing as the final process. For this reason, it is a matter of course that there are economic values such as productivity and cost, but it is also possible to suppress damage to the inside of the material (strain generation) due to processing.

<実施の形態3>
図3(a)(b)には、作製した透明ジルコニア及びハフニアセラミック(それぞれ直径23mm×厚さ6mm、直径10mm×厚さ9mm、両面光学研磨品)の外観、ポーラライザーによる光学歪(複屈折)の観察状態を計測した結果を示す。作製したセラミックは単結晶に類比する透明度を有している。ポーラライザーによる観察では、複屈折の発生状態は図3(c)に示したように僅か或いは殆ど確認できないレベルである。図3(d)には、作製したジルコニアセラミックスの複屈折に関して単位長さ当たりの光路差分布を示す。周辺部を除けば20nm/cmの範囲となっている。また、透過波面の測定においては試料厚さを5mmとし両面の平坦度をλ/10(ラムダは、測定したHe−Neレーザーの波長で633nm)、両面の平行度を10sec以内に精密研磨したサンプルを作製した。作製したジルコニアセラミックを干渉計(ZYGO社製)にて透過波面の計測を行った。その結果、フリンジはλ/4以内であり、光学的に不均一な部分は外周部のみに限定されている。このことから、本発明で作製したジルコニア及びハフニアセラミックは光学素子として極めて良好な光学特性を有していることがわかる。
<Embodiment 3>
3 (a) and 3 (b) show the appearance of the produced transparent zirconia and hafnia ceramic (diameter 23 mm × thickness 6 mm, diameter 10 mm × thickness 9 mm, double-sided optically polished product), optical distortion (birefringence by a polarizer), respectively. ) Shows the result of measuring the observation state. The produced ceramic has transparency comparable to that of a single crystal. In the observation with a polarizer, the state of occurrence of birefringence is a level that is slightly or hardly confirmed as shown in FIG. FIG. 3D shows the optical path difference distribution per unit length with respect to the birefringence of the produced zirconia ceramics. Excluding the peripheral part, the range is 20 nm / cm. In the measurement of the transmitted wavefront, the sample thickness is 5 mm, the flatness of both surfaces is λ / 10 (lambda is 633 nm at the measured He-Ne laser wavelength), and the parallelism of both surfaces is precisely polished within 10 sec. Was made. The transmitted wavefront of the produced zirconia ceramic was measured with an interferometer (manufactured by ZYGO). As a result, the fringe is within λ / 4, and the optically non-uniform portion is limited only to the outer peripheral portion. From this, it can be seen that the zirconia and hafnia ceramics produced in the present invention have very good optical characteristics as an optical element.

<実施の形態4>
図4には、厚さ6mmを有するジルコニアセラミック(両面光学研磨)の波長350〜800nmにおける透過スペクトルを示す。波長500及び700nmにおける直線透過率はそれぞれ70%及び74%に達しており、光学ロスが非常に小さいことがわかる。このセラミックは、安定化材としてYを10モル%含み、フッ素元素をCaFとして0.5重量%含む。屈折率n=2.2であるジルコニアの理論透過率は約75%であるので、波長500nm及び700nmにおける光学ロスは8.3及び1.7%/cmと見積もることができる。このことから、これまでに類を見ない性能のジルコニアセラミックがあることがわかる。さらに、測定波長1000nmにおける透過率は74.7%に達しており、光学ロスは僅か0.7%/cmであり、これまでの報告にない特性を示している。
<Embodiment 4>
FIG. 4 shows a transmission spectrum at a wavelength of 350 to 800 nm of a zirconia ceramic (double-sided optical polishing) having a thickness of 6 mm. The linear transmittances at wavelengths of 500 and 700 nm reach 70% and 74%, respectively, indicating that the optical loss is very small. This ceramic contains 10 mol% of Y 2 O 3 as a stabilizer and 0.5 wt% of elemental fluorine as CaF 2 . Since the theoretical transmittance of zirconia having a refractive index n = 2.2 is about 75%, the optical loss at wavelengths of 500 nm and 700 nm can be estimated as 8.3 and 1.7% / cm. This shows that there are zirconia ceramics with unprecedented performance. Furthermore, the transmittance at a measurement wavelength of 1000 nm has reached 74.7%, and the optical loss is only 0.7% / cm, indicating characteristics not reported so far.

<実施の形態5>
図5には、試料厚さ10mm(両面光学研磨したタブレット形状の試料)に統一した試料の短波長域での透過率を示す。試料Aは原料ベースでのTiO無添加で0.5重量%のCaF添加、試料Bは0.5重量%のCaF添加かつTiOを5重量%添加したものであり、各々の製造条件は本発明の範囲内で同一としている。比較例(試料C)として、フッ化物の添加なしでTiOのみを添加した先行文献範疇の組成になるジルコニアセラミックスを試料A,Bと同一条件で作製した。フッ化物を利用しない先行技術の試料Cは400nm付近に吸収端があるだけでなく、測定波長全体にわたって透過率が非常に低い。一方、本発明のものはTiO添加タイプの試料Bについては同様に400nm付近での吸収が起こるが極めて高い透過率を示している。TiOを添加しない試料Aは、試料Bに比べて若干透過率は劣るものの、吸収端が320〜350nmまで拡張されるという特徴がある。本発明品の試料A,Bともに先行技術を遥かに凌駕しているのがわかる。
<Embodiment 5>
FIG. 5 shows the transmittance in the short wavelength region of a sample with a sample thickness of 10 mm (tablet sample subjected to double-side optical polishing). Sample A is a raw material-free TiO 2 additive with 0.5 wt% CaF 2 added, and Sample B is 0.5 wt% CaF 2 added and TiO 2 added with 5 wt%. Conditions are the same within the scope of the present invention. As a comparative example (sample C), zirconia ceramics having a composition of the prior art category in which only TiO 2 was added without adding fluoride was prepared under the same conditions as those of samples A and B. Prior art sample C, which does not utilize fluoride, not only has an absorption edge near 400 nm, but also has a very low transmittance over the entire measurement wavelength. On the other hand, the TiO 2 -added type sample B of the present invention exhibits absorption at around 400 nm in the same manner, but exhibits extremely high transmittance. Sample A to which TiO 2 is not added has a characteristic that although the transmittance is slightly inferior to that of sample B, the absorption edge is extended to 320 to 350 nm. It can be seen that the samples A and B of the present invention far surpass the prior art.

<実施の形態6>
図6は、1重量%のEuと同じく1重量%のSmを添加したハフニアセラミックに波長245nmの紫外線を照射したときの蛍光を観測したものである。このセラミックはフッ素元素をCaFとして0.3重量%含む。図示していないが、X線又はγ線を照射したときも同様の蛍光を観察することができた。本発明ジルコニア系セラミックの比重は安定化剤の種類と量によって異なるが、6g/cm程度、本発明ハフニア系セラミックに至っては9〜10g/cm程度の比重になる。詳細な測定は実施していないが、比重が重く、強い蛍光を発する機能は放射線検出(シンチレータ)材料として非常に有望である。
<Embodiment 6>
FIG. 6 shows fluorescence observed when ultraviolet light having a wavelength of 245 nm is irradiated on a hafnia ceramic to which 1% by weight of Sm 2 O 3 is added in the same manner as 1% by weight of Eu 2 O 3 . The ceramic contains 0.3% by weight of fluorine element as CaF 2. Although not shown, similar fluorescence could be observed when X-rays or γ-rays were irradiated. The specific gravity of the present invention the zirconia based ceramic varies depending on the kind and amount of stabilizer, 6 g / cm 3 or so, is led to the present invention hafnia ceramic becomes specific gravity of about 9~10g / cm 3. Although detailed measurement has not been carried out, the specific gravity is heavy and the function of emitting strong fluorescence is very promising as a radiation detection (scintillator) material.

また、蛍光元素を入れないタイプに関しても、比重が重く、可視域で透明であるという特徴を生かせば原子力関係のウインドー(放射線をシャットアウトできる窓)としても有望と考えられる。   In addition, a type that does not contain a fluorescent element is considered promising as a window related to nuclear power (a window that can shut out radiation) by taking advantage of its high specific gravity and transparency in the visible range.

<実施の形態7>
図7には、1重量%のNd(紫色)、1重量%のTb(オレンジ色)、1重量%のEr(ピンク)、0.5重量%のPr11(オレンジ〜緑色)を添加した着色セラミックの外観を示す。このセラミックはフッ素元素をCaFとして0.8重量%含む。それぞれのサンプルは透明であり、着色に応じた光吸収機能を有している。
<Embodiment 7>
FIG. 7 shows 1 wt% Nd 2 O 3 (purple), 1 wt% Tb 4 O 7 (orange), 1 wt% Er 2 O 3 (pink), 0.5 wt% Pr 6. The appearance of a colored ceramic to which O 11 (orange to green) is added is shown. The ceramic contains 0.8% by weight of fluorine element as CaF 2. Each sample is transparent and has a light absorption function corresponding to the coloring.

<実施の形態8>
図8は、図7と同じく、Nd, Erを含有する、および着色剤無添加の透明ジルコニアセラミックを作製し、宝飾品として加工したカットストーンである。このセラミックはフッ素元素をYFとCaFとしてそれぞれを0.25重量%含む。本品は天然のジルコンや人工的に合成した単結晶キュービックジルコニアと比べても遜色がなく、単結晶合成技術では困難なグラデェーション(呈色の濃淡を段階的に変えること)や異なる呈色のセラミックを任意に製造することができ、これまでに類を見ない宝飾品のデザイニングができる等の特徴がある。
<Eighth embodiment>
FIG. 8 is a cut stone obtained by producing a transparent zirconia ceramic containing Nd 2 O 3 and Er 2 O 3 and containing no colorant and processing it as a jewelery, as in FIG. This ceramic contains 0.25% by weight of fluorine elements as YF 3 and CaF 2 , respectively. This product is not inferior to natural zircon or artificially synthesized single crystal cubic zirconia, and it is difficult to achieve with the single crystal synthesis technology (changing the shade of the color step by step) and different colored ceramics. Can be manufactured arbitrarily, and it is possible to design jewelry that has never been seen before.

以下、実施例及び比較例を示し、本発明をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the scope of the present invention is not limited to the examples.

<実施例1〜112及び比較例1〜14>
図1に示された方法に従って、表1〜14(実施例)及び表15〜16(比較例)に示した原料及び条件にてジルコニアセラミック及びハフニアセラミックをそれぞれ製造した。
<Examples 1-112 and Comparative Examples 1-14>
In accordance with the method shown in FIG. 1, zirconia ceramics and hafnia ceramics were respectively produced using the raw materials and conditions shown in Tables 1 to 14 (Examples) and Tables 15 to 16 (Comparative Examples).

各原料粉末に対してフッ化物を所定量添加し、さらに分散剤及びバインダーを添加した(実施例によってはTiO粉末(ルチル型)を添加)後、これらをポットミルで混合することにより混合物を得た。次いで、上記混合物をスプレードライすることにより粒径数十μmの顆粒を得た。前記顆粒を用い、1次成形として金型成形を行った後、2次成形としてCIPを行うことにより成形体を得た。得られた成形体を大気中500〜900℃で仮焼した後、所定の雰囲気中1400〜1800℃で焼成(本焼成)した。さらに、得られた焼成体をさらにHIP処理することにより、本発明セラミック(サイズ:幅20mm×長さ20mm×厚み10mm)を得た。得られたセラミックの物性を各表にそれぞれ示す。 A predetermined amount of fluoride is added to each raw material powder, and further, a dispersant and a binder are added (in some embodiments, TiO 2 powder (rutile type) is added), and then these are mixed in a pot mill to obtain a mixture. It was. Next, the mixture was spray-dried to obtain granules having a particle size of several tens of μm. Using the granule, after performing mold molding as primary molding, a molded body was obtained by performing CIP as secondary molding. The obtained molded body was calcined at 500 to 900 ° C. in the air, and then fired (main firing) at 1400 to 1800 ° C. in a predetermined atmosphere. Further, the obtained fired body was further subjected to HIP treatment to obtain a ceramic of the present invention (size: width 20 mm × length 20 mm × thickness 10 mm). The physical properties of the obtained ceramic are shown in each table.

表1及び表2は主にジルコニア及びハフニア原料の1次粒子サイズを変動させたもの、表3及び表4は安定化剤の種類を変動させたもの、表5及び表6はフッ化物の種類と量を変動させたもの、表7及び表8はフッ化物添加を前提とし、TiO量を変動させたもの、表9及び表10は仮焼(雰囲気含む)、本焼成条件(雰囲気含む)を変動させたもの、表11及び表12はHIPでの温度、時間、圧力媒体、圧力条件を変動させたもの、表13及び表14はランタニド希土類酸化物を添加することにより呈色(又は発光機能を付与)させたものであるが、いずれも本特許の組成と製造条件で作製されたものである。 Tables 1 and 2 mainly vary the primary particle size of zirconia and hafnia raw materials, Tables 3 and 4 vary the type of stabilizer, and Tables 5 and 6 indicate the types of fluoride. Table 7 and Table 8 are based on the premise of fluoride addition, and TiO 2 amount is varied. Tables 9 and 10 are calcined (including atmosphere) and main firing conditions (including atmosphere). Tables 11 and 12 are those in which the temperature, time, pressure medium, and pressure conditions in HIP are changed, and Tables 13 and 14 are colored (or luminescence) by adding a lanthanide rare earth oxide. All of which are produced under the composition and manufacturing conditions of this patent.

一方、表15及び表16に記載されたサンプルは、原料の一次粒子サイズが規定外にあるもの、フッ化物を添加しないもの、フッ化物添加量が過剰であるもの、フッ化物は規定量にあるもののTiOが過剰であるもの、仮焼温度が高くかつ本焼成温度が低いもの、安定化剤の量が不十分なためセラミックの一部に立方晶以外に正方晶相が検出されたものを示す。作製したジルコニア及びハフニアセラミックスの光学特性は、本発明に比べ劣悪であることが明瞭である。また、比較例15には市販の単結晶ジルコニアの光学測定結果を示す。 On the other hand, in the samples described in Table 15 and Table 16, the primary particle size of the raw material is not specified, the fluoride is not added, the fluoride is added excessively, and the fluoride is in the specified amount. Those in which the TiO 2 is excessive, the calcination temperature is high and the main calcination temperature is low, and the amount of the stabilizer is insufficient so that a tetragonal phase other than cubic crystals is detected in part of the ceramic. Show. It is clear that the optical properties of the produced zirconia and hafnia ceramics are inferior to those of the present invention. Comparative Example 15 shows the optical measurement results of commercially available single crystal zirconia.

表1〜表16中に示した“焼結後の結晶構造”とは、一般的なX線粉末回折法で作製したセラミックの鉱物相の検出において、立方晶のみの回折パターンであるか、それ以外の相がチェックできたかを示している。   “Crystal structure after sintering” shown in Tables 1 to 16 is a diffraction pattern of only cubic crystals in the detection of the mineral phase of ceramics produced by a general X-ray powder diffraction method, or It shows whether other phases could be checked.

実施例43〜98には全てTiOが含まれるので、これらの実施例に関してはHIP処理後に大気中において室温から500℃までの温度範囲は50℃/hrで昇温し、その後1200℃までを7℃/hrでゆっくりと昇温し、その後1200℃で5時間かけてアニールを実施した。実施例43〜98の全てのサンプルにおいて、灰色〜黒色を呈してほとんど可視光を通さなかったサンプルであったが、アニール後には無色透明(TiO量が3重量%以上のサンプルでは淡黄色)或いは着色透明に変化した。無論、600℃未満ではほとんど酸化反応が起こらないので、サンプルは依然として灰色〜黒色を呈し、1600℃を越える温度でアニールした場合は顕著な酸化反応が起こり、灰色〜黒色の脱色は起こるが、サンプル内部に多数の気泡が発生して光学特性の極端な低下が起こり、場合によっては失透する現象が全てのサンプルにおいて確認された。一方、実施例1〜42はTiOフリーのサンプルであるので、HIP処理による母材(ジルコニア、ハフニア)の還元に伴う酸素欠陥の除去を行うのが主な目的となる。例えば、実施例1、15、8、22については、HIP処理後にさらにアニール工程を実施した。アニール工程は、大気中において室温から500℃までは50℃/hrで昇温した後、その後1100℃までを昇温速度10℃/hrで昇温し、1100℃で5時間かけてアニールを実施した。アニール工程を実施する前のサンプルの透過率はそれぞれ実施例1(35%(波長500nm)、46%(波長700nm))、実施例15(49%(波長500nm)、62%(波長700nm))、実施例8(33%(波長500nm)、40%(波長700nm))、実施例22(36%(波長500nm)、47%(波長700nm))であったことから、TiO添加サンプルほどの効果はないものの、HIP処理後のアニール工程で光学特性をさらに向上できることがわかる。 Since Examples 43 to 98 all contain TiO 2, the temperature range from room temperature to 500 ° C. in the atmosphere after HIP treatment is increased at 50 ° C./hr, and then up to 1200 ° C. for these examples. The temperature was raised slowly at 7 ° C./hr, and then annealed at 1200 ° C. for 5 hours. In all the samples of Examples 43 to 98, they were samples that exhibited gray to black and hardly passed visible light, but were colorless and transparent after annealing (light yellow for samples with a TiO 2 content of 3% by weight or more). Or it changed to colored transparency. Of course, since the oxidation reaction hardly occurs below 600 ° C., the sample still exhibits gray to black, and when it is annealed at a temperature exceeding 1600 ° C., a significant oxidation reaction occurs and gray to black decolorization occurs. A large number of bubbles were generated inside, resulting in an extreme decrease in optical properties, and in some cases, devitrification was confirmed in all samples. On the other hand, since Examples 1-42 are TiO 2 free samples, the main purpose is to remove oxygen defects accompanying reduction of the base material (zirconia, hafnia) by HIP treatment. For example, in Examples 1, 15, 8, and 22, an annealing process was further performed after the HIP process. In the annealing process, the temperature is raised from room temperature to 500 ° C. at 50 ° C./hr in the air, and then the temperature is raised to 1100 ° C. at a rate of temperature rise of 10 ° C./hr, and annealing is performed at 1100 ° C. for 5 hours. did. The transmittance of the sample before carrying out the annealing process is Example 1 (35% (wavelength 500 nm), 46% (wavelength 700 nm)) and Example 15 (49% (wavelength 500 nm), 62% (wavelength 700 nm)), respectively. example 8 (33% (wavelength 500 nm), 40% (wavelength 700 nm)), example 22 since was (36% (wavelength 500 nm), 47% (wavelength 700 nm)), as TiO 2 added samples Although there is no effect, it can be seen that the optical characteristics can be further improved in the annealing step after the HIP treatment.

なお、表1〜16に示した透過率測定では、サンプル厚さを5mmとし両面を光学研磨して測定に供した。(前記規定に従う)内部損失は表面精度をほぼ同じにした厚さ1mm及び11mmの試料を準備し、双方のサンプルの透過率差(試料厚さの差異が1cmであるので、双方の透過率の差異は試料厚さ1cm当たりの透過率差)から内部損失を求めた。さらに、材料内部の屈折率の均一性は、同様に試料厚さを5mmに調整し両面を光学研磨した。この試料を干渉計にて透過光の波面観察したときのフリンジを計測することで光学的均一性を評価できる。   In addition, in the transmittance | permeability measurement shown to Tables 1-16, the sample thickness was 5 mm and both surfaces were optically polished and it used for the measurement. Internal loss (according to the above rules) is prepared for samples with thicknesses of 1 mm and 11 mm with substantially the same surface accuracy, and the difference in transmittance between both samples (the difference in sample thickness is 1 cm. The internal loss was determined from the difference (transmittance difference per 1 cm of sample thickness). Furthermore, the uniformity of the refractive index inside the material was similarly adjusted to a sample thickness of 5 mm and optically polished on both sides. Optical uniformity can be evaluated by measuring a fringe when the wavefront of the transmitted light is observed with this interferometer.

表17には、実施例73,76,80,81,88,90,92で示した試料と同一条件で作製したサンプルであるが、アナターゼ構造のTiOを使用した結果を示す(実施例99〜105)。これらも優れた特性を有するが、透過率、内部損失、屈折率の均一性等の点においてはルチル構造のTiOを使用することがより望ましいことがわかる。 Table 17 shows the results of using TiO 2 having anatase structure, although the samples were prepared under the same conditions as the samples shown in Examples 73, 76, 80, 81, 88, 90, and 92 (Example 99). ~ 105). Although these also have excellent characteristics, it can be seen that it is more desirable to use TiO 2 having a rutile structure in terms of transmittance, internal loss, refractive index uniformity, and the like.

また、表18は表11とほぼ同じ条件であるが、実施例106,107,110は加圧焼結にHPを利用した場合、実施例108、109、111、112は本焼結の焼成雰囲気を真空以外のHe又はHとした例を示した。いずれの場合も表11と同等レベルの光学特性を有するジルコニア焼結体が作製できた。 Table 18 shows almost the same conditions as in Table 11, but Examples 106, 107, and 110 use HP for pressure sintering, and Examples 108, 109, 111, and 112 show the firing atmosphere of main sintering. In this example, He or H 2 other than vacuum was used. In either case, a zirconia sintered body having optical properties equivalent to those in Table 11 could be produced.

<比較例15>
スカルメルト法で作製した市販のキュービックジルコニア単結晶をもいて光学測定を行った。長さ10mm×幅10mm×厚さ5mmのサンプルを作製し、両面(10mm×10mm面)を光学研磨した。波長500及び700nmにおける直線透過率は、それぞれ64%及び73%であり、1000nmにおける内部損失は1.5%であり、本発明品と同等レベルであったが、セラミックスのベストサンプルの値には至っていない。また、透過波面観察における屈折率変動(フリンジ)はλ/4であったので、条件によっては光学的品質も本発明セラミックの方が勝っていることが確認できた。
<Comparative Example 15>
Optical measurement was carried out using a commercially available cubic zirconia single crystal produced by the skull melt method. A sample having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm was prepared, and both surfaces (10 mm × 10 mm surface) were optically polished. The linear transmittances at wavelengths of 500 and 700 nm were 64% and 73%, respectively, and the internal loss at 1000 nm was 1.5%, which was the same level as the product of the present invention. Not reached. In addition, since the refractive index fluctuation (fringing) in transmission wavefront observation was λ / 4, it was confirmed that the ceramic of the present invention was superior in optical quality depending on the conditions.

本発明に係るジルコニア系又はハフニア系セラミック(無色透明なもの)は、ジルコニア特有又はハフニア特有の屈折率の高さ(>n=約2.1)を利用して光学分野での特殊なレンズ(高屈折率(短焦点)レンズ)、プリズム、可視〜赤外線透過材料、カラーフィルター材料、宝飾品(キュービックジルコニアの代替やセラミック固有のフリーデザインを有するジュエリー)、さらにはそれらの比重の重さを利用して放射線検出のシンチレータとして、或いは放射線シャットアウト性の高さから原子炉のウインドーとして適用することができる。
また、本発明セラミックにランタニド希土類金属元素を添加して着色すれば、様々な色をもつ透明ジルコニア及びハフニアセラミックとなり、これにより様々な用途に使用できる。
The zirconia-based or hafnia-based ceramic (colorless and transparent) according to the present invention is a special lens in the optical field (> n = about 2.1) using a zirconia-specific or hafnia-specific high refractive index (> n = about 2.1). High refractive index (short focus) lenses, prisms, visible to infrared transmitting materials, color filter materials, jewelry (jewelry with cubic zirconia alternatives and ceramic-specific free designs), and the weight of their specific gravity Thus, it can be applied as a scintillator for detecting radiation or as a reactor window because of its high radiation shut-out property.
Further, if the lanthanide rare earth metal element is added to the ceramic of the present invention and colored, it becomes transparent zirconia and hafnia ceramic having various colors, and can be used for various applications.

多結晶透明ジルコニア又はハフニア媒質(透明焼結体)の製造例を示す工程図である。It is process drawing which shows the manufacture example of a polycrystalline transparent zirconia or a hafnia medium (transparent sintered body). ドーム(図2(a))、レンズ(図2(b))又はプリズム(図2(c))を作製する場合の製造工程図である。It is a manufacturing-process figure in the case of producing a dome (FIG. 2 (a)), a lens (FIG.2 (b)), or a prism (FIG.2 (c)). 作製したジルコニア(研磨後)の概観(図3(a))、作製したハフニアセラミック(研磨後)の概観(図3(b))、歪計による複屈折状態の観察(図3(c))及び光路差分布の状態(図3(d))を示す。Overview of manufactured zirconia (after polishing) (FIG. 3A), overview of manufactured hafnia ceramic (after polishing) (FIG. 3B), observation of birefringence state by strain gauge (FIG. 3C) And the state (FIG.3 (d)) of optical path difference distribution is shown. 可視から赤外線領域におけるジルコニアセラミックスの透過スペクトルを示す。サンプル厚さは6mmであり、試料両面は光学研磨している。屈折率から計算される理論透過率は75%であり、理論透過率に近い透過特性である。The transmission spectrum of zirconia ceramics in the visible to infrared region is shown. The sample thickness is 6 mm, and both surfaces of the sample are optically polished. The theoretical transmittance calculated from the refractive index is 75%, which is a transmission characteristic close to the theoretical transmittance. (1)試料A:TiO無添加で0.5重量%CaF添加、(2) 試料B:5重量%のTiO添加かつ0.5重量%CaF添加、(3)試料C:5重量%TiO添加でCaF無添加のジルコニアセラミックの透過スペクトルを示す。(1) Sample A: 0.5 wt% CaF 2 added without addition of TiO 2 , (2) Sample B: 5 wt% TiO 2 added and 0.5 wt% CaF 2 added, (3) Sample C: 5 the transmission spectrum of the zirconia ceramic CaF 2 no addition in wt% TiO 2 added. EuとSmをそれぞれ1重量%添加したハフニアセラミックスに245nmのUVを照射したときの発光状態を示す。Shows the light emitting state when irradiated with UV at 245nm The eu 2 O 3 and Sm 2 O 3 in the hafnia ceramics was added each 1% by weight. Nd(紫色)、Ce(オレンジ色)、Er(ピンク色)、Pr(深緑色)を添加した着色セラミックの概観を示す。An overview of a colored ceramic added with Nd (purple), Ce (orange), Er (pink), and Pr (dark green) is shown. Nd(1重量%)、Er(0.1重量%)を添加、および着色剤無添加の透明ジルコニアセラミックスをカットして作製した宝飾品の概観を示す。An overview of jewelry manufactured by cutting transparent zirconia ceramics with Nd (1 wt%), Er (0.1 wt%) added, and no colorant added is shown.

Claims (10)

、Sc、MgO、CaO及びランタニド希土類酸化物の少なくとも1種の安定化材により安定化されたジルコニア系又はハフニア系セラミックであって、
(1)前記ジルコニア系又はハフニア系セラミックの結晶構造が立方晶であり、
(2)平均結晶粒子径が5〜300μmの範囲にあり、
(3)フッ素元素をCaF 換算で0.05〜3重量%含有する、
ことを特徴とする透明セラミック。
A zirconia-based or hafnia-based ceramic stabilized by at least one stabilizing material of Y 2 O 3 , Sc 2 O 3 , MgO, CaO and a lanthanide rare earth oxide,
(1) The crystal structure of the zirconia or hafnia ceramic is cubic.
(2) The average crystal particle diameter is in the range of 5 to 300 μm,
(3) containing 0.05 to 3% by weight of fluorine element in terms of CaF 2 ;
A transparent ceramic characterized by that.
チタン元素をさらにTiO 換算で0.1〜10重量%含む、請求項1に記載の透明セラミック。 The transparent ceramic according to claim 1, further comprising 0.1 to 10% by weight of titanium element in terms of TiO 2 . 厚さ5mmの試料の厚み方向において、1)波長500nmでの光透過のベースラインにおける直線透過率が50%以上であり、2)波長700nmでの光透過のベースラインにおける直線透過率が60%以上である、請求項1に記載の透明セラミック。 In the thickness direction of a sample having a thickness of 5 mm, 1) the linear transmittance at a light transmission baseline at a wavelength of 500 nm is 50% or more, and 2) the linear transmittance at a light transmission baseline at a wavelength of 700 nm is 60%. The transparent ceramic according to claim 1, which is as described above. 波長1000nmの光線における内部損失が15%/cm以内である、請求項1に記載の透明セラミック。 The transparent ceramic of Claim 1 whose internal loss in the light ray with a wavelength of 1000 nm is 15% / cm or less. 干渉計を使った厚さ5mm試料の光学的均一性の評価に関して、測定面の90%以上の面積で透過波面測定でのフリンジがλ以内(λは、測定したHe−Neレーザーの波長で633nmを示す。)である、請求項1に記載の透明セラミック。 Regarding the evaluation of the optical uniformity of a sample having a thickness of 5 mm using an interferometer, the fringe in transmission wavefront measurement is within λ in an area of 90% or more of the measurement surface (λ is the wavelength of the measured He—Ne laser at 633 nm). is shown.), transparent ceramics according to claim 1. 最小厚みが10mm以上の焼結体である、請求項1に記載の透明セラミック。 The transparent ceramic according to claim 1, which is a sintered body having a minimum thickness of 10 mm or more. 請求項1〜6のいずれかに記載の透明セラミックを用いた光学素子。 The optical element using the transparent ceramic in any one of Claims 1-6. 透明セラミックを製造する方法であって、
(1)a)ジルコニア又はハフニア、b)Y、Sc、MgO、CaO及びランタニド希土類酸化物の少なくとも1種を安定化材及びc)フッ化物を0.05〜3重量%含有し、かつ、平均一次粒径が20〜500nmである原料粉末を成形することにより成形体を得る第1工程、
(2)前記成形体を500〜900℃で仮焼することにより仮焼体を得る第2工程、
(3)前記仮焼体を1400〜1800℃で焼成することにより焼成体を得る第3工程、
(4)前記焼成体を1400〜2000℃で加圧焼成することにより加圧焼成体を得る第4工程
を含むことを特徴とする透明セラミックの製造方法。
A method for producing a transparent ceramic comprising:
(1) a) zirconia or hafnia, b) at least one of Y 2 O 3 , Sc 2 O 3 , MgO, CaO and a lanthanide rare earth oxide is stabilized, and c) 0.05 to 3% by weight of fluoride A first step of obtaining a molded body by molding a raw material powder containing and having an average primary particle size of 20 to 500 nm,
(2) a second step of obtaining a calcined body by calcining the molded body at 500 to 900 ° C;
(3) A third step of obtaining a fired body by firing the calcined body at 1400-1800 ° C.,
(4) A method for producing a transparent ceramic, comprising a fourth step of obtaining a pressure fired body by pressure firing of the fired body at 1400 to 2000 ° C.
前記原料粉末がさらにTiO0.1〜10重量%含む、請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the raw material powder further contains 0.1 to 10 wt% of TiO 2 . 前記加圧焼成体を酸素を含む雰囲気下600〜1600℃でアニールする工程をさらに含む、請求項8に記載の製造方法。

The manufacturing method of Claim 8 which further includes the process of annealing the said pressurization sintered body at 600-1600 degreeC by the atmosphere containing oxygen.

JP2008257306A 2008-07-22 2008-10-02 Transparent ceramic, manufacturing method thereof, and optical element using the transparent ceramic Expired - Fee Related JP5325518B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008257306A JP5325518B2 (en) 2008-07-22 2008-10-02 Transparent ceramic, manufacturing method thereof, and optical element using the transparent ceramic
DE102009030951.9A DE102009030951B4 (en) 2008-07-22 2009-06-29 Transparent ceramics and their manufacturing methods, as well as optical elements using the transparent ceramics

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008189228 2008-07-22
JP2008189213 2008-07-22
JP2008189213 2008-07-22
JP2008189228 2008-07-22
JP2008257306A JP5325518B2 (en) 2008-07-22 2008-10-02 Transparent ceramic, manufacturing method thereof, and optical element using the transparent ceramic

Publications (2)

Publication Number Publication Date
JP2010047460A JP2010047460A (en) 2010-03-04
JP5325518B2 true JP5325518B2 (en) 2013-10-23

Family

ID=41428923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008257306A Expired - Fee Related JP5325518B2 (en) 2008-07-22 2008-10-02 Transparent ceramic, manufacturing method thereof, and optical element using the transparent ceramic

Country Status (2)

Country Link
JP (1) JP5325518B2 (en)
DE (1) DE102009030951B4 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501642B2 (en) * 2009-03-23 2014-05-28 株式会社ノリタケカンパニーリミテド Fluorescent zirconia material
US8722555B2 (en) 2009-06-04 2014-05-13 Tosoh Corporation High-strength transparent zirconia sintered body, process for producing the same, and uses thereof
US8815760B2 (en) 2009-08-07 2014-08-26 Tosoh Corporation Transparent zirconia sintered body, method for producing same, and use of same
CN102791653A (en) 2010-03-09 2012-11-21 东曹株式会社 Red light transmitting zirconia sintered body, method for producing the same, material formed from that sintered body and jewelry and exterior component using that material
JP5655512B2 (en) * 2010-11-05 2015-01-21 東ソー株式会社 Colored translucent zirconia sintered body, method for producing the same, and use thereof
JP5861397B2 (en) 2010-11-11 2016-02-16 東ソー株式会社 Colored translucent zirconia sintered body, method for producing the same, and use thereof
DE102013006463B4 (en) 2013-04-15 2017-01-19 Schott Ag execution
WO2015199018A1 (en) * 2014-06-23 2015-12-30 東ソー株式会社 Colored translucent zirconia sintered body and powder, and use thereof
CN105565806B (en) * 2014-12-08 2017-04-05 比亚迪股份有限公司 A kind of ceramics and preparation method thereof
JP6698417B2 (en) * 2016-04-27 2020-05-27 京セラ株式会社 Method for manufacturing fluorescent zirconia material for beam detection
JP6747121B2 (en) * 2016-05-25 2020-08-26 東ソー株式会社 Translucent zirconia sintered body, method for producing the same, and use thereof
JP6911290B2 (en) * 2016-06-27 2021-07-28 東ソー株式会社 Colored translucent zirconia sintered body, its manufacturing method, and its use
JP6772591B2 (en) * 2016-06-30 2020-10-21 東ソー株式会社 Translucent zirconia sintered body, its manufacturing method, and its application
JP6772592B2 (en) * 2016-06-30 2020-10-21 東ソー株式会社 Translucent zirconia sintered body, its manufacturing method, and its application
DE102018203895A1 (en) * 2018-03-14 2019-09-19 Siemens Aktiengesellschaft Ceramic material, layer and layer system
DE102018204498A1 (en) * 2018-03-23 2019-09-26 Siemens Aktiengesellschaft Ceramic material based on zirconium oxide with other oxides
CN114105639A (en) * 2021-12-20 2022-03-01 中国科学院上海光学精密机械研究所 Infrared transparent ceramic material and preparation method thereof
CN115180827B (en) * 2022-07-06 2024-03-12 中国科学院上海硅酸盐研究所 High-refractive-index high-hardness glass material and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291467A (en) * 1985-06-20 1987-04-25 東ソー株式会社 Light transparent zirconia sintered body
JP2590485B2 (en) * 1987-08-25 1997-03-12 東ソー株式会社 Orthodontic bracket
JP2587834B2 (en) 1987-10-08 1997-03-05 オリンパス光学工業株式会社 Contact laser probe
JP2569662B2 (en) 1987-12-28 1997-01-08 東ソー株式会社 Method for producing translucent zirconia sintered body
JPH05286762A (en) * 1992-04-10 1993-11-02 Kurosaki Refract Co Ltd Manufacture of polycrystalline transparent yag ceramic for solid laser
JPH05330913A (en) * 1992-05-29 1993-12-14 Kurosaki Refract Co Ltd Polycrystalline transparent y2o3 ceramics for laser
RU2194028C2 (en) * 2001-02-26 2002-12-10 ФГУП Обнинское научно-производственное предприятие "Технология" Method of manufacturing zirconium dioxide-based ceramics
US6946417B2 (en) * 2003-05-21 2005-09-20 Saint-Gobain Ceramics & Plastics, Inc. Light-colored ESD safe ceramics
JP2007108734A (en) * 2005-09-21 2007-04-26 Schott Ag Optical element and imaging optical element comprising same
JP5125065B2 (en) * 2006-02-17 2013-01-23 東ソー株式会社 Transparent zirconia sintered body
DE102007002079A1 (en) * 2007-01-09 2008-07-10 Schott Ag Process for the production of optical elements and optical elements
FR2917404B1 (en) * 2007-06-15 2009-09-04 Saint Gobain Ct Recherches SINTER PRODUCT OF CUBIC STRUCTURE.

Also Published As

Publication number Publication date
JP2010047460A (en) 2010-03-04
DE102009030951B4 (en) 2016-10-27
DE102009030951A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5325518B2 (en) Transparent ceramic, manufacturing method thereof, and optical element using the transparent ceramic
JP5563766B2 (en) Transparent spinel ceramics, method for producing the same, and optical material using the transparent spinel ceramics
Peuchert et al. Transparent cubic-ZrO2 ceramics for application as optical lenses
JP5861397B2 (en) Colored translucent zirconia sintered body, method for producing the same, and use thereof
JP5704097B2 (en) Transparent ceramics, method for producing the same, and magneto-optical device
JP5351147B2 (en) Sintered product with cubic structure
US11161274B2 (en) Method for manufacturing transparent ceramic material for faraday rotator
JP5708050B2 (en) Red translucent zirconia sintered body and method for producing the same
US7751123B2 (en) Optical elements made from ceramics comprising one or more oxides of Y, Sc, in and/or lanthanide elements and mapping optics including the optical elements
JP6848904B2 (en) Manufacturing method of transparent ceramics, transparent ceramics and magneto-optical devices
EP1867617A1 (en) Opto-ceramics, optical elements prepared therefrom as well as mapping optics
JP6331840B2 (en) Red zirconia sintered body and manufacturing method thereof
JP5390454B2 (en) Passive optical ceramics having a cubic structure, method for producing the same, and use thereof
KR20150112997A (en) Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
JP5655512B2 (en) Colored translucent zirconia sintered body, method for producing the same, and use thereof
JP6341284B2 (en) Method for producing transparent ceramics
KR101575561B1 (en) Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency
JPH0329021B2 (en)
JP6885314B2 (en) Manufacturing method of transparent ceramics for Faraday rotator
JP2023113369A (en) Transparent alumina ceramic and method for producing the same
JP2014062007A (en) Translucent ceramic, method of producing the same, optical element and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121223

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130224

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5325518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees