JPS6291467A - Light transparent zirconia sintered body - Google Patents
Light transparent zirconia sintered bodyInfo
- Publication number
- JPS6291467A JPS6291467A JP61110864A JP11086486A JPS6291467A JP S6291467 A JPS6291467 A JP S6291467A JP 61110864 A JP61110864 A JP 61110864A JP 11086486 A JP11086486 A JP 11086486A JP S6291467 A JPS6291467 A JP S6291467A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- powder
- mol
- zirconia
- zirconia sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
「産業上の利用分野]
本発明は、透光性にすぐれたジルコニア焼結体に関する
。DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a zirconia sintered body with excellent translucency.
[従来の技術]
従来、透光性ジルコニア焼結体として、Zr02− Y
2O,系およびZrO2−Can系の2成分系焼結体が
それぞれジャーナル・オブQジ・アメリカン拳セラミ’
yり壷ソサイアテイ(Journal or1’l+(
3American Ceramic 5ociety
)第50巻筒 532頁(1967)およびジャーナ
ルφオブ・レス−コモン・メタルズ(Journal
ol’ l、oss−Common Metals )
第13巻第530頁(1967)に報告されているか、
これら焼結体の光透過率は、いずれも約1096程度で
あり、真に透光性を有する材料とはいいがたい。[Prior art] Conventionally, as a translucent zirconia sintered body, Zr02-Y
The two-component sintered bodies of 2O, series and ZrO2-Can series were published in Journal of Q The American Fist Ceramic'.
Journal or1'l+(
3American Ceramic 5ociety
) Volume 50, page 532 (1967) and Journal φ of Less-Common Metals (Journal
ol' l, oss-Common Metals)
As reported in Volume 13, page 530 (1967),
The light transmittance of these sintered bodies is about 1096, and it is difficult to say that they are truly translucent materials.
[発明が解決しようとする問題点コ
本発明は、光学44料として供することかできる、非常
に高い透光性を有するジルコニア焼結体を提供するもの
である。[Problems to be Solved by the Invention] The present invention provides a zirconia sintered body having extremely high translucency and which can be used as an optical material.
[問題点を解決するだめの手段]
一般にセラミックスに透光性を与えるためには、焼結体
の密1印を1.ばて気孔による光の散乱を減少させるこ
と、および焼結体杓子径を大きくして粒界による光の散
乱を減少させることか有効であるとされている。本発明
者は、ZrO2−Y2O3系焼結体に関する研究を進め
た結果、Z r 02− Y2O,系にTiO2を添加
することによって、焼結体のl’r成長か著しく促進さ
れることを見出した。[Means to solve the problem] Generally, in order to impart translucency to ceramics, the density of the sintered body is set to 1. It is said that it is effective to reduce the scattering of light due to pores and to increase the diameter of the sintered body to reduce the scattering of light due to grain boundaries. As a result of conducting research on ZrO2-Y2O3-based sintered bodies, the present inventor found that l'r growth of the sintered bodies was significantly promoted by adding TiO2 to the ZrO2-Y2O system. Ta.
しかし、一般には著しいね成長は、気孔の移動J:りも
粒子の成長速度のほうか速くなるために、校内に気孔か
残存する結果となり、緻密な焼結体か得鋪いという欠点
かある。本発明者は、この欠点を克服するために、原料
粉体の特性および焼結条件の検工tjを行ない、ZrO
3−Y20.系にTlO2を添加した系において著しい
粒成長と完全な緻密化とが相反する結果を与えることな
く達成されることを見出し、高い透光性を有するジルコ
ニア焼結体をうるに至った。However, in general, significant porosity growth results in pores remaining within the sintered body because the growth rate of pore particles becomes faster, resulting in a disadvantage that a dense sintered body is difficult to obtain. . In order to overcome this drawback, the present inventor conducted an inspection of the characteristics of the raw material powder and the sintering conditions, and
3-Y20. It has been discovered that remarkable grain growth and complete densification can be achieved without any conflicting results in a system in which TlO2 is added, and a zirconia sintered body having high translucency has been obtained.
本発明の焼結体は、ZrO2−’/203− TlO2
系のものであって、v、0.を2モル96以上および’
l’ i 0.を3〜20モル96をaむものてなけれ
ばならない。The sintered body of the present invention is ZrO2-'/203-TlO2
of the system, v, 0. 2 moles of 96 or more and'
l' i 0. must contain 3 to 20 moles96.
このTiO23〜20モル(垢の焼結体は、Y2O12
モル96付近で市ツノ′品tlt相であり、Y2O3f
iモル(、)6以1−では立方晶H1(相となり、その
間でIEjj品と)γツノ晶との混晶となる。Iγノj
品中川から用る焼結体は、光学的に等力’ f’lであ
るため、1界による散乱がなくなり、ちっとも高い透光
性を示す。ただし、Y2O,は9モル%をこえてa有さ
せる必要は乏しい。Tie2添加磁の増大とともに焼結
体の粒径は増大する。たとえば、1700°Cで2時間
焼結を行なった場合、5モル%TlO2では50〜10
0μm〕)、lOモル’)6 T I 02では100
〜200μInの粒径となる。光透過性は、この粒径か
大きくなるほど高くなる傾向にある。たたし、TlO2
含有mが20モル%をこえると、第2111とL7て別
の化合物ZrTiO4が形成されるため、透光性が著し
く低ドする。し、たがって、透光性を十分高いものとす
るために、’r l o、含有量は、3〜20モル96
、このましくは5〜20モル%にしなけれはならない。This TiO23 to 20 mole (the sintered body is Y2O12
Around mole 96, it is the Ichitsuno' product tlt phase, and Y2O3f
When i mole (,) 6 or more is 1-, it becomes a cubic H1 (phase, between which a mixed crystal with IEjj product and) γ horn crystal is formed. Iγ no j
Since the sintered body used by Shinanakagawa is optically homogeneous, there is no scattering due to one field, and it exhibits the highest translucency. However, it is not necessary for Y2O to have more than 9 mol% of a. The grain size of the sintered body increases as the Tie2 added magnetism increases. For example, when sintering is carried out at 1700°C for 2 hours, 50 to 10
0 μm]), 1O mol') 6 T I 02, 100
The particle size is ~200μIn. Light transmittance tends to increase as the particle size increases. Tatashi, TlO2
When the content of m exceeds 20 mol%, another compound ZrTiO4 is formed between No. 2111 and L7, so that the light transmittance is significantly reduced. Therefore, in order to make the translucency sufficiently high, the content of 'r lo is 3 to 20 mol96
, preferably 5 to 20 mol %.
本発明者は、Y2O3Bモル%以1−1T i 02は
、3〜20モル%のほか、ランタン基布−に類酸化物を
微12i^有させたジルコニア焼結体が透光性のほか、
ケイ光放射性をも有することを見出した。The present inventor has discovered that Y2O3B mol% or more 1-1T i 02 is 3 to 20 mol%, and a zirconia sintered body having a fine 12i^ of similar oxides on a lanthanum base cloth has translucency as well as
It was discovered that it also has fluorescent properties.
そのランタン系希土類酸化物含有量としては0.1〜3
モル%が望ましく、ケイ光放射性をもっともよく発揮さ
せるには1モル%前後かよい。Its lanthanum-based rare earth oxide content is 0.1 to 3
The preferred amount is 1 mol %, and it is preferably around 1 mol % to best exhibit fluorescence.
また、ランタン系希土類酸化物としては、Nd201、
Eu2 o9、Tb2O3等を例示することができる。In addition, examples of lanthanum-based rare earth oxides include Nd201,
Examples include Eu2o9 and Tb2O3.
本発明の焼結体の製造法について、以下に詳しく説明す
る。The method for manufacturing the sintered body of the present invention will be explained in detail below.
出発原料は、高純度微粉末であることが望ましい。たと
えは、湿式法などで合成された平均粒子径0.1μm以
下のZrO2−Y2O3系微粉末と平均粒子径0.5μ
m以下のT I 02微粉末とを充分よく混合した粉末
でもよいが、ZrO2’/203系粉末とTlO2粉末
とを充分よく混合したものを焼成し、平均粒子径[1,
3μn]以下に粉砕してえられる各成分が互いに固溶化
したもののほうかさらにこのましい。あるいは共沈法に
よって合成された平均粒子径0.3μm以丁のZrO2
−Y203− TlO2系微粉末やZrO2−Y203
系粉末にチタンのアルコキシド溶液を混合し、乾燥し、
焼成し、粉砕してえられた平均粒子径0.3μm以下の
ものも好適な原料である。ランタン系希土類酸化物の添
加は、シュウ酸塩などを仮焼前のZr02−Y203−
TlO2系粉末前駆体に混合したのち、焼成すること
によって行なえばよい。このような粉末を、ラバープレ
ス、スリップキャスト法なとの成形法で所定の形状に成
形したのち、焼成する。焼成温度は、1400℃以上と
すればよく、充分な粒成長を達成するには1600〜1
800°Cが好ましい。また、昇温速度は、l1l(1
℃711r以下が好まり、u)。The starting material is preferably a high purity fine powder. For example, ZrO2-Y2O3 fine powder with an average particle size of 0.1 μm or less synthesized by a wet method and an average particle size of 0.5 μm.
Powder that is sufficiently well mixed with TlO2 fine powder of 0.0 m or less may be used, but a sufficiently well mixed powder of ZrO2'/203 series powder and TlO2 powder is fired, and the average particle size [1,
It is even more preferable to obtain a solid solution of each component obtained by pulverizing the powder to a size of 3 μm or less. Alternatively, ZrO2 with an average particle diameter of 0.3 μm or less synthesized by coprecipitation method
-Y203- TlO2-based fine powder or ZrO2-Y203
Mix the titanium alkoxide solution with the system powder, dry it,
Those obtained by firing and pulverizing and having an average particle size of 0.3 μm or less are also suitable raw materials. The addition of lanthanum-based rare earth oxides can be applied to Zr02-Y203- before calcination of oxalates, etc.
This may be carried out by mixing the TlO2-based powder precursor and then firing it. Such powder is molded into a predetermined shape by a molding method such as a rubber press or slip casting method, and then fired. The firing temperature should be 1400°C or higher, and in order to achieve sufficient grain growth, the firing temperature should be 1600-1
800°C is preferred. In addition, the temperature increase rate is l1l(1
℃711r or less is preferred, u).
焼成雰囲気は、空気でもよいか、一段と高い透光性をう
るためには、酸素を用いるのが好ましい。このようにし
てえられた焼成体は、すでに高い透光性を有【7ている
が、さらに透光性の高いものとするには、次にホットア
イソスタティックプレス装置に入れて処理するのかよい
。処理条件として、圧力媒体 アルゴン、圧力50〇M
Pa以−1−、?、tJ度 1400〜1700℃を選
ぶのが好ま【7い。この処理によって、焼結体は、還元
状態となるため、黒色になる。したがって、この黒色焼
結体を空気または酸素中で酸化してもとの色に戻す処理
が必要である。その処理温度は、800°C以上、好ま
しくは1000℃以上であり、1200℃で充分である
。The firing atmosphere may be air, or in order to obtain even higher translucency, it is preferable to use oxygen. The fired body obtained in this way already has high translucency [7], but in order to make it even more translucent, it may be necessary to process it in a hot isostatic press. . As processing conditions, pressure medium: argon, pressure: 500M
Pa-1-,? , tJ degree is preferably selected from 1400 to 1700°C. This treatment brings the sintered body into a reduced state, so it becomes black. Therefore, it is necessary to oxidize this black sintered body in air or oxygen to return it to its original color. The treatment temperature is 800°C or higher, preferably 1000°C or higher, and 1200°C is sufficient.
このようにしてえられた焼結体は、理論値の99%以上
の密度を有し、波長350〜7DDOnI11の可視光
域から赤外光域の光に対して高い透過性を示す。またラ
ンタン基布土酸化物を含有するものは、紫外線照射によ
って、たとえばEIJ203を含むものは赤色の、Tb
2Q3を含むものは緑色のケイ光を発する。The sintered body thus obtained has a density of 99% or more of the theoretical value and exhibits high transparency to light from the visible light range to the infrared light range of wavelengths 350 to 7DDOnI11. In addition, those containing lanthanum-based clay oxides, for example those containing EIJ203, turn red when exposed to ultraviolet irradiation.
Those containing 2Q3 emit green fluorescent light.
[発明の効果]
本発明の焼結体は、すぐれた透光性および高い屈折率を
有し、また大型製品や複雑な形状のものも簡単に製造す
ることができるという利点を有する。さらに、ランタン
基布土酸化物を含有させてケイ光放射性を有する透明体
としても使用することができる。したがって、炉体の窓
。[Effects of the Invention] The sintered body of the present invention has excellent translucency and a high refractive index, and has the advantage that large products and products with complicated shapes can be easily manufactured. Furthermore, it can be used as a transparent material having fluorescence emission by containing a lanthanum-based clay oxide. Hence the window in the furnace body.
発熱体の被覆管、ランプの保護管など耐熱性および断熱
性が要求される光透過H料;赤外レンズ、赤外受光素子
の窓などの赤外透過材料;ケイ光表示材料、固体発振4
イ料、紫外線線爪計用などの工業的用途;時旧、宝石な
どの装飾祠料等々に利用することができる。Light-transmitting materials that require heat resistance and heat insulation, such as cladding tubes for heating elements and protective tubes for lamps; Infrared-transmitting materials, such as infrared lenses and windows for infrared light-receiving elements; fluorescent display materials, solid-state oscillation 4
It can be used for industrial applications such as porcelain dyes, ultraviolet ray nail meters, etc.; decorative amulets for jewelry, etc.
[実施例] 本発明を実施例を用いて説明する。[Example] The present invention will be explained using examples.
粉末製造例1〜3
オキシ塩化ジルコニウムと塩化イツトリウムとの混合水
溶液を煮沸することによって加水分解し、えられたゾル
を乾燥したのち、900°Cで焼成し、粉砕して、Y2
O,を含むジルコニア微粉末をえた。この粉末とチタン
イソプロポキシド溶液をエタノール中に入れ、湿式混合
したのち、減圧乾燥し、950℃で焼成したのち、粉砕
し、ZrO2−Y203−TiO2系微粉末をえた。Powder Production Examples 1 to 3 A mixed aqueous solution of zirconium oxychloride and yttrium chloride is hydrolyzed by boiling, and the resulting sol is dried, calcined at 900°C, and pulverized to produce Y2
A fine zirconia powder containing O was obtained. This powder and titanium isopropoxide solution were placed in ethanol, wet mixed, dried under reduced pressure, calcined at 950°C, and pulverized to obtain a ZrO2-Y203-TiO2-based fine powder.
粉末製造例4〜6
粉末製造例1〜3と同様にしてえたY2O,を含んでい
るジルコニア微粉末とチタニア微粉末とをエタノール中
で湿式混合したのち、乾燥し、900℃で焼成し、粉砕
しテZrO2−Y203− Tto2系微粉末をえた。Powder Production Examples 4 to 6 Zirconia fine powder containing Y2O, which was obtained in the same manner as Powder Production Examples 1 to 3, and titania fine powder were wet mixed in ethanol, dried, fired at 900°C, and pulverized. A ZrO2-Y203-Tto2 fine powder was obtained.
粉末製造例7
オキシ塩化ジルコニウムと塩化イツトリウムとの混合水
溶液にチタンイソプロポキシド溶液を添加し、3日間加
熱を続けることによって加水分解し、生成したゾルを乾
燥したのち、920°Cで焼成し、粉砕することによっ
てZr02− ’/、、 03−TiO2系微粉末をえ
た。Powder Production Example 7 A titanium isopropoxide solution was added to a mixed aqueous solution of zirconium oxychloride and yttrium chloride, and the mixture was hydrolyzed by continuing heating for 3 days. After drying the resulting sol, it was calcined at 920°C. By pulverizing, Zr02-'/,03-TiO2-based fine powder was obtained.
粉末製造例3〜13 粉末製造例1〜3と同様にしてジルコニア粉末をえた。Powder production examples 3 to 13 Zirconia powder was obtained in the same manner as in Powder Production Examples 1 to 3.
また、チタンイソプロポキシド溶液に水を添加して水和
チタニアの加水分解生成物をえた。−1−記ジルコニア
粉末と水和チタニアの加水分解生成物とを湿式混合し、
乾燥したのち、1000℃で2時間焼成し、粉砕してZ
rO2’/203−Ti02系微粉末をえた。Additionally, water was added to the titanium isopropoxide solution to obtain a hydrolysis product of hydrated titania. -1- Wet mixing the zirconia powder and the hydrolysis product of hydrated titania,
After drying, it is baked at 1000℃ for 2 hours, crushed and Z
A rO2'/203-Ti02-based fine powder was obtained.
粉末製造例14〜18
粉末製造例3〜13と同様にしてえたジルコニア粉末と
水和チタニアの加水分解生成物との混合物にネオジウム
のシュウ酸塩を添加し、湿式粉砕し、乾燥したのち、1
000℃で1時間焼成した。えられた仮焼粉末を粉砕し
て、Nd、 03が固溶したZr02−Y203− T
lO2系微粉末をえた。Powder Production Examples 14 to 18 Neodymium oxalate was added to a mixture of zirconia powder and a hydrolysis product of hydrated titania obtained in the same manner as in Powder Production Examples 3 to 13, wet-pulverized, and dried.
It was baked at 000°C for 1 hour. The obtained calcined powder was pulverized to form Zr02-Y203-T in which Nd and 03 were dissolved in solid solution.
A lO2-based fine powder was obtained.
以−にの微粉末の組成および1次粒子径は、表1のとお
りである。The composition and primary particle size of the fine powder described below are as shown in Table 1.
焼結例A
粉末製造例1〜7でえられた粉末を金型とラバープレス
によって円板状に成形した。これら成形体を管状炉に入
れ、酸素を流通させながら、温度を40℃/h、rの速
度で−Lげ1700℃で2時間保持したのち、降温した
。このように【7てえられた焼結体をポットアイソスタ
ティックプレス装置に入れ、アルゴンを圧力媒体として
I 000気圧。Sintering Example A The powders obtained in Powder Production Examples 1 to 7 were molded into a disk shape using a mold and a rubber press. These molded bodies were placed in a tube furnace, and the temperature was maintained at -L 1700°C for 2 hours at a rate of 40°C/h and r, and then the temperature was lowered. The sintered body thus obtained was placed in a pot isostatic press and heated to 1,000 atmospheres using argon as a pressure medium.
150 [1℃で30分処理した。処理後の焼結体は、
すべて黒色を呈していたので、ふたたび管状炉に入れ、
酸素を流しなから1200℃で4時間保持した。冷却後
、取出した焼結体は、すべて非常に高い透光性を何して
いた。X線回折で結晶相を同定[7たところ、粉末製造
例4からえた焼結体はW方品単相であったか、のこりは
すべて立方晶It +1+であった。150 [Processed at 1°C for 30 minutes. The sintered body after treatment is
All of them were black, so I put them in the tube furnace again.
The temperature was maintained at 1200° C. for 4 hours without oxygen flow. After cooling, all of the sintered bodies taken out had very high translucency. The crystal phase was identified by X-ray diffraction [7], and it was found that the sintered body obtained from Powder Production Example 4 was a W-shaped single phase, or the rest was entirely cubic It +1+.
試験例A
焼結例Aでえられた焼結体の中からいくつかを選び、光
透過率を測定した。Al11定試料と(7て厚さ 05
〜1.5mmの範囲にある両面鏡面研磨したものを用い
た。結果を第1図に示す。図中の符号1,2および3は
、それぞれ原料粉末が粉末製造例2,5および3による
ものであることを示す。Test Example A Some of the sintered bodies obtained in Sintering Example A were selected and their light transmittance was measured. Al11 constant sample (7mm thickness 05
A mirror-polished piece on both sides with a thickness in the range of 1.5 mm was used. The results are shown in Figure 1. Reference numerals 1, 2, and 3 in the figure indicate that the raw material powders were obtained from powder production examples 2, 5, and 3, respectively.
第1図から、本発明の焼結体は、可1見)〜域での透過
率が厚さ l n+mで409oJす1−あることかわ
かる。From FIG. 1, it can be seen that the sintered body of the present invention has a transmittance of 409 oJ 1- at a thickness ln+m in the range from 1 to 1.
試験例A′
’l” i 0.の効果を検討する目的でT r 02
3 kt“粉末(製造例2)と′I″102を含まない
粉末(8モル%v、0.含有ジルコニア)を用いて、焼
結例Aと同じ方法で厚さ Innnの円板状の焼L”i
体をえた。Test Example A′ 'l'' i 0. For the purpose of examining the effect of T r 02
Using the same method as in sintering example A, using 3kt" powder (manufacturing example 2) and 'I" powder not containing 102 (zirconia containing 8 mol%v, 0.0%), a disk-shaped material with a thickness of Innn was sintered. L”i
I got a body.
TiO2含白゛試料は、非常に高い透光性を47 t=
ていたか、T i 02を含まない試料は、白色を早L
2ていた。試験例1のノJ′法で可視光域での透過率を
測定したところ、前者は4096程反であったが、後者
は7%程度であった。これら2試利の焼結体組織を走査
型電子顕微鏡によって観察しまた。The TiO2 white sample exhibits very high translucency at 47 t=
However, the sample that does not contain T i 02 has a white color.
There were 2. When the transmittance in the visible light range was measured using the J' method of Test Example 1, the transmittance was about 4096 for the former, but about 7% for the latter. The structures of the sintered bodies of these two samples were also observed using a scanning electron microscope.
第2図かその顕微鏡写真であり、AはTlG、の入って
いるもの、Bはそれか入っていないものである。Figure 2 is a microscopic photograph of the same, A shows one containing TlG, and B shows one without it.
第2図で明らかなように、TlO3か添加されることに
よってt+> ’−J’径は200μm稈反になってお
リ、著しい粒成長か達成されるとともに、気孔率かきわ
めて減少している。この結果は、TiO7添加か透光性
を高めるうえて重要な役割を果していることを1γ証l
−でいる。As is clear from Fig. 2, by adding TlO3, the t+>'-J' diameter becomes 200 μm in diameter, and remarkable grain growth is achieved, and the porosity is extremely reduced. . This result proves that the addition of TiO7 plays an important role in increasing translucency.
-I am.
焼結例B
粉末製造例3〜13でえられた粉末を金型とラバープレ
スによって板状に成形した。これら成形体を管状炉に入
れ、酸素を流通させながら、温度を5[1°C/hrの
速度で−1−げ1500〜175+)°Cで2時間保持
したのち、降温した。えられた焼結体は、いずれも高い
透光性を有していた。つぎに、これらの焼結体を半分に
切断した切断片をホットアイソスタティックプレス(H
I P)装置に入れアルゴンを圧力媒体として1000
気圧+ 1500〜1700°Cで30分処理した。処
理後の焼結体は、すべて黒色を呈していたので、ふたた
び管状炉に入れ、酸素を流しながら1200℃で2時間
保持した。冷却後、取出した焼結体は、すべて非常に高
い透光性を有していた。えられた焼結体の結晶相は、い
ずれも立方晶であった。その粒径および密度を表2に示
す。Sintering Example B The powders obtained in Powder Production Examples 3 to 13 were molded into a plate shape using a mold and a rubber press. These molded bodies were placed in a tube furnace, and the temperature was maintained at 5[-1500 to 175+]C at a rate of 1C/hr for 2 hours while oxygen was being passed through, and then the temperature was lowered. All of the obtained sintered bodies had high translucency. Next, the cut pieces obtained by cutting these sintered bodies in half are subjected to a hot isostatic press (H
I P) put it in the device and use argon as pressure medium 1000
It was treated at atmospheric pressure + 1500-1700°C for 30 minutes. Since all of the sintered bodies after treatment had a black color, they were placed in the tube furnace again and held at 1200° C. for 2 hours while flowing oxygen. After cooling, all of the sintered bodies taken out had very high translucency. The crystal phases of the obtained sintered bodies were all cubic. The particle size and density are shown in Table 2.
試験例B
焼結例Bでえられた焼結体を可視光および赤外光の光透
過率を測定した。測定試料と【7て厚さ 0.8mmの
両面鏡面研磨したものを用いた。Test Example B The visible light and infrared light transmittance of the sintered body obtained in Sintering Example B was measured. A sample with a thickness of 0.8 mm and mirror polished on both sides was used as the measurement sample.
どの試料も0.35〜7μmの可視光から赤外光域にわ
たる波長の光に対[7透過性を示した。代表値として、
0.0μmの光に対する直線透)14率を表2に示す。All of the samples exhibited transparency to light with wavelengths ranging from visible light to infrared light ranging from 0.35 to 7 μm. As a representative value,
Table 2 shows the straight line transmission (14) ratio for light of 0.0 μm.
焼結例C
粉末製造例14〜18でえられたジルコニア粉末を使用
して、焼結例Bと同様にして焼結体をえた。えられた焼
結体の結晶相は、いずれも立方晶であった。その粒径お
よび密度を表3に示す。Sintering Example C A sintered body was obtained in the same manner as Sintering Example B using the zirconia powders obtained in Powder Production Examples 14 to 18. The crystal phases of the obtained sintered bodies were all cubic. The particle size and density are shown in Table 3.
試験例C
= 14−
焼結例Cでえられた焼結体を可視光および赤閃光の光透
過率を測定した。測定試料として厚さ 0.8mmの両
面鏡面研磨したものを用いた。Test Example C = 14- The light transmittance of visible light and red flash light of the sintered body obtained in Sintering Example C was measured. A sample with a thickness of 0.8 mm and mirror-polished surfaces on both sides was used as a measurement sample.
どの試料も0,35〜7μmの可視光から赤外光域にわ
たる波長の光に対し透過性を示した。焼結体試祠No、
l 4の可視光透過率を第3図に示す。また、0.2
6μmの紫外線を照射したところ、焼結体試料N013
および16は赤色の、また15は緑色のケイ光を発した
。All samples exhibited transparency to light with wavelengths ranging from visible light to infrared light from 0.35 to 7 μm. Sintered body trial shrine No.
The visible light transmittance of l4 is shown in FIG. Also, 0.2
When irradiated with 6 μm ultraviolet rays, sintered body sample No.
and 16 emitted red and 15 green fluorescence.
第1図は、試験例Aにおける、光透過率を示すグラフで
ある。第2図は、試験例A′における、焼結体の杓子構
造を示す顕微鏡写真である。第3図は、試験例Cにおけ
る焼結体試料No、14の可視光透過率を示すグラフで
ある。
図中の?〕号の意味は、っぎのとおりである。
1:原料粉末 粉末製造例2
2:原料粉末 粉末製造例5
3:原料粉末 粉末製造例3
A:TlO2を含む焼結体
B : TlO2を含まない焼結体
特許出願人 東洋曹達工業株式会社
第 3 図
第 2 図FIG. 1 is a graph showing the light transmittance in Test Example A. FIG. 2 is a micrograph showing the ladle structure of the sintered body in Test Example A'. FIG. 3 is a graph showing the visible light transmittance of sintered body sample No. 14 in Test Example C. In the diagram? ] The meaning of the number is as follows. 1: Raw material powder Powder production example 2 2: Raw material powder Powder production example 5 3: Raw material powder Powder production example 3 A: Sintered body containing TlO2 B: Sintered body not containing TlO2 Patent applicant Toyo Soda Kogyo Co., Ltd. 3 Figure 2
Claims (4)
3〜20モル%含むジルコニアからなる透光性ジルコニ
ア焼結体。(1) A translucent zirconia sintered body made of zirconia containing 2 mol% or more of Y_2O_3 and 3 to 20 mol% of TiO_2.
なる特許請求の範囲(1)項記載の透光性ジルコニア焼
結体。(2) The translucent zirconia sintered body according to claim (1), which is made of zirconia containing 6 mol% or more of Y_2O_3.
5〜20モル%含むジルコニアからなる特許請求の範囲
(1)項記載の透光性ジルコニア焼結体。(3) The translucent zirconia sintered body according to claim (1), which is made of zirconia containing 6 to 9 mol% of Y_2O_3 and 5 to 20 mol% of TiO_2.
20モル%およびランタン系希土類酸化物を0.1〜3
モル%含むジルコニアからなる透光性・ケイ光放射性ジ
ルコニア焼結体。(4) 6 mol% or more of Y_2O_3 and 3 to 3% of TiO_2
20 mol% and lanthanum rare earth oxide 0.1-3
Translucent and fluorescent zirconia sintered body made of zirconia containing mol%.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/876,410 US4758541A (en) | 1985-06-20 | 1986-06-20 | Zirconia sintered body of improved light transmittance |
EP86304759A EP0206780B1 (en) | 1985-06-20 | 1986-06-20 | Zirconia sintered body of improved light transmittance |
DE8686304759T DE3683959D1 (en) | 1985-06-20 | 1986-06-20 | ZIRCONIUM DIOXIDE INTERBODY WITH IMPROVED LIGHT TRANSMISSION. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13297185 | 1985-06-20 | ||
JP60-132971 | 1985-06-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6291467A true JPS6291467A (en) | 1987-04-25 |
JPH0225864B2 JPH0225864B2 (en) | 1990-06-06 |
Family
ID=15093774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61110864A Granted JPS6291467A (en) | 1985-06-20 | 1986-05-16 | Light transparent zirconia sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6291467A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291868A (en) * | 1987-05-22 | 1988-11-29 | Nippon Denso Co Ltd | Production of proton electrically conductive ceramic |
JPS63291869A (en) * | 1987-05-22 | 1988-11-29 | Nippon Denso Co Ltd | Production of zirconia ceramic |
JPS63291864A (en) * | 1987-05-26 | 1988-11-29 | Nippon Denso Co Ltd | Production of optical ceramics |
JPS63291871A (en) * | 1987-05-26 | 1988-11-29 | Nippon Denso Co Ltd | Production of optical ceramic |
JPS63291873A (en) * | 1987-05-26 | 1988-11-29 | Nippon Denso Co Ltd | Production of optical ceramic |
JPS63291872A (en) * | 1987-05-26 | 1988-11-29 | Nippon Denso Co Ltd | Production of optical ceramic |
JP2007108734A (en) * | 2005-09-21 | 2007-04-26 | Schott Ag | Optical element and imaging optical element comprising same |
WO2008013099A1 (en) | 2006-07-25 | 2008-01-31 | Tosoh Corporation | Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof |
US7378050B2 (en) | 2000-12-20 | 2008-05-27 | Murata Manufacturing Co., Ltd. | Method of producing translucent ceramic |
US7538055B2 (en) | 2006-02-17 | 2009-05-26 | Tosoh Corporation | Transparent zirconia sintered body |
WO2009125793A1 (en) | 2008-04-09 | 2009-10-15 | 東ソー株式会社 | Light-transmitting sintered zirconia compact, process for producing the same, and use thereof |
DE102009030951A1 (en) | 2008-07-22 | 2010-01-28 | Schott Ag | Ceramic material, useful to prepare optical element such as lenses and prisms, comprises zirconium, hafnium and fluorine, where ceramic material is stabilized by stabilizer, e.g. oxides of yttrium, scandium, magnesium and calcium |
WO2010140644A1 (en) * | 2009-06-04 | 2010-12-09 | 東ソー株式会社 | High-strength transparent zirconia sintered body, process for production thereof, and use thereof |
JP2011011970A (en) * | 2009-06-04 | 2011-01-20 | Tosoh Corp | Highly transparent zirconia sintered body |
WO2011016325A1 (en) | 2009-08-07 | 2011-02-10 | 東ソー株式会社 | Transparent zirconia sintered body, method for producing same, and use of same |
JP2011102227A (en) * | 2009-10-16 | 2011-05-26 | Tosoh Corp | High-strength transparent zirconia sintered body |
WO2011111624A1 (en) | 2010-03-09 | 2011-09-15 | 東ソー株式会社 | Red light transmitting zirconia sintered body, method for producing the same, material formed from that sintered body and jewelry and exterior component using that material |
WO2012063746A1 (en) | 2010-11-11 | 2012-05-18 | 東ソー株式会社 | Colored light-transmitting zirconia sintered compact, method for producing same, and use thereof |
JP2012096977A (en) * | 2010-11-05 | 2012-05-24 | Tosoh Corp | Blue transluscent zirconia sintered compact, and method for manufacturing the same and use of the same |
WO2014122865A1 (en) * | 2013-02-08 | 2014-08-14 | 信越化学工業株式会社 | Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body |
JP2014218421A (en) * | 2013-04-10 | 2014-11-20 | 東ソー株式会社 | Zirconia sintered body, and manufacturing method thereof |
JP2015196624A (en) * | 2014-04-01 | 2015-11-09 | 東ソー株式会社 | Zirconia sintered body and production method thereof |
JP2016117618A (en) * | 2014-12-22 | 2016-06-30 | クラレノリタケデンタル株式会社 | Zirconia composition, zirconia calcinated body, zirconia sintered body and manufacturing zirconia sintered body and dental product |
WO2016114265A1 (en) * | 2015-01-15 | 2016-07-21 | 東ソー株式会社 | Translucent zirconia sintered body, method for manufacturing same, and use thereof |
JP2017197642A (en) * | 2016-04-27 | 2017-11-02 | 京セラ株式会社 | Fluorescent zirconia material and device for detecting beam |
WO2023140082A1 (en) * | 2022-01-18 | 2023-07-27 | 東ソー株式会社 | Sintered body and method for producing same |
-
1986
- 1986-05-16 JP JP61110864A patent/JPS6291467A/en active Granted
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291869A (en) * | 1987-05-22 | 1988-11-29 | Nippon Denso Co Ltd | Production of zirconia ceramic |
JPS63291868A (en) * | 1987-05-22 | 1988-11-29 | Nippon Denso Co Ltd | Production of proton electrically conductive ceramic |
JPS63291864A (en) * | 1987-05-26 | 1988-11-29 | Nippon Denso Co Ltd | Production of optical ceramics |
JPS63291871A (en) * | 1987-05-26 | 1988-11-29 | Nippon Denso Co Ltd | Production of optical ceramic |
JPS63291873A (en) * | 1987-05-26 | 1988-11-29 | Nippon Denso Co Ltd | Production of optical ceramic |
JPS63291872A (en) * | 1987-05-26 | 1988-11-29 | Nippon Denso Co Ltd | Production of optical ceramic |
US7378050B2 (en) | 2000-12-20 | 2008-05-27 | Murata Manufacturing Co., Ltd. | Method of producing translucent ceramic |
JP2007108734A (en) * | 2005-09-21 | 2007-04-26 | Schott Ag | Optical element and imaging optical element comprising same |
US7538055B2 (en) | 2006-02-17 | 2009-05-26 | Tosoh Corporation | Transparent zirconia sintered body |
WO2008013099A1 (en) | 2006-07-25 | 2008-01-31 | Tosoh Corporation | Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof |
EP2610232B1 (en) * | 2006-07-25 | 2019-06-26 | Tosoh Corporation | Zirconia sintered bodies with high total light transmission |
EP2610232A2 (en) | 2006-07-25 | 2013-07-03 | Tosoh Corporation | Zirconia sintered bodies with high total light transmission and high strength, uses of the same, and process for production thereof |
US8785008B2 (en) | 2006-07-25 | 2014-07-22 | Tosoh Corporation | Zirconia sintered bodies with high total light transmission and high strength, uses of the same, and process for producing the same |
EP2045222A4 (en) * | 2006-07-25 | 2010-10-13 | Tosoh Corp | Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof |
US9309157B2 (en) | 2008-04-09 | 2016-04-12 | Tosoh Corporation | Translucent zirconia sintered body, process for producing the same, and use of the same |
WO2009125793A1 (en) | 2008-04-09 | 2009-10-15 | 東ソー株式会社 | Light-transmitting sintered zirconia compact, process for producing the same, and use thereof |
EP3210953A1 (en) | 2008-04-09 | 2017-08-30 | Tosoh Corporation | Translucent zirconia sintered body, process for producing the same, and use of the same |
EP2674408A1 (en) | 2008-04-09 | 2013-12-18 | Tosoh Corporation | Translucent zirconia sintered body, process for producing the same, and use of the same |
JP2010047460A (en) * | 2008-07-22 | 2010-03-04 | Schott Ag | Transparent ceramic, its producing method, and optical element using the transparent ceramics |
DE102009030951A1 (en) | 2008-07-22 | 2010-01-28 | Schott Ag | Ceramic material, useful to prepare optical element such as lenses and prisms, comprises zirconium, hafnium and fluorine, where ceramic material is stabilized by stabilizer, e.g. oxides of yttrium, scandium, magnesium and calcium |
US8722555B2 (en) | 2009-06-04 | 2014-05-13 | Tosoh Corporation | High-strength transparent zirconia sintered body, process for producing the same, and uses thereof |
KR20120030401A (en) | 2009-06-04 | 2012-03-28 | 토소가부시키가이샤 | High-strength transparent zirconia sintered body, process for production thereof, and use thereof |
US9249058B2 (en) | 2009-06-04 | 2016-02-02 | Tosoh Corporation | High-strength transparent zirconia sintered body, process for producing the same, and uses thereof |
JP2011011970A (en) * | 2009-06-04 | 2011-01-20 | Tosoh Corp | Highly transparent zirconia sintered body |
WO2010140644A1 (en) * | 2009-06-04 | 2010-12-09 | 東ソー株式会社 | High-strength transparent zirconia sintered body, process for production thereof, and use thereof |
EP3831797A1 (en) | 2009-06-04 | 2021-06-09 | Tosoh Corporation | High-strength transparent zirconia sintered body, process for producing the same, and uses thereof |
US20120094823A1 (en) * | 2009-08-07 | 2012-04-19 | Tosoh Corporation | Transparent zirconia sintered body, method for producing same, and use of same |
US8815760B2 (en) * | 2009-08-07 | 2014-08-26 | Tosoh Corporation | Transparent zirconia sintered body, method for producing same, and use of same |
WO2011016325A1 (en) | 2009-08-07 | 2011-02-10 | 東ソー株式会社 | Transparent zirconia sintered body, method for producing same, and use of same |
JP2011102227A (en) * | 2009-10-16 | 2011-05-26 | Tosoh Corp | High-strength transparent zirconia sintered body |
WO2011111624A1 (en) | 2010-03-09 | 2011-09-15 | 東ソー株式会社 | Red light transmitting zirconia sintered body, method for producing the same, material formed from that sintered body and jewelry and exterior component using that material |
US9249057B2 (en) | 2010-03-09 | 2016-02-02 | Tosoh Corporation | Red light transmitting zirconia sintered body, method for producing the same, member comprising the sintered body, and jewelry goods and exterior component using the member |
JP2012096977A (en) * | 2010-11-05 | 2012-05-24 | Tosoh Corp | Blue transluscent zirconia sintered compact, and method for manufacturing the same and use of the same |
WO2012063746A1 (en) | 2010-11-11 | 2012-05-18 | 東ソー株式会社 | Colored light-transmitting zirconia sintered compact, method for producing same, and use thereof |
JP2012116745A (en) * | 2010-11-11 | 2012-06-21 | Tosoh Corp | Colored translucent zirconia sintered compact, and method for manufacturing the same, and application of the same |
US9174877B2 (en) | 2010-11-11 | 2015-11-03 | Tosoh Corporation | Colored translucent zirconia sintered body, its production process and its use |
CN104968633A (en) * | 2013-02-08 | 2015-10-07 | 信越化学工业株式会社 | Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body |
JP6015780B2 (en) * | 2013-02-08 | 2016-10-26 | 信越化学工業株式会社 | Method for producing translucent metal oxide sintered body |
US9604853B2 (en) | 2013-02-08 | 2017-03-28 | Shin-Etsu Chemical Co., Ltd. | Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body |
WO2014122865A1 (en) * | 2013-02-08 | 2014-08-14 | 信越化学工業株式会社 | Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body |
DE112013006623B4 (en) | 2013-02-08 | 2024-07-11 | Shin-Etsu Chemical Co., Ltd. | Manufacturing process for a translucent metal oxide sintered body |
JP2014218421A (en) * | 2013-04-10 | 2014-11-20 | 東ソー株式会社 | Zirconia sintered body, and manufacturing method thereof |
JP2015196624A (en) * | 2014-04-01 | 2015-11-09 | 東ソー株式会社 | Zirconia sintered body and production method thereof |
JP2016117618A (en) * | 2014-12-22 | 2016-06-30 | クラレノリタケデンタル株式会社 | Zirconia composition, zirconia calcinated body, zirconia sintered body and manufacturing zirconia sintered body and dental product |
WO2016114265A1 (en) * | 2015-01-15 | 2016-07-21 | 東ソー株式会社 | Translucent zirconia sintered body, method for manufacturing same, and use thereof |
US10273191B2 (en) | 2015-01-15 | 2019-04-30 | Tosoh Corporation | Translucent zirconia sintered body, method for manufacturing same, and use thereof |
JP2017197642A (en) * | 2016-04-27 | 2017-11-02 | 京セラ株式会社 | Fluorescent zirconia material and device for detecting beam |
WO2023140082A1 (en) * | 2022-01-18 | 2023-07-27 | 東ソー株式会社 | Sintered body and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPH0225864B2 (en) | 1990-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6291467A (en) | Light transparent zirconia sintered body | |
US4758541A (en) | Zirconia sintered body of improved light transmittance | |
JP5125065B2 (en) | Transparent zirconia sintered body | |
US3545987A (en) | Transparent yttria-based ceramics and method for producing same | |
JP6848270B2 (en) | Red zirconia sintered body and its manufacturing method | |
US4755492A (en) | Yttrium oxide ceramic body | |
Shimada et al. | Fabrication of transparent spinel polycrystalline materials | |
WO2013018728A1 (en) | Colored and light-transmitting sintered zirconia compact and use of same | |
Chen et al. | New opportunities for transparent ceramics | |
JP2007334357A (en) | Optical element and mapping optic | |
CN114144389A (en) | Method for producing zirconia sintered body | |
JP6911290B2 (en) | Colored translucent zirconia sintered body, its manufacturing method, and its use | |
JP2939535B2 (en) | Manufacturing method of transparent yttrium oxide sintered body | |
US4769353A (en) | Strontium-containing yttrium oxide ceramic body | |
CN112624761B (en) | Zirconia sintered body and method for producing same | |
JP4806952B2 (en) | Translucent ceramics | |
JP6747121B2 (en) | Translucent zirconia sintered body, method for producing the same, and use thereof | |
JP2020001988A (en) | Zirconia sintered body and manufacturing method thereof | |
CN1090563A (en) | Zirconium oxide base micro crystal compound ceramics | |
EP0458286A1 (en) | Method for preparing a sintered body of light-transmitting cordierite | |
JP7293821B2 (en) | Calcined body | |
JPH06211569A (en) | Transparent aluminuous sintered compact and its production | |
JPH04175265A (en) | Colored light-transmitting yag sintered compact and production thereof | |
SU564290A1 (en) | Vacuum-dense transparent ceramics | |
Shevchenko et al. | Transparent ceramics based on yttrium subgroup lanthanide, yttrium, and scandium oxides |