JP2017197642A - Fluorescent zirconia material and device for detecting beam - Google Patents

Fluorescent zirconia material and device for detecting beam Download PDF

Info

Publication number
JP2017197642A
JP2017197642A JP2016088922A JP2016088922A JP2017197642A JP 2017197642 A JP2017197642 A JP 2017197642A JP 2016088922 A JP2016088922 A JP 2016088922A JP 2016088922 A JP2016088922 A JP 2016088922A JP 2017197642 A JP2017197642 A JP 2017197642A
Authority
JP
Japan
Prior art keywords
zirconia material
fluorescent
fluorescent zirconia
oxide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016088922A
Other languages
Japanese (ja)
Other versions
JP6698417B2 (en
Inventor
邦英 四方
Kunihide Yomo
邦英 四方
博之 正田
Hiroyuki Shoda
博之 正田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016088922A priority Critical patent/JP6698417B2/en
Publication of JP2017197642A publication Critical patent/JP2017197642A/en
Application granted granted Critical
Publication of JP6698417B2 publication Critical patent/JP6698417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Luminescent Compositions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluorescent zirconia material capable of being used repeatedly because of little fracture such as cracks even in such an environment as exposed to a high temperature repeatedly, and a device for detecting a beam.SOLUTION: The fluorescent zirconia material of the present disclosure is a zirconium oxide ceramic containing at least any of neodymium, samarium, terbium, holmium, erbium, and thulium, and a main crystal structure in a zirconium oxide crystal is a cubic crystal. The device for detecting a beam of the present disclosure comprises the fluorescent zirconia material.SELECTED DRAWING: None

Description

本開示は蛍光性ジルコニア材およびビーム検出用装置に関する。   The present disclosure relates to fluorescent zirconia materials and beam detection devices.

歯科用補綴物に用いられるフレームや機械装置等における交換用補修部品において、トレーサビリティ機能を持たせるために、蛍光性成分を含み、所定波長の光で励起されて蛍光を発する蛍光性ジルコニア材が用いられている。   In order to provide a traceability function in replacement parts for frames and machinery used in dental prostheses, a fluorescent zirconia material that contains a fluorescent component and emits fluorescence when excited by light of a predetermined wavelength is used. It has been.

例えば、特許文献1では、蛍光性成分としてPr,Sm,Eu,Ga,Gd,Tm,Nd,Dy,Tb,Erのうちの少なくとも一種の元素およびそれらの化合物の少なくとも一種を含み、酸化ジルコニウム自体に蛍光性が付与されることにより、所定波長の光で励起されて蛍光を発する蛍光性ジルコニア材が提案されている。そして、この蛍光性ジルコニア材には、安定化剤である酸化イットリウムの含有量が1.5〜6.0質量%であることが記載されている。   For example, Patent Document 1 includes at least one element of Pr, Sm, Eu, Ga, Gd, Tm, Nd, Dy, Tb, and Er as a fluorescent component and zirconium oxide itself. A fluorescent zirconia material that emits fluorescence when excited with light having a predetermined wavelength has been proposed. This fluorescent zirconia material describes that the content of yttrium oxide as a stabilizer is 1.5 to 6.0% by mass.

特許第5501642号公報Japanese Patent No. 5501642

安定化剤である酸化イットリウムの含有量が1.5〜6.0質量%である部分安定化ジルコニアには、少なからず単斜晶が存在する。このような部分安定化ジルコニアからなる蛍光性ジルコニア材を、繰り返し高温に晒されるような環境で用いると、蛍光性ジルコニア材の表面にクラックが発生し、長期間に亘って用いることができないという問題があった。   There are not less monoclinic crystals in partially stabilized zirconia in which the content of yttrium oxide as a stabilizer is 1.5 to 6.0% by mass. When a fluorescent zirconia material made of such partially stabilized zirconia is used in an environment where it is repeatedly exposed to high temperatures, the surface of the fluorescent zirconia material is cracked and cannot be used for a long period of time. was there.

本開示は、ネオジウム、サマリウム、テルビウム、ホルミウム、エルビウムおよびツリウムの少なくともいずれかを含む酸化ジルコニム質セラミックスであり、酸化ジルコニウム結晶における結晶構造が立方晶であることを特徴とする蛍光性ジルコニア材を提供する。また上記蛍光性ジルコニア材を備えることを特徴とするビーム検出用装置を提供する。   The present disclosure provides a fluorescent zirconia material characterized in that it is a zirconium oxide ceramic containing at least one of neodymium, samarium, terbium, holmium, erbium and thulium, and the crystal structure of the zirconium oxide crystal is cubic. To do. Moreover, the apparatus for beam detection provided with the said fluorescent zirconia material is provided.

本開示の蛍光性ジルコニア材および蛍光性ジルコニア材を備えるビーム検出用装置は、繰り返し高温に晒されるような環境でも、クラック等の破損が少なく、繰り返し使用することができる。   The beam detection apparatus including the fluorescent zirconia material and the fluorescent zirconia material of the present disclosure can be repeatedly used even in an environment where they are repeatedly exposed to a high temperature with little damage such as cracks.

以下、本開示の蛍光性ジルコニアの一実施形態、および本開示のビーム検出用装置の一実施形態について説明する。   Hereinafter, an embodiment of the fluorescent zirconia of the present disclosure and an embodiment of the beam detection apparatus of the present disclosure will be described.

本実施形態の蛍光性ジルコニア材は、ネオジウム、サマリウム、テルビウム、ホルミウム、エルビウムおよびツリウムの少なくともいずれかを含む酸化ジルコニム質セラミックスであり、酸化ジルコニウム結晶における結晶構造が立方晶である。本実施形態の蛍光性ジルコニア材は、酸化ジルコニウム結晶における結晶構造が立方晶であるため、相変態による強度劣化が無く、繰り返し高温に晒されるような環境でも、クラック等の破損が少なく、繰り返し使用することができる。本実施形態の蛍光性ジルコニア材は、完全安定化ジルコニア(FSZ)である。   The fluorescent zirconia material of this embodiment is a zirconium oxide ceramic containing at least one of neodymium, samarium, terbium, holmium, erbium, and thulium, and the crystal structure of the zirconium oxide crystal is cubic. The fluorescent zirconia material of the present embodiment has a cubic crystal structure in the zirconium oxide crystal, so there is no strength deterioration due to phase transformation, and there is little damage such as cracks even in an environment where it is repeatedly exposed to high temperatures, and it is used repeatedly. can do. The fluorescent zirconia material of this embodiment is fully stabilized zirconia (FSZ).

そして、本実施形態の蛍光性ジルコニア材は、安定化剤として酸化イットリウムを含み、酸化イットリウムの含有量が13質量%以上20質量%以下である。酸化ジルコニウム結晶における結晶構造を立方晶とするには、安定化剤として、酸化イットリウム、酸化カルシウム、酸化マグネシウムおよび酸化セリウム等が挙げられるこれら安定化剤の中でも、酸化イットリウムはイットリウムのイオン半径が、ジルコニウムのイオン半径に最も近いことから、酸化ジルコニウム質セラミックスに最も固溶しやすく、結晶相を安定化させると共に、低温で焼結させることができる。また、酸化イットリウムの含有量が13質量%以上であると、酸化ジルコニウムの高温における結晶構造が安定化する。一方、酸化イットリウムの含有量が20質量%以下であると、酸化イットリウムは酸化ジルコニウムに完全に固溶する。このため、酸化イットリウムが他の不純物との反応によって生じる、高温に晒されると耐久性の低い複合酸化物が生じるおそれは低減する。なお、本実施形態における不純物とは、例えば、酸化チタン、酸化鉄、酸化ナトリウム、酸化カリウム等である。   And the fluorescent zirconia material of this embodiment contains yttrium oxide as a stabilizer, and content of yttrium oxide is 13 mass% or more and 20 mass% or less. In order to make the crystal structure of the zirconium oxide crystal cubic, the stabilizer includes yttrium oxide, calcium oxide, magnesium oxide, cerium oxide, etc. Among these stabilizers, yttrium oxide has an ionic radius of yttrium, Since it is closest to the ionic radius of zirconium, it is most easily dissolved in zirconium oxide ceramics, and can stabilize the crystal phase and be sintered at a low temperature. Further, when the content of yttrium oxide is 13% by mass or more, the crystal structure of zirconium oxide at a high temperature is stabilized. On the other hand, when the content of yttrium oxide is 20% by mass or less, yttrium oxide is completely dissolved in zirconium oxide. For this reason, the possibility that yttrium oxide is generated by reaction with other impurities and a composite oxide having low durability when exposed to high temperatures is reduced. The impurities in the present embodiment are, for example, titanium oxide, iron oxide, sodium oxide, potassium oxide, and the like.

なお、本実施形態における酸化ジルコニウム質セラミックスとは、セラミックスを構成する成分の合計100質量%のうち、ジルコニウム(Zr)を酸化ジルコニウム(ZrO)に換算した値が75質量%以上を占めるものである。なお、酸化ジルコニウムを含むセラミックスであるか否かについては、X線回折装置(XRD)を用いて同定すればよい。 In addition, the zirconium oxide ceramic in this embodiment occupies 75 mass% or more of the value which converted zirconium (Zr) into zirconium oxide (ZrO 2 ) out of the total 100 mass% of the components constituting the ceramic. is there. In addition, what is necessary is just to identify using a X-ray-diffraction apparatus (XRD) about whether it is ceramics containing a zirconium oxide.

蛍光性ジルコニア材を構成する各成分の含有量は、ICP(Inductively Coupled Plasma)発光分光分析装置(ICP)を用いて金属元素の含有量を測定して、それぞれ酸化物に換算すればよい。   The content of each component constituting the fluorescent zirconia material may be converted into an oxide by measuring the content of the metal element using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (ICP).

また本実施形態の蛍光性ジルコニア材は、蛍光性ジルコニア材を構成する成分の合計100質量%のうち、サマリウムを酸化物(Sm)換算で、例えば0.5質量%以上2質量%以下含む。サマリウムを酸化物換算で、1質量%含む蛍光性ジルコニア材に、波長213nm、265nmおよび355nmのビームを照射すると、橙色系の所謂暖色系の蛍光色を発する。 Moreover, the fluorescent zirconia material of this embodiment is, for example, 0.5% by mass or more and 2% by mass in terms of oxide (Sm 2 O 3 ) in terms of oxide (Sm 2 O 3 ) in a total of 100% by mass of the components constituting the fluorescent zirconia material. Includes: When a fluorescent zirconia material containing 1% by mass of samarium in terms of oxide is irradiated with beams having wavelengths of 213 nm, 265 nm, and 355 nm, an orange so-called warm-colored fluorescent color is emitted.

また、本実施形態の蛍光性ジルコニア材の他の例は、蛍光性ジルコニア材を構成する成分の合計100質量%のうち、ネオジウム、テルビウム、ホルミウム、エルビウムまたはツリウムをそれぞれ酸化物(Nd、Tb、Ho、Er、Tm)換算で、例えば0.5質量%以上2質量%以下含む。ネオジウム、テルビウム、ホルミウム、エルビウムまたはツリウムを酸化物換算で、それぞれ1質量%含む蛍光性ジルコニア材に、波長213nm、265nmおよび355nmのビームを照射すると、白色系、緑色系または青色系といった所謂寒色系の蛍光色を発する。 Another example of the fluorescent zirconia material according to the present embodiment is an oxide (Nd 2 O 3) of neodymium, terbium, holmium, erbium, or thulium out of a total of 100% by mass of the components constituting the fluorescent zirconia material. , Tb 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 ), for example, 0.5% by mass or more and 2% by mass or less. When a fluorescent zirconia material containing 1% by mass of neodymium, terbium, holmium, erbium, or thulium, respectively, is converted into an oxide, irradiation with beams having wavelengths of 213 nm, 265 nm, and 355 nm is a so-called cold system such as white, green, or blue. Emits a fluorescent color.

また本実施形態の蛍光性ジルコニア材は、気孔率が、1.5体積%以下であることが好適であり、この気孔率はアルキメデス法に準拠して求めることができる。蛍光性ジルコニア材は、例えば、外径が20mm以上40mmであって、厚みが0.1mm以上0.4mm以下である円板状体である。   The fluorescent zirconia material of the present embodiment preferably has a porosity of 1.5% by volume or less, and this porosity can be determined according to the Archimedes method. The fluorescent zirconia material is, for example, a disk-shaped body having an outer diameter of 20 mm to 40 mm and a thickness of 0.1 mm to 0.4 mm.

次に、本実施形態の蛍光性ジルコニア材の製造方法について説明する。酸化ジルコニウムおよび酸化イットリウムのそれぞれの含有量が所定の質量比、例えば、酸化ジルコニウム質セラミックスを構成する成分100質量%のうち、酸化イットリウムの含有量が13質量%以上20質量%以下となるように、ジルコニウム化合物の水溶液およびイットリウム化合物の水溶液を混合する。このようなジルコニウム化合物としては、例えば、オキシ塩化ジルコニウムを用いることができ、またイットリウムの化合物としては、例えばオキシ塩化イットリウムを用いることができる。   Next, the manufacturing method of the fluorescent zirconia material of this embodiment is demonstrated. The content of each of zirconium oxide and yttrium oxide is a predetermined mass ratio, for example, the content of yttrium oxide is 13% by mass or more and 20% by mass or less in 100% by mass of the components constituting the zirconium oxide ceramics. Then, an aqueous solution of a zirconium compound and an aqueous solution of an yttrium compound are mixed. As such a zirconium compound, for example, zirconium oxychloride can be used, and as the yttrium compound, for example, yttrium oxychloride can be used.

その後、加水分解により水和物を得る共沈法を用いてスラリーを作製した後、脱水、乾燥し、500℃〜1200℃で仮焼することにより仮焼粉体を得る。そして、仮焼粉体を湿式によりボールミル等にて粉砕し、これを乾燥することによって安定化された乾燥粉体を得ることができる。   Then, after preparing a slurry using the coprecipitation method which obtains a hydrate by hydrolysis, it spin-dry | dehydrates, dries, and calcines at 500 degreeC-1200 degreeC, and obtains calcined powder. Then, the calcined powder is pulverized with a ball mill or the like by a wet method, and dried to obtain a stabilized dry powder.

なお、ネオジウム、サマリウム、テルビウム、ホルミウム、エルビウムおよびツリウムの各酸化物は、仮焼粉体の粉砕時に、酸化ジルコニウム質セラミックスを構成する成分の合計100質量%のうち、上記元素がそれぞれ酸化物換算で、例えば、0.5質量%以上2質量%以下含むように添加すればよい。また、酸化イットリウム等の安定化剤により安定化された酸化ジルコニウムの粉末の平均粒径(D50)が0.05μm以上0.2μm以下であれば、酸化ジルコニウムの結晶が微細となるので、蛍光性ジルコニア材の機械的強度および破壊靱性を高くすることができ、特に、その平均粒径(D50)は0.05μm以上0.1μm以下であることがより好適である。 The oxides of neodymium, samarium, terbium, holmium, erbium, and thulium are converted into oxides when the calcined powder is pulverized. For example, it may be added so as to contain 0.5 mass% or more and 2 mass% or less. In addition, if the average particle diameter (D 50 ) of the zirconium oxide powder stabilized by a stabilizer such as yttrium oxide is 0.05 μm or more and 0.2 μm or less, the crystal of zirconium oxide becomes fine. The mechanical strength and fracture toughness of the porous zirconia material can be increased. In particular, the average particle diameter (D 50 ) is more preferably 0.05 μm or more and 0.1 μm or less.

次に、乾燥粉体にシリカゾルおよび有機バインダーを添加して噴霧乾燥することにより平均粒径(D50)が、例えば40μm以上55μm以下の造粒粉体を得ることができる。 Next, a granulated powder having an average particle size (D 50 ) of, for example, 40 μm or more and 55 μm or less can be obtained by adding silica sol and an organic binder to the dry powder and spray drying.

そして、得られた造粒粉体を成形型に充填して、プレス成形、CIP成形(ラバープレス)等の方法によって成形体を得ることができる。   Then, the obtained granulated powder is filled in a mold, and a molded body can be obtained by a method such as press molding or CIP molding (rubber press).

最後に、成形体を大気雰囲気中、保持温度を1400℃以上1500℃以下、保持時間を1時間以上3時間以下として焼成することによって、本実施形態のビーム用検出部材を得ることができる。   Finally, the beam detection member of the present embodiment can be obtained by firing the compact in an air atmosphere at a holding temperature of 1400 ° C. to 1500 ° C. and a holding time of 1 hour to 3 hours.

本実施形態の蛍光性ジルコニア材は、照射する光の波長に応じて異なる形状の蛍光スペクトルが現れる。本実施形態の蛍光性ジルコニアは、例えば特定波長を含むビームを検出するためのビーム検出装置等に使用することができる。ビーム検出装置は、例えば、上記蛍光性ジルコニア材と、この蛍光性ジルコニア材にビームを照射した際に発する蛍光を受光して、受光した光に応じた信号を生成する受光部と、この受光部で生成した信号を解析する解析部とを有していればよい。受光部は、例えば、複数種類の波長フィルタと光電変換素子とを備え、受信した光に含まれる複数種類の波長それぞれについて、光強度に応じた強度の電気信号を生成する。解析部は、各電気信号を処理することで、受光部が受光した波長のスペクトルを解析する。   In the fluorescent zirconia material of the present embodiment, fluorescent spectra having different shapes appear depending on the wavelength of light to be irradiated. The fluorescent zirconia of this embodiment can be used, for example, in a beam detection device for detecting a beam including a specific wavelength. The beam detector includes, for example, the fluorescent zirconia material, a light receiving unit that receives fluorescence emitted when the fluorescent zirconia material is irradiated with a beam, and generates a signal corresponding to the received light, and the light receiving unit. It is only necessary to have an analysis unit that analyzes the signal generated in (1). The light receiving unit includes, for example, a plurality of types of wavelength filters and photoelectric conversion elements, and generates an electrical signal having an intensity corresponding to the light intensity for each of a plurality of types of wavelengths included in the received light. The analysis unit analyzes the spectrum of the wavelength received by the light receiving unit by processing each electrical signal.

例えば波長分布が未知のビームをこの蛍光性ジルコニアに照射し、この蛍光性ジルコニアから発する蛍光を受光部で受光し、解析部でこの蛍光の波長スペクトルを調べることで、例えばこのビームに波長213nm、265nmおよび355nmの各波長成分の光が含まれているかを検出することができる。または、蛍光性ジルコニアから発する蛍光の波長スペクトルを詳細に解析することで、蛍光ジルコニアに照射したビームの波長分布をある程度詳細に導き出すこともできる。   For example, the fluorescent zirconia is irradiated with a beam whose wavelength distribution is unknown, the fluorescence emitted from the fluorescent zirconia is received by the light receiving unit, and the wavelength spectrum of the fluorescence is examined by the analyzing unit. It is possible to detect whether light of each wavelength component of 265 nm and 355 nm is included. Alternatively, by analyzing in detail the wavelength spectrum of the fluorescence emitted from the fluorescent zirconia, the wavelength distribution of the beam irradiated to the fluorescent zirconia can be derived in some detail.

本実施形態の蛍光性ジルコニアは、繰り返し高温に晒されるような環境でも、クラック等の破損が少なく、繰り返し使用することができる。例えば、半導体製造装置内のプラズマが生成されるチャンバ内部に本実施形態の蛍光性ジルコニア材配置して、プラズマの光に応じた蛍光を調べる場合など、プラズマの温度による破損が少ないので、長期間にわたって安定した性能で使用することができる。   The fluorescent zirconia of this embodiment can be used repeatedly even in an environment where it is repeatedly exposed to high temperatures with little damage such as cracks. For example, when the fluorescent zirconia material of the present embodiment is arranged inside a chamber in a semiconductor manufacturing apparatus where plasma is generated and the fluorescence according to the light of the plasma is examined, the damage due to the temperature of the plasma is small, It can be used with stable performance over a wide range.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されない。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment.

Claims (3)

ネオジウム、サマリウム、テルビウム、ホルミウム、エルビウムおよびツリウムの少なくともいずれかを含む酸化ジルコニム質セラミックスであり、酸化ジルコニウム結晶における結晶構造が立方晶であることを特徴とする蛍光性ジルコニア材。   A fluorescent zirconia material, characterized in that it is a zirconium oxide ceramic containing at least one of neodymium, samarium, terbium, holmium, erbium and thulium, and the crystal structure of the zirconium oxide crystal is cubic. 酸化イットリウムを含み、前記酸化ジルコニウム質セラミックスを構成する成分100質量%のうち、酸化イットリウムの含有量が13質量%以上20質量%以下であることを特徴とする請求項1に記載の蛍光性ジルコニア材。   2. The fluorescent zirconia according to claim 1, wherein the content of yttrium oxide is 13% by mass or more and 20% by mass or less in 100% by mass of the component that contains yttrium oxide and constitutes the zirconium oxide ceramics. Wood. 請求項1または請求項2に記載の蛍光性ジルコニア材を備えることを特徴とするビーム検出用装置。   A beam detection apparatus comprising the fluorescent zirconia material according to claim 1.
JP2016088922A 2016-04-27 2016-04-27 Method for manufacturing fluorescent zirconia material for beam detection Active JP6698417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088922A JP6698417B2 (en) 2016-04-27 2016-04-27 Method for manufacturing fluorescent zirconia material for beam detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088922A JP6698417B2 (en) 2016-04-27 2016-04-27 Method for manufacturing fluorescent zirconia material for beam detection

Publications (2)

Publication Number Publication Date
JP2017197642A true JP2017197642A (en) 2017-11-02
JP6698417B2 JP6698417B2 (en) 2020-05-27

Family

ID=60237407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088922A Active JP6698417B2 (en) 2016-04-27 2016-04-27 Method for manufacturing fluorescent zirconia material for beam detection

Country Status (1)

Country Link
JP (1) JP6698417B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113101230A (en) * 2021-03-03 2021-07-13 深圳爱尔创口腔技术有限公司 Zirconia composition, fluorescent zirconia, preparation method of fluorescent zirconia and zirconia dental product
CN113105232A (en) * 2020-10-10 2021-07-13 深圳爱尔创口腔技术有限公司 Zirconia composition, zirconia calcined body and method for producing same, zirconia sintered body and method for producing same, and zirconia dental product
CN115894017A (en) * 2022-12-23 2023-04-04 爱迪特(秦皇岛)科技股份有限公司 Zirconia composition, zirconia sintered body and preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291467A (en) * 1985-06-20 1987-04-25 東ソー株式会社 Light transparent zirconia sintered body
JP2010047460A (en) * 2008-07-22 2010-03-04 Schott Ag Transparent ceramic, its producing method, and optical element using the transparent ceramics
JP2010222466A (en) * 2009-03-23 2010-10-07 Noritake Co Ltd Fluorescent zirconia material
US20110236860A1 (en) * 2008-11-27 2011-09-29 Michael Jahns Dental Ceramic Article, Process for Production and Use Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291467A (en) * 1985-06-20 1987-04-25 東ソー株式会社 Light transparent zirconia sintered body
JP2010047460A (en) * 2008-07-22 2010-03-04 Schott Ag Transparent ceramic, its producing method, and optical element using the transparent ceramics
US20110236860A1 (en) * 2008-11-27 2011-09-29 Michael Jahns Dental Ceramic Article, Process for Production and Use Thereof
JP2010222466A (en) * 2009-03-23 2010-10-07 Noritake Co Ltd Fluorescent zirconia material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105232A (en) * 2020-10-10 2021-07-13 深圳爱尔创口腔技术有限公司 Zirconia composition, zirconia calcined body and method for producing same, zirconia sintered body and method for producing same, and zirconia dental product
CN113101230A (en) * 2021-03-03 2021-07-13 深圳爱尔创口腔技术有限公司 Zirconia composition, fluorescent zirconia, preparation method of fluorescent zirconia and zirconia dental product
CN115894017A (en) * 2022-12-23 2023-04-04 爱迪特(秦皇岛)科技股份有限公司 Zirconia composition, zirconia sintered body and preparation method

Also Published As

Publication number Publication date
JP6698417B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6244582B2 (en) Persistent phosphorescent composite
Zhuang et al. Band-gap variation and a self-redox effect induced by compositional deviation in Zn x Ga 2 O 3+ x: Cr 3+ persistent phosphors
Zhuang et al. Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping
Zhuang et al. Tunable trap depth in Zn (Ga 1− x Al x) 2 O 4: Cr, Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence
EP2412691B1 (en) Use of fluorescent zirconia material as dental material
CN103080045B (en) Sintered zirconia, and sintering composition and calcined object therefor
Liang et al. Red/near-infrared/short-wave infrared multi-band persistent luminescence in Pr 3+-doped persistent phosphors
Palmero et al. Surface and mechanical properties of transparent polycrystalline YAG fabricated by SPS
JP6698417B2 (en) Method for manufacturing fluorescent zirconia material for beam detection
JP5954746B2 (en) Visible light shielding white ceramics, method for producing the same, and white ceramics visible light shield
US20050040366A1 (en) Fluorescent substance and fluorescent composition containing the same
CN102482162A (en) Zirconia sintered body, and mixture, pre-sintered compact and pre-sintered calcined body for sintering zirconia sintered body
KR20150124969A (en) Sintered zirconia compact, and zirconia composition and calcined compact
Osipov et al. Properties of transparent Re3+: Y2O3 ceramics doped with tetravalent additives
US20120252654A1 (en) Zirconia-based composite ceramic sintered compact and method for producing the same
JP2008143726A (en) Polycrystalline transparent y2o3 ceramics and its production method
JP5527413B2 (en) LIGHT EMITTING CERAMIC, LIGHT EMITTING ELEMENT, SCINTILLATOR, AND LIGHT EMITTING CERAMIC MANUFACTURING METHOD
JP5311045B2 (en) Translucent ceramic
CN107418578A (en) A kind of red fluorescence powder suitable near ultraviolet excitation and preparation method thereof
JP6885314B2 (en) Manufacturing method of transparent ceramics for Faraday rotator
WO2018131600A1 (en) Mounting member for heat treatment
CN110832054B (en) Luminescent ceramic and wavelength conversion device
US6541778B1 (en) Method and apparatus for ceramic analysis
JP4783654B2 (en) Translucent ceramic sintered body and manufacturing method thereof
KR20190041022A (en) Optical wavelength converting member and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6698417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150